
Microservices for the Masses with Spring Boot, JHipster, and OAuth

March 11, 2020

Matt Raible | @mraible

Photo by Tambako The Jaguar flickr.com/photos/tambako/4580951085

https://twitter.com/mraible
https://flickr.com/photos/tambako/4580951085
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com
https://developer.okta.com

Do you use microservices?

Agenda
1. Introduction to Microservices

2. Microservices with JHipster

3. Deploying to the Cloud

4. JHipster Roadmap

Blogger on raibledesigns.com and

developer.okta.com/blog

Web Developer and Java Champion

Father, Husband, Skier, Mountain
Biker, Whitewater Rafter

Open Source Connoisseur

Hi, I’m Matt Raible!

Bus Lover

Okta Developer Advocate

http://raibledesigns.com
http://developer.okta.com/blog
http://developer.okta.com

developer.okta.com

http://www.apple.com

What About You?

Part 1
Introduction to Microservices

History of Microservices

Microservices Architecture Philosophy

Why Microservices?

Demo: A Microservices Architecture with
Spring Boot and Spring Cloud

Microservices Visionaries

“Any organization that designs a system
(defined broadly) will produce a design
whose structure is a copy of the
organization's communication structure.”

Conway’s Law

Melvin Conway 1967

“Do one thing and do it well.”

“You shouldn't start with a microservices
architecture. Instead begin with a
monolith, keep it modular, and split it
into microservices once the monolith
becomes a problem.”

Martin Fowler March 2014

start.spring.io

Demo

Using start.spring.io, create:

A service registry

A gateway

A catalog service

Create an endpoint in the catalog service

Create a filtered endpoint in the gateway

Show failover capabilities

Show Spring Security OAuth

https://github.com/oktadeveloper/java-

microservices-examples

http://start.spring.io
https://github.com/oktadeveloper/java-microservices-examples
https://github.com/oktadeveloper/java-microservices-examples

Create Java Microservices using start.spring.io

http https://start.spring.io/starter.zip javaVersion==11 \
 artifactId==discovery-service name==eureka-service \
 dependencies==cloud-eureka-server baseDir==discovery-service \
 | tar -xzvf -

Enable Eureka Server & Configure application.properties

server.port=8761
eureka.client.register-with-eureka=false

@EnableEurekaServer

Create Car Service

http https://start.spring.io/starter.zip \
 artifactId==car-service name==car-service baseDir==car-service \
 dependencies==actuator,cloud-eureka,data-jpa,h2,data-
rest,web,devtools,lombok | tar -xzvf -

Enable Discovery & Configure application.properties

server.port=8090
spring.application.name=car-service

@EnableDiscoveryClient

Create API Gateway

http https://start.spring.io/starter.zip \
 artifactId==api-gateway name==api-gateway baseDir==api-gateway \
 dependencies==cloud-eureka,cloud-feign,data-rest,web,cloud-
hystrix,lombok | tar -xzvf -

Enable Discovery & Configure application.properties

spring.application.name=api-gateway

@EnableDiscoveryClient

Build a REST API in Car Service
@Data
@NoArgsConstructor
@Entity
class Car {

 public Car(String name) {
 this.name = name;
 }

 @Id
 @GeneratedValue
 private Long id;

 @NonNull
 private String name;
}

Build a REST API in Car Service

@RepositoryRestResource
interface CarRepository extends JpaRepository<Car, Long> {
}

Build a REST API in Car Service

@Bean
ApplicationRunner init(CarRepository repository) {
 return args -> {
 Stream.of("Ferrari", "Jaguar", "Porsche", "Lamborghini",
 "Bugatti", "AMC Gremlin", "Triumph Stag",
 "Ford Pinto", "Yugo GV").forEach(name -> {
 repository.save(new Car(name));
 });
 repository.findAll().forEach(System.out::println);
 };
}

Consume Cars API in Gateway

@EnableFeignClients
@EnableCircuitBreaker
@EnableDiscoveryClient
@SpringBootApplication
public class ApiGatewayApplication {

 public static void main(String[] args) {
 SpringApplication.run(ApiGatewayApplication.class, args);
 }
}

Consume Cars API in Gateway

@Data
class Car {
 private String name;
}

@FeignClient("car-service")
interface CarClient {

 @GetMapping("/cars")
 @CrossOrigin
 CollectionModel<Car> readCars();
}

Consume Cars API in Gateway

@RestController
class CoolCarController {

 private final CarClient carClient;

 public CoolCarController(CarClient carClient) {
 this.carClient = carClient;
 }

 // code on next slide
}

Consume Cars API in Gateway

private Collection<Car> fallback() {
 return new ArrayList<>();
}

@GetMapping("/cool-cars")
@CrossOrigin
@HystrixCommand(fallbackMethod = "fallback")
public Collection<Car> goodCars() {
 return carClient.readCars()
 .getContent()
 .stream()
 .filter(this::isCool)
 .collect(Collectors.toList());
}

Consume Cars API in Gateway

private boolean isCool(Car car) {
 return !car.getName().equals("AMC Gremlin") &&
 !car.getName().equals("Triumph Stag") &&
 !car.getName().equals("Ford Pinto") &&
 !car.getName().equals("Yugo GV");
}

Start everything with ./mvnw

Access https://localhost:8080/cool-cars

Java Microservices with Spring Boot and Spring Cloud

https://developer.okta.com/blog/2019/05/22/java-microservices-spring-boot-spring-cloud

https://developer.okta.com/blog/2019/05/22/java-microservices-spring-boot-spring-cloud

Microservices with JHipster

What is JHipster?

Installing and Using JHipster

JHipster’s Microservice Features

Progressive Web Applications Overview

Part 2

What is JHipster?

+ =

JHipster jhipster.tech

JHipster is a development platform to generate, develop and deploy
Spring Boot + Angular/React Web applications and Spring microservices.

and Vue! ✨

http://www.jhipster.tech

JHipster is Inclusive

https://github.com/jhipster/jhipster-artwork

https://github.com/jhipster/jhipster-artwork

A powerful workflow to build your
application with Webpack and

Maven/Gradle

JHipster Goals

A sleek, modern, mobile-first
front-end with modern

frameworks

A high-performance and robust
Java stack on the server side with

Spring Boot

A robust microservice architecture
with JHipster Registry, Netflix OSS,

Elastic Stack, and Docker

How to Use JHipster

Install JHipster and Yeoman, using npm:

npm install -g generator-jhipster

Create a directory and cd into it:

mkdir newapp && cd newapp

Run it!

jhipster

Microservices with JHipster

https://www.jhipster.tech/microservices-architecture

https://www.jhipster.tech/microservices-architecture/

yelp.com/callback

Back to redirect URI
with authorization code

Exchange code for

access token and ID token

accounts.google.com

Email

Go to authorization server
Redirect URI: yelp.com/cb
Scope: openid profile

Authorization Server

yelp.com

Connect with Google

Resource owner

Client

accounts.google.com

Allow Yelp to access your public
profile and contacts?

No Yes

Request consent
from resource owner

Hello Matt!

accounts.google

Get user info
with access token

/userinfo

OAuth 2.0 and OIDC

Monolith Examples

JHipster 6 Demo
github.com/mraible/jhipster6-demo

youtu.be/uQqlO3IGpTU

21-Points Health
github.com/mraible/21-points

infoq.com/minibooks/jhipster-mini-book

https://github.com/mraible/jhipster6-demo
https://youtu.be/uQqlO3IGpTU
https://github.com/mraible/21-points
https://www.infoq.com/minibooks/jhipster-mini-book

Progressive Web Apps
Originate from a secure origin, load while offline, and reference a
web app manifest.

Progressive Web Apps
Can be installed on your mobile device, look and act like a native
application, but are distributed through the web.

Progressive Web Apps
Are fast!

“We’ve failed on mobile.”
 Alex Russell
 https://youtu.be/K1SFnrf4jZo

https://youtu.be/K1SFnrf4jZo

Enable PWA in JHipster

<script>
 if ('serviceWorker' in navigator) {
 window.addEventListener('load', function() {
 navigator.serviceWorker.register('/service-worker.js')
 .then(function () {
 console.log('Service Worker Registered');
 });
 });
 }
</script>

gateway/src/main/webapp/index.html

Force HTTPS in Spring Boot

gateway/src/main/java/com/okta/developer/gateway/config/SecurityConfiguration.java

@EnableWebSecurity
public class SecurityConfiguration extends WebSecurityConfigurerAdapter {

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http.requiresChannel()
 .requestMatchers(r -> r.getHeader("X-Forwarded-Proto") != null)
 .requiresSecure();
 }
}

https://developer.okta.com/blog/2018/07/30/10-ways-to-secure-spring-boot

https://developer.okta.com/blog/2018/07/30/10-ways-to-secure-spring-boot

Demo

Using JHipster, create:

A gateway

A store microservices app

A blog microservices app

Generate entities in apps and on gateway

Convert gateway to be a PWA

Run everything in Docker

https://github.com/oktadeveloper/java-

microservices-examples

https://github.com/oktadeveloper/java-microservices-examples
https://github.com/oktadeveloper/java-microservices-examples

JHipster 6.8.0 Lighthouse Report

Part 3
Deploy to the Cloud

Options for Deploying JHipster

Heroku

Cloud Foundry

AWS

Google Cloud

Microsoft Azure

For monoliths:

jhipster heroku

For microservices:

Deploy JHipster Registry

Build and deploy microservice

Build and deploy gateway

http://bit.ly/heroku-jhipster-microservices

http://bit.ly/heroku-jhipster-microservices

For monoliths:

jhipster cloudfoundry

For microservices:

Deploy JHipster Registry

Build and deploy microservice

Build and deploy gateway

https://www.jhipster.tech/cloudfoundry/

https://www.jhipster.tech/cloudfoundry/

Using Elastic Container Service

jhipster aws-containers

Using Elastic Beanstalk

jhipster aws

Boxfuse

boxfuse run -env=prod

http://www.jhipster.tech/aws

http://www.jhipster.tech/boxfuse

http://www.jhipster.tech/aws/
http://www.jhipster.tech/boxfuse/

mvn package -Pprod jib:dockerBuild

jhipster kubernetes

./kubectl-apply.sh

kubectl get svc gateway

https://developer.okta.com/blog/2017/06/20/
develop-microservices-with-jhipster

https://developer.okta.com/blog/2017/06/20/develop-microservices-with-jhipster
https://developer.okta.com/blog/2017/06/20/develop-microservices-with-jhipster

Part 4 JHipster Roadmap

What You Learned

What’s Next for JHipster

What You Learned

Microservices with Spring Cloud Config and JHipster

https://developer.okta.com/blog/2019/05/23/java-microservices-spring-cloud-config

https://developer.okta.com/blog/2019/05/23/java-microservices-spring-cloud-config

JHipster Mobile Apps and Microservices on Pluralsight

pluralsight.com/courses/play-by-play-developing-microservices-mobile-apps-jhipster

https://www.pluralsight.com/courses/play-by-play-developing-microservices-mobile-apps-jhipster

What’s Next for JHipster?

Full Reactive with WebFlux
and Spring Cloud Gateway

Spring Boot 2.2

GraphQL and Micro Frontends

The JHipster Mini-Book
Written with Asciidoctor

Free download from InfoQ:

infoq.com/minibooks/jhipster-mini-book

Quick and to the point, 164 pages

Developed a real world app:

www.21-points.com

Buy for $20 or download for FREE

https://www.infoq.com/minibooks/jhipster-mini-book-5
http://www.21-points.com

Learn More

stackoverflow.com

Spring Boot
spring.io/guides

JHipster
www.jhipster.tech

Okta APIs
developer.okta.com

https://stackoverflow.com/
https://spring.io/guides
http://www.jhipster.tech
https://developer.okta.com/

developer.okta.com/blog

@oktadev

https://developer.okta.com/blog/

Reactive Microservices with Spring Cloud Gateway

https://developer.okta.com/blog/2019/08/28/reactive-microservices-spring-cloud-gateway

https://developer.okta.com/blog/2019/08/28/reactive-microservices-spring-cloud-gateway

Action: Try JHipster!

https://developer.okta.com/blog/2019/04/04/java-11-java-12-jhipster-oidc

https://developer.okta.com/blog/2019/04/04/java-11-java-12-jhipster-oidc

git clone https://github.com/oktadeveloper/okta-spring-webflux-react-
example.git

https://github.com/oktadeveloper/java-microservices-examples

Use the Source, Luke!

https://github.com/oktadeveloper/java-microservices-examples

Thanks!

Keep in Touch

 raibledesigns.com

 @mraible

Presentations

 speakerdeck.com/mraible

Code

 github.com/oktadeveloper

developer.okta.com

http://raibledesigns.com
https://twitter.com/mraible
http://speakerdeck.com/mraible
http://github.com/oktadeveloper
http://www.apple.com

developer.okta.com

http://developer.okta.com

