
Ó Adcubum AG

1

Master your Java applications in
Kubernetes Andy Moncsek

04.2019

Ó Adcubum AG

2

§ Andy Moncsek à Architect

§ Creator or… see my Github

§ Likes coffee & HiFi & cameras

§ Twitter: @AndyAHCP

About me

https://github.com/amoAHCP

Ó Adcubum AG

3

Agenda

§ Choose your (Java) Runtime

§ Build & execute your applications

§ Create your image

§ Run your applications in Kubernetes

§ Final thoughts

Ó Adcubum AG

4

§ How to integrate?

You plan to move to Kubernetes?

Typical issues

§ Slow startup? § No more capacity?

Ó Adcubum AG

5

Choose your (Java) Runtime

Ó Adcubum AG

6

§ Support?

§ License & LTS?

§ Container aware?

§ since Java SE 8u131 & JDK 9

§ changes in JDK 8u191 & JDK 10

Choose your (Java) Runtime

Ó Adcubum AG

7

Hotspot + C1 & C2 Jit

Choose your (Java) Runtime

Many (possible) options, out there

+ Substrate VM

Hotspot

+

Ó Adcubum AG

8

§ Contributed by IBM to the Eclipse Foundation in 2017

§ It replaces HotSpot JVM in the OpenJDK build

§ Small memory footprint & fast startup

§ Optimization for virtualized environments

Choose your (Java) Runtime

OpenJ9

Ó Adcubum AG

9

§ Universal VM running various languages

§ Removes isolation & enables interoperability between programming languages

§ Can be integrated in various native & managed env. (OpenJDK, Node.js, OracleDB, MySQL,…)

Choose your (Java) Runtime

GraalVM

§ The Graal compiler

§ as JIT compiler since Java 10

§ as AOT compiler since Java 9

Ó Adcubum AG

10

Choose your (Java) Runtime

Substrate VM (SVM)

https://www.oracle.com/technetwork/java/jvmls2015-wimmer-2637907.pdf

Ó Adcubum AG

11

Choose your (Java) Runtime

Relation to Containers / Kubernetes?

§ JVM needs to be aware of containers (CPU & memory)

§ Small memory/image footprint (run & deploy many containers)

§ Fast startup time (auto scaler, elastic)

Ó Adcubum AG

12

Build & execute your application

Ó Adcubum AG

13

Build & execute your application

“Basic” container specific flags

• docker container run -it -m512M --entrypoint bash openjdk:8u191-jdk

MaxHeapSize := 134217728
openjdk version "1.8.0_191"

Default max heap size ~1/4 of physical memory

• docker container run -it -m512M --entrypoint bash openjdk:8u151-jdk

MaxHeapSize := 4202692608
openjdk version "1.8.0_151"

VS.

https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/ergonomics.html

Ó Adcubum AG

14

§ -XX:[+|-]UseContainerSupport

§ Correct CPU count & total memory allocated to the container

§ -XX:InitialRAMPercentage

§ Set initial heap size as a percentage of total memory (-Xms)

§ -XX:MaxRAMPercentage & -XX:MinRAMPercentage

§ used to calculate maximum heap size (-Xmx)

Build & execute your application

“Basic” container specific flags

phys_mem * MinRAMPercentage / 100 (if this value is less than 96M)

MAX(phys_mem * MaxRAMPercentage / 100, 96M)

Ó Adcubum AG

15

§ -Xtune:virtualized

§ Tuning for containers

§ Reduction in footprint & startup time (but also in throughput)

§ Enables VM idle management

§ -Xquickstart

§ Designed for the fastest start-up

§ Ideal for short-lived tasks

§ May limit peak throughput

Build & execute your application

OpenJ9 specific container flags

Ó Adcubum AG

16

§ RSS à amount of physical memory allocated & used by a process

§ Java MaxHeapSize != Docker stats (“MEM USAGE”)

§ Java ~= heap + metaspace + off-heap
(DirectBuffer + threads + compiled code + GC data)

Build & execute your application

Resident Set Size (RSS)

Ó Adcubum AG

17

§ Since JDK10 (JEP310)

§ Sharing of classes loaded by the application class loader

§ Still some limitations (since Java 11 support for module path)

§ Flag UseAppCDS (introduced in Java 10) removed in Java12

§ Automatically enabled in Java 12

§ Reduce memory footprint/startup time

§ Needs two preparation steps

Build & execute your application

AppCDS

Heap Objects

Shared String O.

Shared Classes

Class Metadata

JVM 1

Heap Objects

Shared String O.

Shared Classes

Class Metadata

JVM 2

Archive
File

Ó Adcubum AG

18

Build & execute your application

AppCDS Usage

// step1: run the app & record all classes
java -XX:+UseAppCDS -XX:DumpLoadedClassList=classes.lst –jar \
app.jar

// step 2: create an archive
java -XX:+UseAppCDS -Xshare:dump -XX:SharedClassListFile=classes.lst \
-XX:SharedArchiveFile=cds.jsa --class-path app.jar

// step 3: start/use your application
java -XX:+UseAppCDS -Xshare:on -XX:SharedArchiveFile=cds.jsa –jar \
app.jar

Ó Adcubum AG

19

§ Enable class data sharing à AOT compilation is also enabled by default

§ dynamically compiles certain methods into AOT code at runtime

§ applicable to boot, extension, & application loaders & all URLClassloader-subclasses

§ -Xshareclasses option to enable class sharing & AOT

§ -Xshareclasses:cacheDir=/opt/shareclasses

Build & execute your application

CDS & AOT in OpenJ9

JVM 1 JVM 2 JVM 3

Shared classes
cache

Ó Adcubum AG

20

§ AOT compilation (since JDK9 / JEP 295)

§ Transforms Java bytecode to OS-specific machine code

§ Performs simple optimizations of Java bytecode

§ AOT vs. JIT compiled (rule of thumb)

§ Pro: better startup time

§ Cons: worse performance of long-running applications

Build & execute your application

Ahead-of-time (AOT)

> jaotc --output app.so --jar microservice.jar --module jdk.httpserver --module java.base

> java -XX:AOTLibrary=./app.so -jar microservice.jar

Ó Adcubum AG

21

§ Native compilation (in a nutshell)

§ Based on Graal compiler & SubstrateVM

§ Still many limitations (class loading, reflection,…)

§ How to use

§ Download GraalVM & Build your (fat) jar

§ native-image –jar app.jar && ./app

§ Working frameworks?

§ Micronaut, Spark Java, Vert.x

Build & execute your application

Native compilation

Ó Adcubum AG

22

Build & execute your application

Some benchmarks ;-) from October 2018 / Java 10

https://www.slideshare.net/trivadis/techevent-graalvm-performance-interoperability
Always do you own tests!

Ó Adcubum AG

23

Create your images

Ó Adcubum AG

24

§ Shrink your image to a minimum

§ Works also with non-modular Java applications (like spring-boot)

Create your image

Usage of modular run-time images & multi-stage builds

FROM openjdk:12-ea-jdk-alpine3.8 as builder
RUN jlink \ // works for spring-boot

--add-modules java.sql, java.naming, java.net.http, java.management,
java.instrument,java.security.jgss,java.desktop,jdk.unsupported \

--verbose --strip-debug --compress 2 --no-header-files \
--no-man-pages --output /opt/jre-minimal

FROM alpine:3.8
COPY --from=builder /opt/jre-minimal /opt/jre-minimal
PATH=${PATH}:/opt/jre-minimal/bin
. . .
CMD

Ó Adcubum AG

25

§ Use multistage builds, if needed

§ Split up layers, based on their potential for reuse

§ Put any components that will update very rarely at the top of the Dockerfile

§ Merge commands together, because each RUN line adds a layer to the image

§ Advantage: faster builds, less storage, pull faster

Create your image

Create lean images

Do
RUN apt-get update && \

apt-get install package-bar
Don’t
RUN apt-get update
RUN apt-get install package-bar

Ó Adcubum AG

26

Create your image

Create lean images

FROM adoptopenjdk/openjdk11-openj9:alpine-slim
RUN mkdir -p /usr/src/app && mkdir -p /usr/src/app/config
ARG APPLICATION=target/application
COPY ${APPLICATION}/BOOT-INF/lib /app/lib
COPY ${APPLICATION}/META-INF /app/META-INF
COPY ${APPLICATION}/BOOT-INF/classes /app
ENTRYPOINT ["java","-cp","app:app/lib/*:/usr/src/app/config",»com.*.KafkaAdapterMain"]

(reuse) dependencies

Ó Adcubum AG

27

§ Try to avoid “fat” jars & wars

§ Use skinny / thin

§ Different approaches for:

§ Tomcat, Open Liberty, WildFly, Spring

§ Spring

§ Maven dependency plugin

§ Open Liberty boost plugin

§ spring-boot-thin-launcher

Create your image

Think about your layers

https://openliberty.io/blog/2018/07/02/creating-dual-layer-docker-images-for-spring-boot-apps.html

Ó Adcubum AG

28

Be frugal

Choose your image

Image type Red Hat
Enterprise 7
Standard

Red Hat
Enterprise
Atomic

Debian Stable Alpine

C Library glibc glibc glibc musl c

Size on Disk 200MB 78MB 100MB 4MB

§ Look for vendor-specific (or official) images

§ Don’t use :latest or no tag!

§ Do you really need an application server?

Ó Adcubum AG

29

Run your application (in Kubernetes)

Ó Adcubum AG

30

Run your application

Share your CDS files in Kubernetes

apiVersion: v1
kind: Pod
metadata:

name: myApp
spec:

containers:
- image: myApp
name: myApp
volumeMounts:
- mountPath: /cdscache
name: cdscache

volumes:
- name: cdscache
hostPath:

path: /cdscache #location on host
type: Directory

CMD java -jar -Xshareclasses:cacheDir=/cdscache app.jar

Ó Adcubum AG

31

§ Each Container has a request

of 0.25 cpu and 64MB of

memory.

§ Each Container has a limit of

0.5 cpu and 128MB of

memory.

Run your application

Use resource request and limits

kind: Pod
metadata:

name: frontend
spec:

containers:
- name: wp
image: wordpress
resources:

requests:
memory: "64M"
cpu: "250m"

limits:
memory: "128M"
cpu: "500m"

....

Ó Adcubum AG

32

§ Apply quotas on Namespace level

§ Constraints on number of
objects, cpu & memory

§ When enabled, resource limits
must be set

Run your application

Quotas

kind: ResourceQuota
metadata:

name: quota
spec:

hard:
cpu: "2"
memory: 1G
pods: "10"
replicationcontrollers: " 5"
resourcequotas: "1"
services: "5"

Ó Adcubum AG

33

Run your application

ConfigMaps & Secrets to externalize your configuration

kind: ConfigMap
metadata:

name: spring-prop
data:

application.yml: |
server:
port: 8080

kind: Pod
spec:
volumes:
- name: config
configMap:
name: spring-prop
items:
- key: application.yml
path: application-kube.yml

containers:
- volumeMounts:

- name: config
mountPath: /usr/src/app/config

Ó Adcubum AG

34

Final thoughts

Ó Adcubum AG

35

§ Avoid/reduce infrastructure code in your applications

§ Service mesh with circuit breaker

§ Service Discovery (using DNS or Labels in Kubernetes)

§ Configuration via ConfigMap

§ Helm Charts to ship your application

§ Package manager like “apt” in Debian

§ Kubernetes Operators helps you to manage upgrades, lifecycle & insights

Be inventive

Final thoughts

Ó Adcubum AG

36

§ Don’t overlook Serverless!!

§ Better utilization of your cluster

§ Many measured run-times (AWS, Serverless,..)

§ Knative pushed to Kubernetes (by Google & Pivotal)

§ GraalVM and other projects focusing low footprint & fast startup

Be inventive

Final thoughts

Ó Adcubum AG

37

§ Why you should optimize your applications for containers & cloud?

§ Costs!!!!! à smaller footprint, CPU cycles, pay-per-use

§ The application life-cycle has changed

§ no longer dominated by uptime

§ startup is now critical to your application

§ Expect to spend more and more time looking at resource usage,
performance and footprint.

Be inventive

Final thoughts

Ó Adcubum AG

38

Any questions?

Ó Adcubum AG

39

§ https://github.com/amoAHCP/JavaContainerTests

§ https://www.slideshare.net/DanHeidinga/j9-under-the-hood-of-the-next-open-source-jvm

§ https://github.com/eclipse/openj9-website/blob/master/benchmark/daytrader3.md

§ https://static.rainfocus.com/oracle/oow18/sess/1525896302003001DAHT/PF/CodeOne_2018_hw_154082375281200
1Nmsq.pdf

§ https://hub.docker.com/r/adoptopenjdk/openjdk10-openj9

§ https://www.eclipse.org/openj9/docs/xshareclasses/

Links

https://www.slideshare.net/DanHeidinga/j9-under-the-hood-of-the-next-open-source-jvm
https://www.slideshare.net/DanHeidinga/j9-under-the-hood-of-the-next-open-source-jvm
https://github.com/eclipse/openj9-website/blob/master/benchmark/daytrader3.md
https://static.rainfocus.com/oracle/oow18/sess/1525896302003001DAHT/PF/CodeOne_2018_hw_1540823752812001Nmsq.pdf
https://hub.docker.com/r/adoptopenjdk/openjdk10-openj9

