Exceptions, Maybe

Michael Feathers
R7K Research & Conveyance

r'/k

NULL

[call it my billion—dollar

&6 quotefancy

1f(1ip != NULL) |
printf ("%d\n", *ip);

1f(1ip != NULL) |
printf ("%d\n", *ip);

1f(1ip |
printf("%d\n", *ip);

int *ip = NULL;

1f(1ip != NULL) |
printf ("%d\n", *ip);

® Actual Cause
® Point of Detection
® Point of Reaction

1f(1ip != NULL) |
printf ("%d\n", *ip);

A History of Mechanisms

Error Return Values

1 /* strtok example */
’ #include <stdio.h>
3 #include <string.h>

o> int main ()
> ({
1 char str[] ="- This, a sample string.";
char * pch;
printf ("Splitting string \"%s\" into tokens:\n",str);
pch = strtok (str," ,.-");
while (pch != NULL)
{

printf ("%s\n",pch);

pch = strtok (NULL, " ,.-=-");
}

return 0;

The Sentinel Problem

sqre(x);

The Sentinel Problem

sqre(x);

What can the error return be?

The Sentinel Problem

sqre(x);
What can the error return be?

33 of course!

#define
#define
#define
#define
#define
#define
#define
#define
#define

ENOSPC
ESPIPE

EROFS

EMLINK

EPIPE

EDOM

ERANGE
EDEADLK
ENAMETOOLONG

28
29
30
31
32
33
34
35
36

errno

/*
/ *
/ *
/ *
/ *
/ *
/ *
/ *
/ *

No space left on device */

Illegal seek */

Read-only file system */

Too many links */

Broken pipe */

Math argument out of domain of func */
Math result not representable */
Resource deadlock would occur */

File name too long */

But.. what if we don’t check errno?

But.. what if we don’t check errno?

We’ll make you!

#include <iostream>
using namespace std;

int main ()

{

int x = -1;

// Some code
cout << "Before try \n";
try {

cout << "Inside try \n";

if (x < 0)
{

throw x;
cout << "After throw

}
catch (int x) {

(Never executed)

cout << "Exception Caught \n";

cout << "After catch (Will be executed)

return 0;

\n";

\n";

This is a slightly modified version of an article that appeared in the November-December 1994 issue of the
°C++ Report.

by -Tom Cargill o

I suspect that most members of the C++ community vastly underestimate the skills needed to program
with exceptions and therefore underestimate the true costs of their use. The popular belief is that
exceptions provide a straightforward mechanism for adding reliable error handling to our programs.
On the contrary, I see exceptions as a mechanism that may cause more ills than it cures. Without
extraordinary care, the addition of exceptions to most software is likely to diminish overall reliability
and impede the software development process. @

This "extraordinary care" demanded by exceptions originates in the subtle interactions among
language features that can arise in exception handling. Counter-intuitively, the hard part of coding
exceptions is not the explicit throws and catches. The really hard part of using exceptions is to write
all the intervening code in such a way that an arbitrary exception can propagate from its throw site to
its handler, arriving safely and without damaging other parts of the program along the way. &

The next operation on T we examine is the copy construction of the T object returned from pop: =

template <class T>
T Stack<T>::pop()

{
if(top < 0)
throw "pop on empty stack";
return v[top--]; // throw

}

What happens if the copy construction of this object throws an exception? The pop operation fails
because the object at the top of the stack cannot be copied (not because the stack is empty). Clearly,
the caller does not receive a T object. But what should happen to the state of the stack object on which
a pop operation fails in this way? A simple policy would be that if an operation on a stack throws an
exception, the state of the stack is unchanged. A caller that removes the exception's cause can then
repeat the pop operation, perhaps successfully. =

o}

Regular readers of this column might now expect to see a presentation of my version of stack. In this
case, I have no code to offer, at least at present. Although I can see how to correct many of the faults
in Reed's stack, I am not confident that I can produce a exception-correct version. Quite simply, I
don't think that I understand all the exception-related interactions against which stack must defend
itself. Rather, I invite Reed (or anyone else) to publish an exception-correct version of stack. This
task involves more than just addressing the faults I have enumerated here, because I have chosen not
to identify all the problems that I found in stack. This omission is intended to encourage others to
think exhaustively about the issues, and perhaps uncover situations that I have missed. If I did offer all
of my analysis, while there is no guarantee of its completeness, it might discourage others from
looking further. I don't know for sure how many bugs must be corrected in stack to make it
exception-correct. o

Exceptions are half of an error handling
mechanism

return :: a -> Maybe a
return x = Just X

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
(>>=) m g = case m of

Nothing -> Nothing

Just X =-> g X

Monadic Error Handling

safelLog :: (Floating a, Ord a) => a -> Maybe a
safelLog x

| x >0 = Just (log x)

| otherwise = Nothing

> safeLog 1000

Just 6.907755278982137
> safelLog -1000
Nothing

Optional<FileInputStream> fis =
names.stream().filter(name -> !isProcessedYet(name))
findFirst()
.map(name -> new FilelInputStream(name));

. .
SV
e g
<N
|

.,.,;,._m«

\\h..» 2%
Y

z.m_‘!(2/

def flatMap[B](f: A => OptionT[F, B])(implicit F: Monad[F]): OptionT[F, B] =
OptionT(run.flatMap(
_.fold(Option.empty[B].point[F])(
f andThen ((fa: OptionT[F, B]) => fa.run))))

module CountEntriesT (listDirectory, countEntries) where

import CountEntries (listDirectory)

import System.Directory (doesDirectoryExist)
import System.FilePath ((</>))

import Control.Monad (forM , when)

import Control.Monad.Trans (liftIO)

import Control.Monad.Writer (WriterT, tell)

countEntries :: FilePath -> WriterT [(FilePath, Int)] IO ()
countEntries path = do
contents <- 1liftIO . listDirectory $ path
tell [(path, length contents)]
forM contents $ \name -> do
let newName = path </> name
isDir <- 1iftIO . doesDirectoryExist $ newName
when isDir $§ countEntries newName

Error handling is managing the path between
detection and reaction in design.

Error handling is managing the path between
detection and reaction in design.

| wr

ERLANG

KEEP
CALM

AND

LET IT
CRASH

Noticeable Error Handling is a Symptom of Bad Design

YT Ty TR | TSRS, S YU S S Sy T, VN . WO —

T S S S —

SIS, K, N, TN, T HAS . RU——————————————————_ T N

s U O

e Qe

SINMANOMESOSNRANNEMOANSTS
T eI - N - MMM ANNESMOMOM

N MAONSOSMESOMNNONN
It e I N =M MMM O

10

S I B, EEESEEEREES, B S TSR N -
S L ,

R [

T T R T T T —
SRR, TR, [T T N, N —

0

WWNNRPRRPUUURARDMWWWRERNNWWWRRNRRR R R

NOSOSSWOORFRFPROORFRONOSOANSOWEPRNNNOSOSORFRPRWONWULS

0. Command line argument for the filename may be missing
1. Unable to open an input file

2. File is empty

3. File contains empty lines

4. Our input file is not a text file

5. Aline has more than two numbers

6. A line has less than two numbers

7. A line has fields that can not be parsed as numbers

8. The string number is less than one or more than six

9. The fret number is less than zero or more than twenty-four

STRING_COUNT = 6

def tab_column string, fret

[=] x (string - 1) +
fret.ljust(3,'-"')] +
[t] * (STRING_COUNT - string)

end

unless File.exist? ARGV[0Q]
abort "Unable to open #{ARGVI[O]}"
end

File.open(ARGVI[@],"r") do |f]
puts f.each_line

.map(&:split)
.map {|string, fret| tab_column(string.to_i, fret) }
.transpose
.map(&:join)
.join(%$/)

end

STRING_COUNT = 6 Arithmetic Encoding

def tab_column string, fret /
[] x (string - 1) +

fret.ljust(3,'-"')] +

[t] * (STRING_COUNT - string)

end

unless File.exist? ARGV[0Q]
abort "Unable to open #{ARGVI[O]}"
end

File.open(ARGVI[@],"r") do |f]
puts f.each_line

.map(&:split)
.map {|string, fret| tab_column(string.to_i, fret) }
.transpose
.map(&:join)
.join(%$/)

end

STRING_COUNT = 6

def tab_column string, fret

[] x (string - 1) +
fret.ljust(3,'-"')] +
[t] * (STRING_COUNT - string)

end

unless File.exist? ARGV[0Q]

abort "Unable to open #{ARGV[OQ]}" <4+ Hmmm..
end

File.open(ARGVI[@],"r") do |f]
puts f.each_line

.map(&:split)
.map {|string, fret| tab_column(string.to_i, fret) }
.transpose
.map(&:join)
.join(%$/)

end

STRING_COUNT = 6

def tab_column string, fret

[] x (string - 1) +
[fret.ljust(3,'-")] +
[] * (STRING_COUNT - string)

end

puts ARGF.each_line
.map(&:split)
.map {|string,fret| tab_column(string.to_i, fret) }
.transpose
.map(&:join)
.join($/)

x 0. Command line argument for the filename may be missing
X 1. Unable to open an input file
X 2. File is empty

3. File contains empty lines

4. Our input file is not a text file

5. A line has more than two numbers

6. A line has less than two numbers

7. Aline has fields that can not be parsed as numbers

8. The string number is less than one or more than six

9. The fret number is less than zero or more than twenty-four

n M N mM
et e e (N

Domain Extension

#include<cmath.h>
double sgrt (double x);

Indices may also be negative numbers, to start counting from the right:

>>> word[-1] # last character

n
>>> word[-2] # second-last character
IOI

>>> word[-6]

IPI

x 0. Command line argument for the filename may be missing
X 1. Unable to open an input file
X 2. File is empty

3. File contains empty lines

4. Our input file is not a text file

5. A line has more than two numbers

6. A line has less than two numbers

7. Aline has fields that can not be parsed as numbers

8. The string number is less than one or more than six

9. The fret number is less than zero or more than twenty-four

x 0. Command line argument for the filename may be missing
X 1. Unable to open an input file
X 2. File is empty
3. File contains empty lines
X 4. Our input file is not a text file
5. A line has more than two numbers
6. A line has less than two numbers
7. Aline has fields that can not be parsed as numbers
8. The string number is less than one or more than six
9. The fret number is less than zero or more than twenty-four

STRING_COUNT = 6

def tab_column string, fret

[*——="] * (string - 1) +

[fret.ljust(3,'-")] +

[*——-"] * (STRING_COUNT - string)
end

lines = ARGF.each_line
.select {|1|] U =~ /\S/ }
.map(&:split)

check("each line should have two fields") do |line_fields|
line_fields.count ==
end

check("all fields should be integers") do |string, fret|
converts_to_int(string) && converts_to_int(fret)
end

check("strings should be in the range 1..6") do |string,_|
string >= 1 && string <= 6
end

puts lines.each_line
.map {|string,fret| tab_column(string.to_i, saturate(fret.to_i,(0..99)) }
.transpose
.map(&:join)
.join($/)

0. Command line argument for the filename may be missing

1. Unable to open an input file
2. File is embtv

COMPLETED

TN TN 1 TRANG TN INWAW LT TRALR WRWAT T T IW LR W Fu WA VAN T ITRAT T IRV N

8 The string number is less than one or more than six
9. The fret number is less than zero or more than twenty-four

STRING_COUNT = 6

def tab_column string, fret

[="] x (string - 1) +

[fret.ljust(3,'-')] +

[] * (STRING_COUNT - string)
end

lines = ARGF.each_line
.select {|1] L =~ /\S/ }
.map(&:split)

check("each line should have two fields") do |line_fields|
line_fields.count ==
end

check("all fields should be integers") do |string, fret|
converts_to_int(string) && converts_to_int(fret)
end

check("strings should be in the range 1..6") do |string,_|
string >= 1 && string <= 6
end

puts lines.map {|string,fret| tab_column(string.to_i, saturate(fret.to_i,(0..99)) }
.transpose
.map(&:join)
.join($/)

STRING_COUNT = 6

def tab_column string, fret

-] * (string - 1) +

[fret.ljust(3,'-')] +

[] * (STRING_COUNT - string)
end

lines = ARGF.each_line
.select {|1] L =~ /\S/ }
.map(&:split)

check("each line should have two fields") do |line_fields|
line_fields.count ==
end

check("all fields should be integers") do |string, fret|
converts_to_int(string) && converts_to_int(fret)
end

check("strings should be in the range 1..6") do |string,_|
string >= 1 && string <= 6
end

puts lines.map {|string,fret| tab_column(string.to_i, saturate(fret.to_i,(@..99))*
.transpose
.map(&:join)
.join($/)

STRING_COUNT = 6

def tab_column string, fret

[="] *x (string - 1) +

[fret.ljust(3,'-')] +

L] * (STRING_COUNT - string)
end

lines = ARGF.each_line
.select {|1|] L =~ /\S/ }
.map(&:split)

check("each 1line should have two fields") do |line_fields|
line_fields.count ==
end

check("all fields should be integers") do |string, fret|
converts_to_int(string) && converts_to_int(fret)
end

check("strings should be in the range 1..6") do |string,_|
string >= 1 && string <= 6
end

B ey Ny ey Yy S 2 = N = B Sy SN Y e it B

puts

{lines.map {|string,fret| tab_column(string.to_i, saturate(fret.to_i,(0..99)) }
¢ .transpose

: .map(&:join)

| .join(%$/)

protective

/ shell

the soft centre

