
To add a background

image:

• On tab Design menu

• Click Format

background”

• Select “picture or

texture”

• Select File > choose

your image in your file

system

• We recommend to use

a landscape picture

Implementing DDD made easy
using Spring and jMolecules

03.09.2025

JUG Bern

Stefan Heinzer

© Copyright 2025
2Implementing DDD made easy with Spring and jMolecules

What is Domain-driven design?

DDD is

letting the

code talk

business

HowWhy

• Closely collaborate

with domain experts

• Use succinct

ubiquitous language

• Separate domain

from technical logic

• Software fit for purpose /

client needs

• Less misunderstandings

in team

• Greatly improved

maintainability

© Copyright 2025

"The heart of software is

its ability to solve domain-

related problems for its

users."

3

Eric Evans

Author of «the blue book»

Implementing DDD made easy with Spring and jMolecules

© Copyright 2025

There are two text areas:

• The 1st one is for the number

of chapter. Click on “enter”

between each number

• The 2nd one is for the name of

chapter. Click “enter” between

each text

― Structure the code

― Implement the domain

― Add persistence and web API

― DDD at scale

1

2

3

4

4

What you will learn in this talk

Implementing DDD made easy with Spring and jMolecules

© Copyright 2025
5Implementing DDD made easy with Spring and jMolecules

Our Task

Event Model
• Aggregates

• Commands
• Domain events

Implementation

of the domain

logic 1:1

REST API

Other

APIs

ORM

Database

Other

Application

GUI (SPA)

Legend

depends on

© Copyright 2025

Sample Domain: planeZ

7Implementing DDD made easy with Spring and jMolecules

Startup «planeZ»

Rent airplanes with net zero emission

• Browse different airplanes available
• Book them on an hourly basis

• Access the airplane through app

• Pay per use

System to manage airplanes, their bookings as well as
service cycles, where planes are not available.

Standard ERP for back-office tasks such as billing and

book-keeping.

Image from https://h55.ch

© Copyright 2025
8Implementing DDD made easy with Spring and jMolecules

Event model – strategic design

Airplane

type

Airplane

type

added

Add

airplane

type

Airplane

Register

airplane

Airplane

registered

Airplane

Booking

Book

airplane

Publish

airplane

type

Airplane

type

published

Only published

airplane types are
shown on website

Mainte-

nance

Airplane

booked

Schedule

Mainte-

nance

Maintenance

scheduled

1- Manage airplane types

2 - Manage airplanes

3 - Manage airplane bookings

4 - Manage airplane maintenance

Create

Bill

Position

ERP

Cancel

Mainte-

nance

Maintenance

cancelled

Pilot

Fleet

Manager

Fleet

Manager

Service

Manager

© Copyright 2025
9Implementing DDD made easy with Spring and jMolecules

Event model – airplane context

2.1 – Manage airplane type

Airplane

type

Airplane

type

added

Add

airplane

type

Publish

airplane

type

Airplane

type

publishedAirplane

type
Fleet

Manager

2.2 – Manage airplanes

Fleet

Manager

Airplane

Register

airplane

Airplane

registered

Mark

Ready

Airplane

Availabilty

Changed

Decom-

mission

Airplane

Decom-

missioned

Take

out of

service

Airplane Airplane

Update
Airplane

updated

© Copyright 2025

There are two text areas:

• The 1st one is for the number

of chapter. Click on “enter”

between each number

• The 2nd one is for the name of

chapter. Click “enter” between

each text

― Structure the code

― Implement the domain

― Add persistence and web API

― Insights from real projects

1

2

3

4

10Implementing DDD made easy with Spring and jMolecules

© Copyright 2025
11Implementing DDD made easy with Spring and jMolecules

Find a suitable package structure

Classical: technical layers

myapp/

entities/

repositories/

services/

controllers/

Domain-driven: package by feature!

myapp/

airplane/

booking/

maintenance/

Does not express any

domain concept!

© Copyright 2025
12Implementing DDD made easy with Spring and jMolecules

Where to place technical stuff?

myapp/

airplanes/

repository/

service/

controller/

bookings/

maintenance/

Are you kidding?

myapp/

airplanes/

domain classes (top level / flat)

app/

feature specific application services

web/

feature specific REST API

bookings/

maintenance/

_application

_infrastructure

© Copyright 2025

Infrastructure

Application

13Implementing DDD made easy with Spring and jMolecules

Simplified Onion Architecture

Domain

• Persistence

• APIs, Adapters

• Security

• Orchestration

• Transactions

• Domain model

• Business rules

• Ports

Allowed

dependencies

© Copyright 2025
14Implementing DDD made easy with Spring and jMolecules

Spring Modulith

Oliver Drotbohm
ex. Spring Data

• Package-based module architecture

• Convention over configuration

• Bootstrapping of verticals / modules to keep test
execution fast

• Detect cycles in modules

• Inter-module eventing patterns ready to scale
out to micro-services

• Event-persistence to let unpublished events
survive system restarts

Book on Leanpub
66% complete

© Copyright 2025
15Implementing DDD made easy with Spring and jMolecules

jMolecules – “Architecturally evident code”

Interfaces or Annotations

• Onion, Hexagonal, Layered architecture

• Elements of tactical DDD (Repository,
Aggregate, Value Object, etc.)

• Optional technology integration: Spring,
JPA, Jackson, etc.

• Compile-time and build-time validation
of architectural rules

Oliver Drotbohm

© Copyright 2025

There are two text areas:

• The 1st one is for the number

of chapter. Click on “enter”

between each number

• The 2nd one is for the name of

chapter. Click “enter” between

each text

― Structure the code

― Implement the domain

― Add persistence and web API

― Insights from real projects

1

2

3

4

16Implementing DDD made easy with Spring and jMolecules

© Copyright 2025
17Implementing DDD made easy with Spring and jMolecules

Elements of tactical DDD

• Data and logic: Entities,
value objects, aggregates,
domain service

• State change: Domain
events

• Persistence: Repositories

• Structure: Modules, layered
architecture

Entities

Value
Objects

Aggregates

Onion
Architecture

Modules

Domain
Events

Services

Repositories

© Copyright 2025
18Implementing DDD made easy with Spring and jMolecules

Airplane model 0.1

<aggregate root>

Airplane

- id: AirplaneId
- state: AirplaneState

- inventoryCode: integer

<aggregate root>

AirplaneType

- id: AirplaneTypeId
- name: String

- … (tech info, docs, images)

<repository>

Airplanes

+save(Airplane)

+findById(AIrplaneId)

Business Rules

• After registration, the airplane is out of service until marked

ready

• An airplane can be taken out of service at any time as long

as it has no been decommissioned

• The inventory code can only be changed if the airplane is

out of service

type

<enum>

AirplaneState

+ OUT_OF_SERVICE

+ READY
+ DECOMMISSIONED

out of

service

ready

Decom

missioned

register

mark ready
take out of

service

decommission

Commands

• Register(Name, AirplaneType)

• MarkReady()

• TakeOutOfService()

AirplaneRepository
Domain Events

• AirplaneRegistered(AirplaneId)

• AirplaneAvailabilityChanged(AirplaneId, AirplaneState)

© Copyright 2025
19Implementing DDD made easy with Spring and jMolecules

Expressing the domain model in Java

© Copyright 2025

There are two text areas:

• The 1st one is for the number

of chapter. Click on “enter”

between each number

• The 2nd one is for the name of

chapter. Click “enter” between

each text

― Structure the code

― Implement the domain

― Add persistence and web API

― Insights from real projects

1

2

3

4

20Implementing DDD made easy with Spring and jMolecules

© Copyright 2025
21Implementing DDD made easy with Spring and jMolecules

How to persist aggregates?

Option 1: Map the aggregates directly

Add persistence annotations to aggregates to make them persistable by an ORM

Option 2: Use separate persistence model

Map aggregates to and from separate persistence model, which lives in the infrastructure layer

Option 3: Event-sourced

Do not store the fields of the aggregate, but the history of events that lead to that state.

Option 1b: jMolecules Byte Buddy

Generate persistence annotations at build time on byte code only

Maven plugin in pom.xml

© Copyright 2025
22Implementing DDD made easy with Spring and jMolecules

Invisible JPA for free

compile, byte-buddy:transform-extended

decompiled byte code

Purely domain

✓ JPA persistable

© Copyright 2025
23Implementing DDD made easy with Spring and jMolecules

Implementing the REST API

© Copyright 2025
24Implementing DDD made easy with Spring and jMolecules

Hooking into Spring Data REST

Approach:

1) Use read operations of Spring Data REST (getOne, getAll, search/findBy, projections)

2) Force aggregate updates to go through commands

WebConfiguration.java

© Copyright 2025
25Implementing DDD made easy with Spring and jMolecules

Execute command on domain model

Hook into Spring Data REST

Secure operations

Take command as input

Run all operations in transaction

1

5

2

3

4

© Copyright 2025
26Implementing DDD made easy with Spring and jMolecules

Key features of this architecture

• No DTOs needed in Web layer
serializing directly aggregates, deserializing directly commands

• No separate model in persistence layer
saving directly byte-buddy enhanced aggregates

• Only required packages
separating domain modules and architectural layers

• Every element has its well-defined place

Not recommended

for public APIs!

→ Lean & crisp

© Copyright 2025

There are two text areas:

• The 1st one is for the number

of chapter. Click on “enter”

between each number

• The 2nd one is for the name of

chapter. Click “enter” between

each text

― Structure the code

― Implement the domain

― Add persistence and web API

― Insights from real projects

1

2

3

4

27Implementing DDD made easy with Spring and jMolecules

© Copyright 2025

Personnel Deployment Planning

28Implementing DDD made easy with Spring and jMolecules

ERP

Personnel

Absence

Demand

Training

Monthly

Shift Plans

• Vacation allotment

• Vacation requests

• Offered courses

• Trainiers
• Subscriptions

Allocation to

Org Units

• Employees, Skills

• Booking of employees

• Staffing of Operations

with suitable employees
• Enforce labor laws and

regulations

• Demand / Operations

• Required number of
employees per skill

• Allocation to supplying

organizational units

© Copyright 2025

Bounded Contexts

Employee Demand Allocation DispositionAbsenceTraining

© Copyright 2025

Event model

Domain model

(UML)

Screen design

• Implementable model of the

business process

• Naming of commands,

aggregates, domain events

• Common understanding of team

Domain Event (facts)

Command (intentions)

Aggregate (business object)

Read model (input data)

© Copyright 2025

Einheit 1

Einheit 1

Step through

months
Timeline

(days)

Shift slots

(location, skills,
time)

Employees

Shifts

Employee

Assignments

Observation: Need two views on shifts:

• By demand → disposition aggregate

• By employee → month plan aggregate

Dispositions

Dispositions

Month Plan

© Copyright 2025

© Copyright 2025

Assign

Employee

Unassign

Employee

Employee

© Copyright 2025

Einheit 1

Einheit 1

1 Select shifts to assign

© Copyright 2025

Einheit 1

Einheit 1
2 Select employee / individual days

© Copyright 2025

Key learnings

✓ DDD works perfectly at scale

✓ Modularization by bounded contexts and

aggregates keeps complexity manageable

✓ Continuous work on the event model keeps the

team aligned (Customer, UX, BA, Dev, Test)

✓ Close collaboration between user centric and

domain driven design highly beneficial

36Implementing DDD made easy with Spring and jMolecules

© Copyright 2025

Conclusion

37Implementing DDD made easy with Spring and jMolecules

© Copyright 2025

— DDD greatly helps tackling complexity through separation

of concerns (contexts, modules, layers)

— jMolecules helps expressing DDD concepts in code and

adds strong support for technology integration (e.g. JPA)

— Spring modulith comes in handy to separate modules and

offers transactional event publication

Wrap up

38Implementing DDD made easy with Spring and jMolecules

With these tools, implementing DDD

has become easy and lightweight

© Copyright 2025

— Complexity of the world increases rapidly

— AI generated code which follows principles of DDD

will still be verifiable by humans

— Our work will shift from coding to design and

validation, with a strong focus on safety and security

Outlook: DDD and AI

39Implementing DDD made easy with Spring and jMolecules

© Copyright 2025

“Software development is

a learning process.

Working code is a side

effect.”

40

Eric Evans
Author of «the blue book»

Implementing DDD made easy with Spring and jMolecules

© Copyright 2025

Questions?

41Implementing DDD made easy with Spring and jMolecules

Contact

ELCA Informatique SA

Lausanne 021 613 21 11 | Genève 022 307 15 11

ELCA Informatik AG

Zürich 044 456 32 11 | Bern 031 556 63 11 | Basel 044 456 32 11

www.elca.ch

Stefan Heinzer

Architecture BL

stefan.heinzer@elca.ch

Thank you!

	Slide 1: Implementing DDD made easy
	Slide 2: What is Domain-driven design?
	Slide 3
	Slide 4
	Slide 5: Our Task
	Slide 6
	Slide 7
	Slide 8: Event model – strategic design
	Slide 9: Event model – airplane context
	Slide 10
	Slide 11: Find a suitable package structure
	Slide 12: Where to place technical stuff?
	Slide 13: Simplified Onion Architecture
	Slide 14: Spring Modulith
	Slide 15: jMolecules – “Architecturally evident code”
	Slide 16
	Slide 17: Elements of tactical DDD
	Slide 18: Airplane model 0.1
	Slide 19: Expressing the domain model in Java
	Slide 20
	Slide 21: How to persist aggregates?
	Slide 22: Invisible JPA for free
	Slide 23
	Slide 24: Hooking into Spring Data REST
	Slide 25
	Slide 26: Key features of this architecture
	Slide 27
	Slide 28: Personnel Deployment Planning
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Key learnings
	Slide 37: Conclusion
	Slide 38: Wrap up
	Slide 39: Outlook: DDD and AI
	Slide 40
	Slide 41: Questions?
	Slide 42

