
Mastering the Basics of DDD
Domain-Driven Design with Java

Otávio Santana, Founder
 otavio@os.expert

Technology as strategic resource
Everything is around software!

“Every business is a software business” CMMI

“Every Company is a Data Company” CIO Network

“Every Company is a Software Company” Forbes

Software Development
Failure?

Hyper-Focused Planning
And Design

Unexpected Complexities

Poor Collaboration Between The
Product And Engineering Teams

Unclear Or Undefined Client
Expectations

The Complexity Paradox
The More Answers We Find, the More Questions We Have

Developer experience is a market

Trade-offs

The hype effect

Evolutionary Software?

“To prepare to write their classic text Structure Design, Ed Yourdon and

Larry Constantine examined programs to find out what made them so

expensive. They noticed that the expensive programs all had one

property in common: changing one element required changing other

elements.”

No ready to change anything!

Software Erosion

“Also known as software rot, code rot, software decay, or software

entropy, software rot is either a slow deterioration of software

quality over time or its diminishing responsiveness that will

eventually lead to software becoming faulty.”

Continuous development

Software Engineering?
A super inefficient way to build something

We waste time in
meetings

Create
complexity

Not ready for
change

Premature
legacy

No achieve client
goals

Software Engineer
Definitions?

“Software engineering is the application of an
empirical, scientific approach to finding efficient,

economical solutions to practical problems in
software.”

Agile
Agile is dead. Long live agility

Digital.ai 2023

● 40% reported organizational
resistance to change.

● 33% pointed to lack of
leadership support.

● only ~31% of Agile projects
are considered “successful”

Domain Driven Design
Designing software to meet business goals with less rework

DDD?
The biggest misunderstanding in the software industry!

It is a framework! Repository, Entity

Microservices Code only

Java

Complex

DDD!
Handling and focus to the Business

Domains Transfer
Knowledge

Tactics Strategy

Strategic DDD
The biggest mistake when implementing DDD

Domains and
Subdomains

Ubiquitous
language

Context
Mapping

 Bounded Contexts

Domains
Central area of a company’s operations

Subdomain Type Role Business Differentiation Complexity of
Business Logic

Core Subdomain Unique to the company, defining
its identity and competitive

advantage

High High

Generic Subdomain Common across all companies,
standard business activities

Low High

Supporting Subdomain Supports core business activities
without providing direct
competitive advantage

Medium Varies

Domains
The subdomains types

Ubiquitous Language
The core's communication

Define common
terminology

The common language
between experts and the
engineering team.

The same word can
vary from context

Bounded Contexts
Subset of the ubiquitous language

Context Mapping
The relationships between these contexts

Shared Kernel Customer-Supplier Conformist

Anticorruption Layer Published
Language

Separate Ways

Open Host Service

Domain Storytelling
A Collaborative, and Visual Way to Build DDD

Tactic DDD
The second step

Entity Service Repository Aggregates

Value Object Factories Events

Strategic and Tactical
Focus on tactics is the start of a huge mistake

Get something
done

Working code isn't
enough

Tactical tornado

Strategic

Tactical

Time

Total
progress

Governance
Automating processes and good practice rules

Using Annotations
Getting architecture evidences

@Entity
public class CreditCard {

 @Identity
 private BigInteger id;

 private String number;

 private String name;

 private YearMonth expiry;
}

Governance
Automating processes and good practice rules

@AnalyzeClasses(packages = "expert.os.examples")
public class IntegrationSampleTest {

 @ArchTest
 private ArchRule dddRules = JMoleculesDddRules.all();

 @ArchTest
 private ArchRule layering = JMoleculesArchitectureRules.ensureLayering();

}

PMD
Static source code analyzer

Bugs

Suboptimal
code

Dead
code

Classes with high
Cyclomatic

Security

Complexity
measurements.

Over Complicated
expressions

Duplicate
code

Checkstyle
Create your style validations

Naming
conventions
of attributes

and methods

The presence
of mandatory

headers

The practices
of class

construction

Multiple
complexity

measurements

ArchUnit
Putting test at your Architecture and Design

xMolecules
Architectural abstractions in code.

"There is always a leak between the language and the
architecture you want to express. Language, like any

other tool, shapes what you can do with it, and
sometimes it doesn’t allow you to express things the

way you'd want from an architectural standpoint."

Architecturally Evident Applications – How to
Bridge the Model-Code Gap?

https://xmolecules.org/aea-paper.pdf

Software Architecture
There is no space, the business is the goal!

The laws

Everything in software architecture is a trade-off

Why is more important than how

Architecture

Architecture vs Design
The boundaries to DDD

Code

Changelog

README

API

Documentation
The reader is the user

C4-model
Architecture’s
map

Tech-radar
Technologies's
view

ADR
Don’t repeat
the error

Communication
A clear direction

Documentation
Architectural perspective

The Architecture styles
There is a world beyond microservices and Hexagon model

Architecture DDD
Using Layers to abstraction

Presentation Layer

Application Layer

Infrastructure Layer

Domain Layer

Software Architecture
There is no space, the business is the goal!

The Architecture styles
There is a world beyond microservices and Hexagon model

Clean Architecture
How to Combine it with DDD?

Refactoring
Be ready for change

Better
Readability

Reduced
Complexity

Improved
Maintainability

Reduced
Technical Debt

Enhance
Performance

Effortless
Extensibility

Fight against
Software Erosion

Show me the code
Let’s show the code structure

Context

Code Design

Documentation Software Architecture

Software Engineering

Test

The principle of the ultimate sophistication Engineer

Persistence Leadership

Software Engineer & Architect

Expert

Otavio Santana

Java Champion, Oracle ACE

Book and blog writer

Duke Choice Award

Jakarta EE and MicroProfile

JCP-EC-EG-EGL

Apache and Eclipse Committer

JCP Award

Ultimate Engineer
A practical guide to becoming a high-impact software engineer and architect

https://os.expert/ebook-the-ultimate-engineer/

Thank you!

Otávio Santana
OS Expert Founder, Software Engineer & Architect

otavio@os.expert

https://www.linkedin.com/in/otaviojava/

https://www.youtube.com/@otaviojava

https://twitter.com/otaviojava

