Testcontainers

1 Ille neal World '
ML BRI BII T I N

\ AR wrb“" ‘ﬁ.’}gn.
\\ UY, ol \

Ein Erfahrungsbericht \ o ™ /‘OR -' \/*

mit Lessons Learned \ (
i)
\\\

////////////

Z
//////////

dpeaKer

Fabian Gotzen

Software Engineer
@ blLink

- Java / Kotlin
- Spring
- Devops

Common Ground

- Integration test?
- Broad vs narrow

The problem is that we have (at least) two different notions of what constitutes an

integration test.
narrow integration tests

= exercise only that portion of the code in my service that talks to a separate service
= uses test doubles of those services, either in process or remote
= thus consist of many narrowly scoped tests, often no larger in scope than a unit test

(and usually run with the same test framework that's used for unit tests)
broad integration tests
= require live versions of all services, requiring substantial test environment and
network access
= exercise code paths through all services, not just code responsible for interactions
And there is a large population of software developers for whom “integration test” only

means “broad integration tests”, leading to plenty of confusion when they run into

people who use the narrow approach.

Introduction to
Testcontainers

0 Testcontainers

& <« B ¢ ® »x 4 0O Y7 Star 74k~
Java Go .NET Node.js Python Rust Haskell Ruby Clojure

- Open source library -

- Provides throwaway instances in containers

- No more mocks or complicated environment configurations
- Define your test dependencies as code

@ Testconta iners Testcontainers brought to you by
Community Champions

Josh Long (L5 ATOMIC
The first Spring Develo

since 2010. Josh is a Java Champion,
author of 7 books (including "Reactive
Spring"), open-source cantributor, Youtuber,
and a podcaster ("A Bootiful Podcast”)

What Problems Does
Testcontainers Solve?

Before running tests...

- up and running
- desired state
- problems with shared resources

(non-deterministic, data corruption,

configuration drift)

Micro-services

O Testcontainers Sample Cloud-native Architecture with

What | might need to test end-to-end,
My downstream

or contract-test, or test in prod ; (What | own, test and deploy
dependencies |

‘ Service A

— =

Service B Datastore

API| Gateway

(Kafka)

4

Datastore
(PostgreSQL)

Cloud Offerlng
My Component
(unit of deployment) (AWS S3)

ﬁ Message Broker Service C

\\\&

\ Chapter1 —
MAMHHHHMTUETITJOG0OG08G8S

/

%
s

/

s

/

S NANANNNNV S S s

SONNANANN\N\\\V S S
SONNANAN\N\\\\V S S

N NXN\X\N\N\\\\VW1Yr2 s s s s
-~ N NX\NXN\\\N\VV?12r /s s~
- T~ S~ NNN\N\N\WNW V22—
- Tm— Yt Y s S NNV LV s s s — —
T e e e e e o P N N ™ Y m — —
T = s 277 NN NN N N
777 /777171 VNN NN NN
o s/ /77771 1TV VNN N N N

o/ /77 T TV VNN N N N
<777 7 TPV NN N N N

e
a4
i \\

/

VA A B
{ !

\
/.

STV NN N N Y

s,
™,
o

S/ VYN NN

AN

External Factors

- New service
- Message broker integration

m Test close to production

o (&

ml Parallel execution

Starting Situation

- In-memory solutions
(H2, embedded Kafka)
- Test system
(shared Oracle DB)

Lukas Eder

Q Well, to be fair with the H2 developers, they were always surprised to see

+ Fast & simple e g et el st e,
+ No Docker required
Different behaviour & syntax

Areas considered experimental are: Is it Reliable?

That is not easy to say. It is still a quite new
Clustering (ther : transaction isolation can be broken due to timing issues, for coverage of these tests is higher than 80 0 stress tests are run

example one sess on). reqularly. But there are probably still bugs that hEl'n: not w:t be.n found (as with most software). S
es (only some features are implemented)
(CACHE_TYPE=SOFT_LRU). It might not improve performance, and
e been reported

1est system (Oracle)

+ As real as 1t gets

- Setup & mailntenance

- Inttial state

- Parallel execution on shared resource

sweet spot

fast & simple close to production
different technology rigid

-
Technology Radar

An opinionated guide to today's technology landscape

ooooooooo

sssssssssssssssssssssssssssssssssssssss

https://www.thoughtworks.com/radar

MAR
2022

Adopt

We've had enough experience with Testcontainers & that we think it's a useful default option for
creating a reliable environment for running tests. It's a library, ported to multiple languages @2, that

Dockerizes common test dependencies — including various types of databases, queuing technologies,
cloud services and Ul testing dependencies like web browsers — with the ability to run custom
Dockerfiles when needed. It works well with test frameworks like JUnit, is flexible enough to let users
manage the container lifecycle and advanced networking and quickly sets up an integrated test
environment. Our teams have consistently found this library of programmable, lightweight and
disposable containers to make functional tests more reliable.

Testcontainers

+ Consistent environment
+ Isolated

+ Flexibility (services)

- Overhead

- Complexity

micJar) Testci:r;tainers ,

REPORT

State of Local Development

and Testlng 2023

Testcontainers is now popular across all categories
of dependencies

Relational databases

M

Message brokers

ifka, Redpa 1, RabbitM

63%

', NoSQL databagreis 51%

rch, MongoDB, Re

Web servers/proxies 35%

X1

o lefors 33%

Private images of
internal microservices

32%

88%

‘ Testcontainers

Two thirds of the
community adopt
3+ testing use
cases

0 Testcontainers How do you run Testcontainers locally?
40% of developers

run Testcontainers

with an 0SS

runtime Docker Engine - 22%

Podman 8%

Other 0SS

Dev-Time

How do you create the environment for running your project
locally during development?

50%

Testcontainers

40%

manual setup

10%

remote environment

‘ Testcontainers

Not just tests:

50% of developers
use Testcontainers
at dev-time

Source: AtomicJar

Pipeline

‘ Testcontainers What's the average duration of your main CI pipeline?
79% of

Testcontainers-

enabled CI

pipelines run under 28%

20 min

16%

5%
|

<5 min 5-20 min 20-60 min >60 min

Chapter 2 §
AHHHBHBMHHHHHTHHPHII I OIMDB

@ eﬁ.

)
'..A

and the Ugly

o ‘-

rﬂ

" Introduction & Setup

- Textbook example

COMPILING

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

MY CODE’S COMPILING.”

HEY! GET BACK
10 UORK'

PERMANENT LINK TO THIS COMIC. HTTPS:/XxKcD.com/303/
IMAGE URL (FOR HOTLINKING/EMBEDDING). HTTPS://IMGS. XKCD.COM/COMICS/COMPILING.PNG

" Lifecycle Management

- Singleton container
- Started once for several
test classes

| State Management

- Clean & migrate
databases
- Junit extension

| Working with Spring

- Wait.. how does Spring know
where to connect?

- @DynamicPropertySource /
ApplicationContextInitializer
/ @ServiceConnection

- Passing properties to
individual tests

Developer Experience

Reuse existing containers
- Caveat: Experimental & not
suited for CI

New Solutions to old
Problems

Testcontainers module for
Shopify’s Toxiproxy. This
TCP proxy can be used to
simulate network fatlure
conditions.

CI/GD & JenkKins

Wenn die Testcontainer wiedermal klemmen...

tl.dr: Die Integration-Tests, welche Testcontainers benétigen kénnen geskipped werden:

/v

S
/) @ ron nsrconane

. THEBUILD
TAKES TOO LONG!!!

mehr...

Problem

= Die Testcontainers auf dem Jenkins brauchen ziemlich viel Ressourcen

= Wir bauen bLink mit mehreren Threads, d.h. es kdnnen mehrere Module gleichzeitig Testcontainers starten, und es werden auch noch mehrere Cls parallel ausgefuhrt. Daher kann es gut sein, dass mal 50
Containers am laufen sind.

m Gleichzeitig brauchen -und - ebenfalls ziemlich viel Ressourcen (tw. ebenfalls fir Testcontainers, aber auch flr anderes)

— fuhrt dazu, dass wir oft Probleme im Test Setup haben, z.B. Timeouts oder auch andere Fehler beim Starten

Massnahme

= Timeout wurde bereits auf 3min erhéht, und Anzahl erlaubte parallele Cls in bLink auf max. 3 beschrankt
» Wenn alle Stricke reissen kann man die Tests nun auch skippen (siehe Parameter im Screenshot)

— einzige Regel: Know what you are doing #

CI/GD & JenkKins

- Devtools support needed
(Dockersocket on Jenkins)
- Additional resources
needed (load on Jenkins
affected test success)

Continuous Integration v

) ,DOCker Wormho.l'e' AWS CodeBuild
patter N Patterns for running tests

inside a Docker container

- DOC ker'ln = DOC ker CircleCl (Cloud, Server v2.x,

and Server v3.x)
Concourse Cl
Drone CI

GitLab C

Bitbucket Pipelines
Tekton

Travis

Paraliel Execution

- currently averaging three
containers per module

- adds about 5 minutes to
build time to a total of 10
minutes.

Dealing with FlaKiness

L] | | | i K
- A\Na -I_t 1]_1t .oracleContainer iewContainer(databaseName).with
y Wi 3 |) .withStartupTim ChronoUnit. SE
[]
T.I-l I Ieo Uts 0GGER.info("Awaiting successful consumption of with reference " + participantMessage.reference())

Bwaitility.await().with().pollDelay(delayInSecond, SECONDS).until(conditionEvaluator)

n
- Retrles LOGGER.1nfo("< essful consumption of message with reference + participantMessage.reference())

<id>fIntegration-tests</id>

<activation>
perty>
e>punIntegrationTestsWithContainers</n

- If/when there are
problems, they are usually
not solved before your first
coffee.

- "hmm, thats funny”

- Lots of moving parts

- Works locally, fails on
Jenkins

Complexity & Debugging

-
What a week, huh?
Captain, it's Wednesday
54 -
| ' A

\\%

«— (hapter 3 \
MTIEIR I iR

222224

G

Improved Testcontainers Support in Spring Boot 3.1

What's next?

- Increased support in Spring Boot 3
- @ServiceConnection

- Desktop application to analyze test

sessions

- High Activity, new modules

Download the Free Testcontainers Desktop app

Adoption Complexity with containers

Isolated & close to production High resource usage

(which can lead to flakiness)
Flexibility & new use cases

Solid Spring integration

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

