

Testing Spring Boot Applications
Demystified

Best Practices, Common Pitfalls, and
Real-World Strategies

Java User Group Zürich 21.10.2025

Philip Riecks - PragmaTech GmbH - @rieckpil

https://pragmatech.digital/
https://x.com/rieckpil

Getting Started with
Testing

How It Started

3

Getting Used To Testing At Work

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

4

Goals For This Talk

Lay the foundation for your Spring Boot testing
success

Introduction to Spring Boot’s excellent test support

Showcase a mix of best practices and early pitfalls

Convince you that testing is not an afterthought

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

5

About Philip

Self-employed developer from Herzogenaurach,
Germany (Bavaria)

Blogging & content creation with a focus on testing

Java and specifically Spring Boot applications

Founder of PragmaTech GmbH - Enabling

Developers to Frequently Deliver Software with
More Confidence

Enjoys writing tests

@rieckpil on various platforms

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

6

Agenda

Introduction

Why Test Software?

Testing with Spring Boot
Spring Boot Testing 101 & Unit Testing

Sliced Testing

Integration & E2E Testing

Spring Boot Testing Best Practices

Common Spring Boot Testing Pitfalls

Summary & Outlook

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

7

Why Test Software?

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

8

My Overall Northstar

Imagine seeing this pull request on a Friday afternoon:

How confident are you to merge this major Spring Boot
upgrade and deploy it to production once the pipeline

turns green?

Good tests don't just catch bugs - they give you the

confidence to say "yes" without hesitation.

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

9

Why Test Software? (continued)

Shift Left - Catch issues earlier than the customers

Confidence in Code Changes - Help new team members to onboard faster

Catch Bugs Early - Reduce the ($) cost of bugs in production

Documentation - Single point of truth for implemented business logic

Regression Prevention - Prevent existing functionality from breaking

Become more Productive - Enable faster development cycles

Use it as a Playground - Explore new technologies via tests

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

10

Spring Boot Testing 101 & Unit
Testing

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

11

Running ./mvnw verify

validate

compile

test-compile

test maven-surefire-plugin:test
(Unit Tests)

package

pre-integration-test

integration-test maven-failsafe-plugin:integration-tes
(Runs Integration Tests)

post-integration-test

verify maven-failsafe-plugin:verify
(Checks Integration Test Results)

Legend:

Surefire Execution Phase

Failsafe Execution Phases

Maven Build Lifecycle

Maven Surefire Plugin for unit

tests: default postfix *Test (e.g.
CustomerTest)

Maven Failsafe Plugin for
integration tests: default postfix

*IT (e.g. CheckoutIT)

Reason for splitting: different
parallelization options, better

organisation

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

12

Gradle Build Lifecycle

Unit tests are run during the test task

To separate integration tests, we need a custom Gradle task, as this structure is not

part of default Gradle lifecycle

We need to configure the integrationTest task manually in our build.gradle :

1 // Sample configuration from the Gradle docs
2 tasks.register('integrationTest', Test) {
3 description = 'Runs integration tests.'
4 group = 'verification'
5
6 // ...
7 shouldRunAfter test
8
9 useJUnitPlatform()

10 }

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

13

https://docs.gradle.org/current/userguide/java_testing.html#sec:configuring_java_integration_tests

Spring Boot Starter Test

aka. "Testing Swiss Army Knife"

1 <dependency>
2 <groupId>org.springframework.boot</groupId>
3 <artifactId>spring-boot-starter-test</artifactId>
4 <scope>test</scope>
5 </dependency>

Batteries-included for testing by transitively
including popular testing libraries

JUnit

Mockito

Assertion libraries: AssertJ, Hamcrest,

XMLUnit, JSONAssert, Awaitility

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

14

1 ./mvnw dependency:tree
2 [INFO] ...
3 [INFO] +- org.springframework.boot:spring-boot-starter-test:jar:3.5.6:test
4 [INFO] | +- org.springframework.boot:spring-boot-test:jar:3.5.6:test
5 [INFO] | +- org.springframework.boot:spring-boot-test-autoconfigure:jar:3.5.6:test
6 [INFO] | +- com.jayway.jsonpath:json-path:jar:2.9.0:test
7 [INFO] | +- jakarta.xml.bind:jakarta.xml.bind-api:jar:4.0.2:test
8 [INFO] | | \- jakarta.activation:jakarta.activation-api:jar:2.1.4:test
9 [INFO] | +- net.minidev:json-smart:jar:2.5.2:test

10 [INFO] | | \- net.minidev:accessors-smart:jar:2.5.2:test
11 [INFO] | | \- org.ow2.asm:asm:jar:9.7.1:test
12 [INFO] | +- org.assertj:assertj-core:jar:3.27.4:test
13 [INFO] | | \- net.bytebuddy:byte-buddy:jar:1.17.7:test
14 [INFO] | +- org.awaitility:awaitility:jar:4.3.0:test
15 [INFO] | +- org.hamcrest:hamcrest:jar:3.0:test
16 [INFO] | +- org.junit.jupiter:junit-jupiter:jar:5.12.2:test
17 [INFO] | | +- org.junit.jupiter:junit-jupiter-api:jar:5.12.2:test
18 [INFO] | | | +- org.junit.platform:junit-platform-commons:jar:1.12.2:test
19 [INFO] | | | \- org.apiguardian:apiguardian-api:jar:1.1.2:test
20 [INFO] | | +- org.junit.jupiter:junit-jupiter-params:jar:5.12.2:test
21 [INFO] | | \- org.junit.jupiter:junit-jupiter-engine:jar:5.12.2:test
22 [INFO] | | \- org.junit.platform:junit-platform-engine:jar:1.12.2:test
23 [INFO] | +- org.mockito:mockito-core:jar:5.16.0:test
24 [INFO] | | +- net.bytebuddy:byte-buddy-agent:jar:1.17.7:test
25 [INFO] | | \- org.objenesis:objenesis:jar:3.3:test
26 [INFO] | +- org.mockito:mockito-junit-jupiter:jar:5.16.0:test
27 [INFO] | +- org.skyscreamer:jsonassert:jar:1.5.3:test
28 [INFO] | | \- com.vaadin.external.google:android-json:jar:0.0.20131108.vaadin1:test
29 [INFO] | +- org.springframework:spring-core:jar:6.2.11:compile
30 [INFO] | | \- org.springframework:spring-jcl:jar:6.2.11:compile
31 [INFO] | +- org.springframework:spring-test:jar:6.2.11:test
32 [INFO] | \- org.xmlunit:xmlunit-core:jar:2.10.4:test

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

15

What's Inside the Testing Swiss Army Knife?

JUnit (currently 5, later 6): Java's de-facto standard testing framework and

foundation.

Mockito: Creating mock objects to simulate dependencies and verify interactions.

AssertJ: Provides fluent, chainable, and readable assertions.

Hamcrest: Offers flexible matchers for creating custom assertions.

JSONAssert: Compares JSON strings with flexible matching options.

JsonPath: Extracts and queries data from JSON similar to XPath.

XMLUnit: Compares and validates XML documents.

Awaitility: Handles asynchronous testing with fluent conditions.

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

16

Unit Testing Spring Boot Applications 101

Core Concept: Test individual components (classes, methods) in complete isolation

from their dependencies.

Confidence Gained: Provides logarithmic verifications, ensuring that the smallest

parts of your code work as expected under various conditions.

Best Practices: Focus on a single unit of work.

Pitfalls: Requires a well-thought-out class design. Poor design can lead to testing
overly complex "god classes," making tests difficult to write and maintain.

Tools: JUnit (or Spock, TestNG, etc.), Mockito and assertion libraries like AssertJ or
Hamcrest.

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

17

Unit Testing with Spring Boot

Provide collaborators from outside (dependency injection) -> no new inside our code

Develop small, single responsibility classes

Test only the public API of our class

Verify behavior not implementation details

TDD can help design (better) classes

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

18

Check the Imports

Nothing Spring-related here

Rely only on JUnit, Mockito and an assertion library

1 import org.junit.jupiter.api.DisplayName;
2 import org.junit.jupiter.api.Nested;
3 import org.junit.jupiter.api.Test;
4 import org.junit.jupiter.api.extension.ExtendWith;
5 import org.junit.jupiter.params.ParameterizedTest;
6 import org.junit.jupiter.params.provider.CsvSource;
7 import org.mockito.Mock;
8 import org.mockito.junit.jupiter.MockitoExtension;
9

10 import static org.assertj.core.api.Assertions.assertThat;

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

19

Unify Test Structure

Use a consistent test method naming: givenWhenThen, shouldWhen, etc.

Structure test for the Arrange/Act/Assert test setup

1 @Test
2 void should_When_() {
3
4 // Arrange
5 // ... setting up objects, data, collaborators, etc.
6
7 // Act
8 // ... performing the action to be tested on the class under test
9

10 // Assert
11 // ... verifying the expected outcome
12 }

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

20

1 @ExtendWith(MockitoExtension.class)
2 class CustomerServiceTest {
3
4 @Mock
5 private CustomerRepository customerRepository;
6
7 @InjectMocks
8 private CustomerService customerService;
9

10 @Test
11 void shouldCreateNewCustomerWhenNameDoesNotExist() {
12
13 when(customerRepository.findByCustomerName("duke"))
14 .thenReturn(Optional.empty());
15
16 when(customerRepository.save(any(CustomerEntity.class)))
17 .thenAnswer(invocation -> {
18 CustomerEntity storedCustomer = invocation.getArgument(0);
19 storedCustomer.setId("42");
20 return storedCustomer;
21 });
22
23 String customerId = customerService.createNewCustomer("duke");
24
25 assertThat(customerId).isEqualTo("42");
26 }
27 }

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

21

Unit Testing Has Limits

Writing a unit test for our web layer (UserController) might not cover all aspects:

Request Mapping: Does /api/users/{id} actually resolve to our desired method?

Validation: Will incomplete request bodys result in a 400 bad request or return an
accidental 200?

Serialization: Are we JSON objects serialized and deserialized correctly?

Headers: Are we setting Content-Type or custom headers correctly?

Security: Are we Spring Security configuration and other authorization checks
enforced?

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

22

Sliced Testing

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

23

A Typical Spring ApplicationContext

Our application context consists of many different components (Spring beans):

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

24

We Can Slice It!

Spring Boot allows to load only specific parts (slices) of the application context:

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

25

Sliced Testing Spring Boot Applications 101

Core Concept: Test a specific "slice" or layer of your application by loading a minimal,

relevant part of the Spring ApplicationContext .

Confidence Gained: Helps validate parts of your application where pure unit testing is

insufficient, like the web, messaging, or data layer.

Prominent Examples: Web layer (@WebMvcTest) and database layer

(@DataJpaTest)

Pitfalls: Requires careful configuration to ensure only the necessary slice of the

context is loaded.

Tools: JUnit, Mockito, Spring Test, Spring Boot, Testcontainers

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

26

Slicing in Action

We need to provide beans that are not part of the slice:

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

27

Slicing Example: @WebMvcTest

Testing the web layer in isolation and only load the beans we need

MockMvc : Mocked servlet environment with HTTP semantics

See WebMvcTypeExcludeFilter for included Spring beans

1 @WebMvcTest(CustomerController.class)
2 class CustomerControllerTest {
3
4 @Autowired
5 private MockMvc mockMvc;
6
7 @MockitoBean
8 private CustomerService customerService;
9

10 }

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

28

Common Test Slices

@WebMvcTest / @WebFluxTest - Controller layer

@DataJpaTest / @JdbcTest - Persistence layer

@JsonTest - JSON serialization/deserialization

@RestClientTest - RestTemplate testing

etc.

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

29

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

30

Integration Testing

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

31

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

32

Integration Testing Spring Boot Applications 101

Core Concept: Start the entire Spring application context, often on a random local

port, and test the application through its external interfaces (e.g., REST API).

Confidence Gained: Validates the integration of all internal components working

together as a complete application.

Best Practices: Use @SpringBootTest to run the app on a local port.

Pitfalls: Slower to run than unit or sliced tests. Managing the lifecycle of dependent
services can be complex.

Tools: JUnit, Mockito, Spring Test, Spring Boot, Testcontainers, WireMock (for mocking
external HTTP services), Selenium (for browser-based UI testing)

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

33

Starting the Entire Context

Provide external infrastructure with Testcontainers

Start Tomcat with: @SpringBootTest(webEnvironment =

WebEnvironment.RANDOM_PORT)

Consider WireMock/MockServer for stubbing external HTTP services

Test controller endpoints via: MockMvc , WebTestClient , TestRestTemplate

Speed up builds with Spring Test TestContext caching

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

34

https://testcontainers.com/

Provide External Infrastructure with Testcontainers

Running infrastructure components (databases, message brokers, etc.) in Docker
containers for our tests becomes a breeze with Testcontainers:

1 @Container
2 @ServiceConnection
3 static PostgreSQLContainer<?> postgres = new PostgreSQLContainer<>("postgres:16-alpine")
4 .withDatabaseName("testdb")
5 .withUsername("test")
6 .withPassword("test")
7 .withInitScript("init-postgres.sql");

This gives us an ephemeral PostgreSQL database for our tests:

1 $ docker ps
2 CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
3 a958ee2887c6 postgres:16-alpine "docker-entrypoint.s…" 10 seconds ago Up 9 seconds 0.0.0.0:32776->5432/tcp, [::]:32776->5432/tcp affectionate_cannon
4 ad0f804068dc testcontainers/ryuk:0.12.0 "/bin/ryuk" 10 seconds ago Up 9 seconds 0.0.0.0:32775->8080/tcp, [::]:32775->8080/tcp testcontainers-ryuk-1f9f76a6-46d4-4e19-85c1-e8364da12804

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

35

https://testcontainers.com/

Stub External HTTP Services with WireMock

Consider WireMock to stub external HTTP services during tests.

Run as in-memory service or Docker container to simulate connected HTTP services

Simulate failures, slow responses, etc.

Stateful setups possible (scenarios): first request fails, then succeeds

Override HTTP clients to connect to the WireMock server during tests

1 wireMockServer.stubFor(
2 get(urlPathEqualTo("/api/books/" + isbn))
3 .willReturn(aResponse()
4 .withHeader(HttpHeaders.CONTENT_TYPE, MediaType.APPLICATION_JSON_VALUE)
5 .withBodyFile("book-response-success.json"))
6);

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

36

http://wiremock.org/

Starting the Entire Spring Context - Version 1

We access the application over HTTP like a user, the test and context run in separate

threads (no @Transactional rollback), requires HTTP authentication

1 @SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT)
2 class ApplicationServletContainerIT {
3
4 @LocalServerPort
5 private int port; // <-- we're running on a real port
6
7 @Test
8 void contextLoads(@Autowired WebTestClient webTestClient) {
9 webTestClient

10 .get()
11 .uri("/api/customers")
12 .header("Authorization", "Basic " + Base64.getEncoder().encodeToString("user:dummy".getBytes()))
13 .exchange()
14 .expectStatus()
15 .isOk();
16 }
17 }

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

37

Starting the Entire Spring Context - Version 2

The test and the context run in the same thread, hence we can rollback with

@Transactional and simply override the security context with @WithMockUser

1 @SpringBootTest
2 // which is @SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.MOCK)
3 @AutoConfigureMockMvc
4 class ApplicationMockWebIT {
5
6 // @LocalServerPort
7 // private int port; <-- this would fail the test, there is no local port occupied
8
9 @Test

10 @WithMockUser
11 void givenCustomersThenReturnListForAuthenticatedUser(@Autowired MockMvc mockMvc) throws Exception {
12 mockMvc
13 .perform(get("/api/customers")
14 .header(ACCEPT, APPLICATION_JSON))
15 .andExpect(status().is(200))
16 .andExpect(content().contentType(APPLICATION_JSON))
17 .andExpect(jsonPath("$.size()", is(1)));
18 }
19 }

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

38

The Need for Speed - Reduce Build Times with Context Caching

The problem: Integration tests require a started & initialized Spring

ApplicationContext , which takes time to start

The solution: Spring Test TestContext caching, caches an already started Spring

ApplicationContext for later reuse

This feature is part of Spring Test (part of every Spring Boot project via spring-boot-
starter-test)

Speed improvement example:

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

39

Caching is King

How the caching mechanism works:

Spring Test Context Caching

Test Execution

OrderIT
(Requires Context Config X)

1. Create Context 1

PaymentIT
(Requires Context Config X)

2. Reuse Context 1

FulfillmentIT
(Requires Context Config Y)

3. Create Context 2

Context Cache State

TestContext Cache

Context 1
(for Config X)

(Created by OrderIT)
(Reused by PaymentIT)

Context 2
(for Config Y)

(Created by FulfillmentIT)

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

40

How the Cache Key is Built

1 // DefaultContextCache.java
2 private final Map<MergedContextConfiguration, ApplicationContext> contextMap =
3 Collections.synchronizedMap(new LruCache(32, 0.75f));

This goes into the cache key (MergedContextConfiguration):

activeProfiles (@ActiveProfiles)

contextInitializersClasses (@ContextConfiguration)

propertySourceLocations (@TestPropertySource)

propertySourceProperties (@TestPropertySource)

contextCustomizer (@MockitoBean , @MockBean , @DynamicPropertySource , ...)

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

41

Identify Context Restarts - Visually

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

42

Identify Context Restarts - with Logs

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

43

Identify Context Restarts - with Tools

An open-source Spring Test utility that provides visualization and insights for Spring Test

execution, with a focus on Spring context caching statistics.

Overall goal: Identify optimization opportunities in your Spring Test suite to speed up your

builds and ship to production faster and with more confidence.

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

44

https://github.com/PragmaTech-GmbH/spring-test-profiler

The Final Boss

Developers tend to consult AI/StackOverflow for integration test issues and often copy
advice from the internet without knowing the implications:

1 @SpringBootTest
2 @DirtiesContext
3 // this instructs Spring to remove the context from the cache
4 // and rebuild a new context on every request
5 public abstract class AbstractIntegrationTest {
6
7 }

The setup above will disable the context caching feature and slow down the builds
significantly!

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

45

Spot the Issues for Context Caching

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

46

Outlook to Spring Framework 7: Pausing of Test Contexts

See the release notes of Spring Framework 7.0.0 M7.

Pausing of Test Application Contexts

The Spring TestContext framework is caching application context instances within
test suites for faster runs. As of Spring Framework 7.0, we now pause test application

contexts when
they're not used.

This means an application context stored in the context cache will be stopped when it
is no longer actively in use and automatically restarted the next time the

context is retrieved from the cache.

Specifically, the latter will restart all auto-startup beans in the application context,

effectively restoring the lifecycle state.

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

47

https://spring.io/blog/2025/07/17/spring-framework-7-0-0-M7-available-now

Make the Most of the Caching Feature

Avoid @DirtiesContext when possible, especially central places

Understand how the cache key is built

Monitor and investigate the context restarts

Align the number of unique context configurations for your test suite

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

48

E2E Testing - the Holy Grail of
Confidence

For applications involving a UI consider tools like
Selenium, Selenide, Cypress, Playwright, etc.

Detect issues that only appear in production-like
environments, also for downstream systems

Start with a QA/DEV environment

Consider Canary Testing and run your E2E tests
regularly with a cron-like setup

Challenges: authentication, test data management,

environment stability, flakiness

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

49

Spring Boot Testing Best
Practices

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

50

Best Practice 1: Test Parallelization

Goal: Reduce build time and get faster feedback

Requirements:

No shared state

No dependency between tests and their execution order

No mutation of global state

Two ways to achieve this:

Fork a new JVM with Surefire/Failsafe and let it run in parallel -> more resources but
isolated execution

Use JUnit Jupiter's parallelization mode and let it run in the same JVM with multiple

threads

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

51

Java Test Parallelization Options

Maven Surefire Fork-Based
(Multiple JVMs)

JUnit Jupiter Thread-Based
(Single JVM)

JVM Fork 1

Test Class A

Test Class B

Test Class C

JVM Fork 2

Test Class D

Test Class E

Test Class F

Single JVM

Thread Pool

Thread 1

Test Method A1

Test Method B1

Test Class C

Thread 2

Test Method A2

Test Method B2

Test Class DMaven (forkCount) Features:

Each fork is a separate JVM process

Isolated memory spaces

Higher memory overhead

High isolation (one DB per fork)

Configuration: forkCount, reuseForks

JUnit Jupiter Features:

Uses threads within a single JVM

Shared memory space

Lower memory overhead

Configuration: junit.jupiter.execution.parallel.*

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

52

Best Practice 2: Get Help from AI

Diffblue Cover: AI Agent for unit testing complex (Spring Boot) Java code at scale

My go-to CLI code agent: Claude Code

TDD with an LLM?

(Not AI but still useful) OpenRewrite for automatic code migrations (e.g. JUnit 4 ->

JUnit 5)

Clearly define your requirements in e.g. claude.md or Cursor rule files to adopt a
common test structure

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

53

https://www.diffblue.com/
https://docs.openrewrite.org/recipes/java/testing

Best Practice 3: Try Mutation Testing

Having high code coverage might give you a false sense of security

Mutation Testing with PIT

Beyond Line Coverage: Traditional tools like JaCoCo show which code runs during
tests, but PIT verifies if our tests actually detect when code behaves incorrectly by

introducing "mutations" to our source code.

Quality Guarantee: PIT automatically modifies our code (changing conditionals,

return values, etc.) to ensure our tests fail when they should, revealing blind spots in
seemingly comprehensive test suites.

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

54

https://pitest.org/quickstart/

PIT Mutation Testing Example

Original Code

public int calculateDiscount(
int amount, boolean loyal) {
if (amount > 1000 && loyal) {
return amount / 10;

}
return 0;

}

Mutations Created by PIT

// Mutation 1: Change && to ||
if (amount > 1000 || loyal) {
return amount / 10;

// Mutation 2: Change > to >=
if (amount >= 1000 && loyal) {
return amount / 10;

// Mutation 3: Return constant
if (amount > 1000 && loyal) {
return 0;

JUnit Tests

@Test
void testNormalDiscount() {
int result = discount(2000, true);
assertEquals(200, result);

}
// Missing tests for edge cases

PIT Mutation Test Results

Mutation 1 (&&→||): SURVIVED

Mutation 2 (>→>=): SURVIVED

Mutation 3 (return→0): KILLED

Mutation Score: 33%

Action Required: Add tests for boundary cases (1000, loyal) and different combinations of inputs

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

55

Common Spring Boot Testing
Pitfalls to Avoid

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

56

Testing Pitfall 1: @SpringBootTest Obsession

The name could apply it's a one size fits all solution, but it isn't

It comes with costs: starting the (entire) application context

Useful for integration tests that verify the whole application but not for testing a single
service in isolation

Start with unit tests, see if sliced tests are applicable and only then use

@SpringBootTest

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

57

@SpringBootTest Obsession Visualized

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

58

Testing Pitfall 2: @MockitoBean vs. @MockBean vs. @Mock

@MockBean is a Spring Boot specific annotation that replaces a bean in the
application context with a Mockito mock

@MockBean is deprecated in favor of the new @MockitoBean annotation

@Mock is a Mockito annotation, only for unit tests

Golden Mockito Rules:

Do not mock types you don't own

Don't mock value objects

Don't mock everything

Show some love with your tests

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

59

Testing Pitfall 3: JUnit 4 vs. JUnit 5

You can mix both versions in the same project but
not in the same test class

Browsing through the internet (aka.

StackOverflow/blogs/LLMs) for solutions, you might
find test setups that are still for JUnit 4

Easily import the wrong @Test and you end up
wasting one hour because the Spring context does

not work as expected

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

60

JUnit 4 JUnit 5

@Test from org.junit @Test from org.junit.jupiter.api

@RunWith @ExtendWith/@RegisterExtension

@ClassRule/@Rule -

@Before @BeforeEach

@Ignore @Disabled

@Category @Tag

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

61

Summary & Outlook

Spring Boot applications come with batteries-included for testing

Spring and Spring Boot provides many excellent testing features

Java provides a mature & rich testing ecosystem

Consider the context caching feature for fast builds

Get help from AI

Still many new testing-related features are part of new releases: pausing a
TestContext , @ServiceConnection , Testcontainers support, Docker Compose

support, more AssertJ integrations, etc.

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

62

What's Next?

Online Course: Testing Spring Boot Applications

Masterclass (on-demand, 12 hours, 130+ modules)

eBook: 30 Testing Tools and Libraries Every Java

Developer Must Know

eBook: Stratospheric - From Zero to Production
with AWS

Spring Boot testing workshops (in-
house/remote/hybrid)

Consulting offerings, e.g. the Test Maturity

Assessment for projects/teams

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

63

https://rieckpil.de/testing-spring-boot-applications-masterclass/
https://rieckpil.de/testing-spring-boot-applications-masterclass/
https://leanpub.com/java-testing-toolbox
https://leanpub.com/java-testing-toolbox
https://leanpub.com/stratospheric
https://leanpub.com/stratospheric
https://pragmatech.digital/workshops/
https://pragmatech.digital/consulting/

Don't Leave Empty-Handed

Get the complementary Testing Spring Boot

Applications Demystified eBook for free

120+ Pages with hands-on advice to ship code with
confidence

Scan the QR code on the next slide to get the free
eBook by joining our newsletter

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

64

Joyful Testing!

Get the Spring Boot Testing eBook here:

Reach out any time via:

LinkedIn (Philip Riecks)

X (@rieckpil)

Mail (philip@pragmatech.digital)

Testing Spring Boot Applications Demystified @ JUG Zürich 21.10.2025

https://rieckpil.de/book
https://www.linkedin.com/in/rieckpil
https://x.com/rieckpil
mailto:philip@pragmatech.digital

