

Back to Basics:

Crafting Quality Software
in the Age Of Complexity

Scott Gerring, Datadog

Microservices

The Cloud

GenAI

“The earlier you catch
defects, the cheaper they are

to fix”
David Farley, on not shooting yourself in

the foot in production

Quality … you know what it is, yet you don’t
know what it is.

• Robert Pirsig

Thoughtful Design

Static Analysis

We’ve just started our new project, and
based on “fun experiences” in previous
ones, we want to get off on the right foot
with code style and basic sanity checking.

Linting &
Style Checks

Easy, Fast, Cheap

Common Tools

• Java - Spotbugs / Checkstyle, Error Prone
• .net - Roslyn Analyzers, StyleCop
• Python - pylint / flake8
• Rust - clippy / rustfmt

Demo!

Linting Recommendations

Do:
• Use Error Prone or SpotBugs
• Embrace Spotless
• Everything checked in CI and trivial to run locally

Don’t:

• Go too mad with the code style; embrace what can be automated

“Jane in security keeps telling me to ‘fix the
log4shells’. We’ve not touched the codebase
in years, and I have no idea what she’s
talking about anyway”.

Software
Composition
Analysis

We put an exploit in your
supply chain so you can
mine bitcoin while you
deliver business value

So many
tools!

Software Composition
Analysis Recommendations

• You’re going to want to do this …
• … and GitHub’s default tooling is a great low effort way to

start

“I want to make sure that Joe the Intern is
automatically prevented from passing
unescaped user input to raw SQL queries ”

Getting
Weird(er)

Semgrep, CodeQL,
and Static
Application Security
Testing

CodeQL — Query your codebase

Semgrep — query your codebase, but easier
this time

What - another demo?

SAST, CodeQL, and friends
Recommendations
• SAST

• You’re going to want to do this
• Lean into what you already have available

• Code Querying
• Is a fun past-time and lets you start to build a metal

model of your code

“I want to formalise my model of the
architecture of my service to keep it on the
rails over time”

Architecture
Testing

Automatically
enforcing your
mental model

• Layering - Things named .*Resource shouldn’t import things
from javax.persistence

• Containment - Classes named .*DTO should reside in packages
named “.dto$”

• Consistency - Classes implementing IThingDoer should be
named .*ThingDoer

• Cycle Checks - Slices in my application should be free of cycles

Arch Rules like …

Demos never end

Architecture Testing:
Recommendations

• Check it out!

Dynamic Analysis

Observability

Observability Is:

• Logs
• Traces
• Metrics

Tracing

Tracing - Getting
Started

• Auto- vs. manual- instrumentation
• Explicit vs implicit collection

Auto Instrumentation

Manual Instrumentation

Collection

• Agent - implicitly pushes from outside app
• OTel SDK - explicitly pushes from within app

Tracing - Pragmatic
Advice

• Instrument using OpenTelemetry APIs
• Collect using provider instrumentation

Observability Is:

• Logs
• Traces
• Metrics
• Continuous Profiling?!1

Manual
Profiling
• Manual runs & analysis under

test
• Custom builds (gprof)
• Binary rewriting (valgrind)
• Dynamic Instrumentation / eBPF

(dtrace)
• Some statistical sampling (prof,

JFR)

Continuous
Profiling

• Statistical sampling, load overhead
• Always on in prod
• Correlated with traces (and request

metadata!)

Continuous Profiling -
Pragmatic Advice

• Keep an eye on it! It’ll be table stakes soon enough.

“ Great! I can avoid terrible things creeping
into my Java. But, I have another codebase
for the frontend. And its written in …
another language. Without types. Help?”

Incremental Typing

Less Easy, Pretty Great

Javascript

Typescript?

Ok, so I did mention
Scala …

Incremental Typing
Recommendations

• Favour TypeScript over JavaScript 💩
• Consider whether Scala or Kotlin add any value

for your domain (they may well not!)

Crafting Quality Software

• Quality has to be tended to over time
• Good design is good …
• … automated guard-rails are essential!
• Static|Dynamic analysis is here to help
• Encode structural checks for what matters

That’s it!

https://scottgerring.com

https://scottgerring.com

