Monolithen fit fur die Zukunft trimmen

Warum Monolithen entstehen und wie Microservices helfen kénnen,
die Biester zu bandigen

Anatole Tresch, Principal Consultant

| Trivadis
makes IT
easier.

" B N I |
BASEL * BERN = BRUGG * DUSSELDORF = FRANKFURT A.M. = FREIBURG I.BR. = GENF t r I va I S

HAMBURG * KOPENHAGEN = LAUSANNE = MUNCHEN = STUTTGART = WIEN = ZURICH makes IT easier. " BN

H BIO

Anatole Tresch

* Principal Consultant, Trivadis AG (Switzerland)
e Star Spec Lead JSR 354

* Technical Architect, Lead Engineer

* PPMC Member Apache Tamaya

e Twitter/Google+: @atsticks
e atsticks@java.net
* anatole.tresch@trivadis.com

" EH BN I | |
2 25.11.15 Retrofitting monoliths for the future makes IT easier. EEn

B Agenda

* Motivation
* Microservices to our rescue!
* How to get there?
* Deep Dive:

* Coupling

* Breaking things up

* API Design
* Summary

trivadis

3 25.11.15 Retrofitting monoliths for the future makes IT easier. mEw

Motivation:
Why are monoliths a problem?

trlvadls

makes IT e

B Why are monoliths a problem?

* Maintenance Costs

e Time to Market

* Performance

» Stability and Robustness (forget Resilience!)
* Flexibility (e.g. for Integration)

* Vendor Support

* Know How

* Motivation

trivadis

5 10.02.16 Retrofitting monoliths for the future makes IT easier. e

B Compared with the Software Crisis

* Development time exceeds initial expectations
* Poor software quality
* Project cost exceeds estimated budget 9 9 9
* Hard-to-maintain codebase
* Alack of communication with customers
— Structure the Software Development Process

* Planning

* Implementation, Testing and Documentation

* Deploying, Maintenance . == .

trivadis

10.02.16 Retrofitting monoliths for the future makes IT easier. mEw

Motivation:
Why Monoliths exist...

trivadis

B Why monoliths exist then?

* Traditional software design

Single threaded
Synchronous

Relying on the ,happy-path*

* Organizational Issues

10.02.16

Convey's Law

Budgeting Policies

Short Time Thinking

Skills and Culture

Missing or unmatching Objectives and Responsibilities . = = .
d

Retrofitting monoliths for the future .Ea"':s'lT:s,'efa - !§

B Why monoliths exist then?

B Misunderstandings
* Software is done once and never touched again
e Structuring the software process increases software quality
* Centralization increases efficiency
M Bad Practices
* Do things later (tests, APIs, docs, design, architecture)
* Inefficient infrastructure
* Not-invented-by-me syndrom
* |lvory Towered Guidelines, Gardening
trivadis

9 10.02.16 Retrofitting monoliths for the future makes IT easier. mEw

Microservices to our rescue!

trlvadls

makes IT e

B Microservices come to our rescue!

M The single concern principle matches better with our brains capabilities

Bl Organizing around business capabilities clarifies reponsibilities

Bl Services provide much better isolation than modules

B More fine grained options for scaling and failover

M Product Orientation follows a long term perspective

M Simplicity enables automation WOW '
M Microservices must be designed for failure! "
B Microservices enable evolutionary design

M Microservices support technological progress . = = .
trivadis

11 10.02.16 Retrofitting monoliths for the future makes [T easier. mEw

Microservices to our rescue!
But...

trlvadls

makes IT e

B Microservices are the way to go, but...

Itis a long way to go... — Microservices consciously
= Organizing around business capabilities break with many known
practices!

IS not a common approach

= They require automation in Ops — Are you microservice-ready?
= They require modern know-how in Dev
= Resilient Design is not an easy task — How to get there?
= Runtime behaviour, scaling and failover are

not easily predictable
= Governance has to be established . = = .

d

13 10.02.16 Retrofitting monoliths for the future .Ea"':-"'IT:S,'era - ! ?

How to get there?

trlvadls

makes IT e

B How to go the microservice path?

Start with the preconditions:
* Fast provisioning of infrastructure (laaS)
* Fast provisioning of runtime platforms (PaaS)
* QOrchestration services (e.g. Kubernetes)
* Monitoring
* Automated tool-chain

— Start with a new greenfield organization

— Only couple with existing providers, if they support the required SLA

— Start small to gain experience (not yet with microsevices!)

trivadis

15 10.02.16 Retrofitting monoliths for the future makes IT easier. mEw

B How to go the microservice path?

Add deploying more applications:

* Add dynamic service discovery and location

* Think on microservice and APl management

* Think on cloud capable configuration mechanisms
Add further usage scenarios:

* Integration flows (perfect match, forget ESBs ;-))

Authentication and Authorization services

Distributed Message Streams, Log Collectors

Error and Dead Letter Queue Handling

trivadis

16 10.02.16 Retrofitting monoliths for the future makes [T easier. e

B How to go the microservice path?

And not to forget :

* Add systematic quality measurements to your tool chain
* Evangelize microservices as an architectural pattern

* Help people getting better in modularization

* Manage your people's skills!

And finally :

* Look at your monoliths

trivadis

17 10.02.16 Retrofitting monoliths for the future makes [T easier. e

B How to got microservice path?

...expect you will fail !

trivadis

makes IT easier. E E N

Deep Dive:
Coupling

trlvadls

makes IT e

B Coupling: Database Integration

Database Integration

* Database = large shared API

* Database design impacts the whole system
* Birittle
* Tied to a technology, or even vendor

* Cohesion (especially with stored procedures)

" I-
20 10.02.16 Retrofitting monoliths for the future makes IT easier. EEn

21

B Coupling: Ul Integration

Ul Integration

10.02.16

Shared API on Ul level

Brittle

Tied to a technology, or even vendor
Multiple, sometimes incompatible

frameworks

Retrofitting monoliths for the future

==J
trivadis

makes IT easier. E BN

B Coupling: Service Integration

Service Integration
* Shared API on Business Tier level

* Brittle

* Tied to a technology, or even vendor
(e.g. RPCs with EJB/RMI)

* Unfortunately commonly used in monolithic
systems

trivadis

22 10.02.16 Retrofitting monoliths for the future makes IT easier. EEn

B Coupling by Communication Design

Synchonous Communication?

* Long running tasks?

* Failure Handling

* Responsivness (Timeouts, non determinism)

* Request/Response Pattern is also possible with asynch communication

trivadis

23 10.02.16 Retrofitting monoliths for the future makes IT easier. e

B Coupling by Communication Design

Asynchronous Communication
* Event-Based = inversed asynch (,,|oC*)
* Message Brokers or HTTP events (ATOM)
* Supervision
* Long running processes?
* Failures? How to handle bad messages breaking your system?

* Correlation and Monitoring

trivadis

24 10.02.16 Retrofitting monoliths for the future makes IT easier. e

B Supervision Stategies

Orchestration

* Central brain to guide and drive

Choreography

* Inform Component to do work and

let it do its stuff .> Evts

trivadis

10.02.16 Retrofitting monoliths for the future makes IT easier. EEnE

B Coupling by Data Formats

XML JSON

* Well defined * Easy

* Heavy * Lean

* Brittle * No link concept, but HAL*

* Secure * No automatic client generation
* Standardized * Lean and flexible

* Inherently inflexible

* Hypertext app language

trivadis

26 10.02.16 Retrofitting monoliths for the future makes IT easier. "N

B Other Coupling Areas

* Tool Chain and automation infrastructure
* Shared libraries:
* Hide from clients!

* Especially dangerous:
* Communication frameworks
* Frameworks for bridging a missing model layer

* Third Party Products
* APIs, Lifecycle and Product Quality are out of your control!
* APIs are normally very badly designed
* Separate Data Model . i}
trivadis

27 10.02.16 Retrofitting monoliths for the future makes IT easier. "N

How to deal with it?
Breaking things up...

trivadis

B Our Objectives

1. Avoid breaking changes
2. Design APls technology agnostic and remotable
3. Make services easy for our customers

4. Hide implementation details

trivadis

29 10.02.16 Retrofitting monoliths for the future makes IT easier. mEw

B Typical Monolithic Architecture

* |Is a monolithic systems a typical combination
of all coupling variants we have identified ???
- No, itis even worse...!
- You don't know what it is! It has black areas!

— You start in blind flight mode!

* So where to start?

Do small steps and prepare for failure!

trivadis

30 10.02.16 Retrofitting monoliths for the future makes IT easier. e

B Breaking up the Monolith

Where to start?

1.Disentangle the DB (mostly not an
option at the beginning)

2.Disentangle the Ul (difficult)

3.Disentangle the Middle Tier
1. Lots of help tool support (IDEs,
compiler build tools, tests)
2. Tests and quality metrics can be
automatically evaluated
3. Fast and automatic feedback

trivadis

31 10.02.16 Retrofitting monoliths for the future makes IT easier. mEn

B Breaking up the Monolith (2)

How to add bulkheads in a controlled way
* Analyze your Domains (DDD)

* |dentify technical components

* Analyse Dependencies

* |dentify Candidates for Isolation

* Define Component Bounderies and APIs
* Hide implementation code

* Discuss impact and issues raised

* Use static code analysis to enforce

* Stabilize

* Do not break up your system (yet)

* Repeat this process!

trivadis

32 10.02.16 Retrofitting monoliths for the future makes IT easier. EEn

B Breaking up the Monolith (3)

And the black components left ?
* Throw away
* Reimplement
* Keep them!
* But ensure
clear and minimal APIs!
* Deprecate them

trivadis

33 10.02.16 Retrofitting monoliths for the future makes IT easier. mEn

B Breaking up the Monolith (4)

Decouple the database...

* Change Security Credentials
and wait for shouts!

* Discuss DB transaction design

* Discuss failure handling

* Separate DBs

— also here: start small and expect
failure!

trivadis

34 10.02.16 Retrofitting monoliths for the future makes IT easier. EEn

B Breaking up the Monolith (5)

Decouple the UI...

* Apply Backend for the Frontend
Pattern

* Separate Apps

trivadis

35 10.02.16 Retrofitting monoliths for the future makes [T easier. mEw

B Breaking up the Monolith (6)

And finally you can try to separate
things...

— APIs are crucial that this works!

-

trivadis

36 10.02.16 Retrofitting monoliths for the future makes [T easier. mEw

B Aspects not discussed

* Use tool chain to enforce isolation

* Version Management and Coexistence

* Parallel Implementation of Features

* Project Organisation & Governance Aspects

* How to deal with Business Continuity (especially on the beginning)

trivadis

37 10.02.16 Retrofitting monoliths for the future makes IT easier. E EE

API Design

trlvadls

makes IT e

39

B What makes an APl a good API ?

10.02.16

Self-explaining: You don't have to read the documentation.

Useful - it addresses a need that is not already met (or improves on existing
ones)

Good default behavior - where possible allow extensibility and tweaking
Excellent documentation

Sample uses and working sample applications (very important)

Keep functionality sets distinct and isolated with few if any dependencies.

Keep it small or segment it so that it is not one huge polluted space.

trivadis

Retrofitting monoliths for the future makes IT easier. E EE

40

B But there is more

Good APIs are...

10.02.16

Minimalistic, technology agnostic with minimal or no dependencies

Strictly interface based (services)

Parameters and return types are immutable value types or built-in types

All parameters are serializable or designed for remoting

Complete, for completeness an accessor singleton maybe useful, but including a
delegation SPI

Thread-safe

trivadis

Retrofitting monoliths for the future makes IT easier. E EE

B Principles - General Principles

* API Should Do One Thing and Do it Well
* API Should Be As Small As Possible But No Smaller
* Implementation Should Not Impact API
* Minimize Accessibility of Everything
* Names Matter—API is a Little Language
* Documentation Matters, Document Religiously
* Consider Performance Consequences of API Design Decisions
* Effects of API Design Decisions on Performance are Real and Permanent
* API Must Coexist Peacefully with Platform
trivadis

41 10.02.16 Retrofitting monoliths for the future makes IT easier. "N

B Method Design Principles

* Don't Make the Client Do Anything the Module Could Do
* Don't Violate the Principle of Least Astonishment
* Falil Fast - Report Errors as Soon as Possible After They Occur
* Provide Programmatic Access to All Data Available in String Form
* Overload With Care
* Use Appropriate Parameter and Return Types
* Use Consistent Parameter Ordering Across Methods
* Avoid Long Parameter Lists
* Avoid Return Values that Demand Exceptional Processing
trivadis

42 10.02.16 Retrofitting monoliths for the future makes IT easier. "N

B Class Design Principles

* Minimize Mutability
* Subclass Only Where it Makes Sense

* Design and Document for Inheritance or Else Prohibit it

trivadis

43 10.02.16 Retrofitting monoliths for the future makes IT easier. EE N

B Package Design Principles

Define a package for each functional module, e.g. com.mycomp.app.auth

Move implementation details into com.mycomp.app.auth.internal

Move spi interfaces into com.mycomp.app.auth.spi
DON'T SEPARATE ARTIFACTS BASED on TYPE, e.g.

* com.mycomp.app.auth.beans
* com.mycomp.app.auth.controller
* com.mycomp.app.auth.model
— Typically this violates cohesion semantics
— Use corresponding class names instead, e.g. AuthController,

AuthModel 'i', i‘ iva d i S

44 10.02.16 Retrofitting monoliths for the future makes IT easier. = = m

B And even more...

We will look now at examples for the following:

. Establish strong terms (what is a Helper, Utility, ...?27?)
. Apply symmetry to term combinations
. Add convenience through overloading
. Consistent argument ordering
. Establish return value types
. Be careful with exceptions
. Follow the KISS principle
. Think on type safety

. Avoid over-engineering
10.Hide internal at all price
11.0nly pass Data or functional types
12.Make APIs Remote Capable

OO ~NOUA~,WNE

trivadis

45 10.02.16 Retrofitting monoliths for the future makes IT easier. E EE

B Rule #1: Establish strong terms

* Use same names for similar functionality

* Example JDBC statement, execution of a statement, closing:
execute(String)
executeBatch()
executeQuery(String)
executeUpdate(String)
Connection.close()
Statement.close()
ResultSet.close()

* close() evenended upin Closeable, AutoCloseable

trivadis

46 10.02.16 Retrofitting monoliths for the future makes IT easier. E EE

B Rule #1: Establish strong terms - Violations

e Example of a rule violation in the JDK: java.util.Observable

* Normally collection like types declare:
size();
remove();
removeAll();

* But Observable declares:

countObservers() ;
deleteObserver (Observer) ;
deleteObservers();

trivadis

a7 10.02.16 Retrofitting monoliths for the future makes IT easier. C I

B Rule #1: Establish strong terms - Violations

e Example of rule violation: the Spring framework. Enjoy:

AbstractBeanFactoryBasedTargetSourceCreator
AbstractInterceptorDrivenBeanDefinitionDecorator
AbstractRefreshablePortletApplicationContext
AspectJAdviceParameterNameDiscoverer
BeanFactoryTransactionAttributeSourceAdvisor
ClassPathScanningCandidateComponentProvider
J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource

— Creator vs. Factory, a Source vs. Provider, vs Advisor vs Discoverer ???
— |Is an Advisor related to an AspectJAdvice?
- Is it a ScanningCandidate or a CandidateComponent?
— TargetSource vs. SourceTarget, or even a SourceSource or a
SourceSourceTargetProviderSource?
HE E B ||
trivadis

48 10.02.16 Retrofitting monoliths for the future makes IT easier. E EE

B Rule #2: Apply symmetry to term combinations

* Example:
add(E)
addAll(Collection<? extends E>)
remove (Object)
removeAll (Collection<?>)
contains(Object)
containsAll (Collection<?>)

* Violation: java.util.Map
* keySet() » containsKey(Object)
* values() — containsValue(Object)
* EntrySet() — missing containsEntry (K, V)

trivadis

49 10.02.16 Retrofitting monoliths for the future makes IT easier. C I

B Rule #3: Add convenience through overloading

* Example:

toArray (), which is a convenient overload of...
toArray (T[])

* Violation: java.util.TreeSet
* TreeSet(Collection<? extends E>)
* TreeSet(SortedSet<E>) — adds some convenience to the first in that it
extracts a well-known Comparator from the argument SortedSet to
preserve ordering, which results in different behavior:

SortedSet<Object> original = // [...]
// Preserves ordering

new TreeSet<Object>(original);

// Resets ordering

new TreeSet<Object>((Collection<Object>) original); = = = d i S

‘Triva

50 10.02.16 Retrofitting monoliths for the future makes IT easier. "= =

B Rule #4: Consistent argument ordering

* Example java.util.Arrays (array is always first):

copyOf (T[], int), which is an incompatible overload of..

copyOf (boolean[], int)

copyOf (int[], int)
binarySearch(Object[], Object)
copyOfRange (T[], int, int)
fill(Object[], Object)

sort (T[], Comparator<? super T>)

* Violation: java.util.Arrays by ,subtly” putting optional arguments in

between other arguments, when overloading methods:

fill(Object[], Object)
fill(Object[], int, int, Object)

51 10.02.16 Retrofitting monoliths for the future

trivadis

makes IT easier. E BN

B Rule #5: Establish return value types

Methods returning a single object should return null when no object was found
* Methods returning several objects should return an empty List, Set, Map,
array, etc. when no object was found (never null)

* Methods should only throw exceptions in case of an ... well, an exception

* Violation: java.util.File.list():
Javadocs: An array of strings naming the files and directories in the directory
denoted by this abstract pathname. The array will be empty if the directory is
empty. Returns null if this abstract pathname does not denote a directory, or if
an I/O error occurs.

trivadis

52 10.02.16 Retrofitting monoliths for the future makes IT easier. "N

B Rule #6: Be careful with exceptions

* Example: java.sqgl.ResultSet extends java.sql.Wrapper:

public interface Wrapper {
<T> T unwrap(java.lang.Class<T> iface)
throws java.sqgl.SQLException;
boolean isWrapperFor(java.lang.Class<?> iface)
throws java.sgl.SQLException;

- Exceptions are likely to leak into client code...

— Use RuntimeException if possible,

trivadis

53 10.02.16 Retrofitting monoliths for the future makes IT easier. LI

B Rule #6: Be careful with exceptions

* Be careful with exceptions, client code:

public void myMethod () { |[throws Exception({
ResultSet rs = ..; ﬁ

if (rs.isWrapperFor (X.class){ __p How to handle the exception here?

}
}

— The exception gets an integral part of your API as well!

trivadis

54 10.02.16 Retrofitting monoliths for the future makes IT easier. E EE

B Rule #7: Follow the KISS principle

Multiple concerns: java.util.Preferences:

public abstract class Preferences {
private static final PreferencesFactory factory = factory();
private static PreferencesFactory factory() {...}
private static PreferencesFactory factoryl() {...}

- Management of factories and user
and system tree

public static final int MAX KEY LENGTH = 80;
public static final int MAX VALUE_LENGTH = 8*1024; _ 1 1
public static final int MAX NAME LENGTH = 80; Implementatlon detalls
public static Preferences userNodeForPackage (Class<?> c) {...}
public static Preferences systemNodeForPackage (Class<?> c) {-—--}

55

10.02.16

private static String nodeName (Class<?> c);

— Mapping artifacts to nodes

private static Permission prefsPerm = new RuntimePermission ("preferences");

public static Preferences userRoot();
public static Preferences systemRoot ();

protected Preferences() {}
public abstract void put (String key, String value);
public abstract String get (String key, String def);

public abstract void remove (String key);

[III]

Retrofitting monoliths for the future

— Singleton access to trees

— Node base class (not an interface!)
— Mutability is built in already ;(

trivadis

makes IT easier. E BN

56

B Rule #7: Follow the KISS principle

Multiple concerns: java.util.Preferences:

10.02.16

[..]

protected Preferences() {}

public
public
public
public
public
public
[...]

public
public
public
public

abstract
abstract
abstract
abstract
abstract
abstract

abstract
abstract
abstract
abstract

void put (String key, String value);
String get (String key, String def);

void remove (String key);

void clear () throws BackingStoreException;
void putlInt (String key, int value);

int getInt (String key, int def);

void putByteArray (String key, byte[] wvalue);
byte[] getByteArray(String key, byte[] def);
String[] keys () throws BackingStoreException;
String[] childrenNames ()

throws BackingStoreException;
public abstract Preferences parent();
public abstract Preferences node (String pathName);
public abstract boolean nodeExists (String pathName)
throws BackingStoreException;

public
public
public
public
[..]

abstract void removeNode () throws BackingStoreException;

abstract
abstract
abstract

String name () ;
String absolutePath();
boolean isUserNode();

Retrofitting monoliths for the future

—

Ll

Multi type value support

Tree navigation
Path/Node translation
Tree manipulation
Import/Export
Utility functions

HE E B

riva

makes IT easier.

IS

B Rule #7: Follow the KISS principle

Multiple concerns: java.util.Preferences:

[..]

public abstract void flush() throws BackingStoreException; — Tree man|pu|at|on
public abstract void sync() throws BackingStoreException;

public abstract void addPreferenceChangelListener (- (:)k)f;f}r\/f}r F)Eittf}rr]
PreferenceChangelListener pcl);

public abstract void removePreferenceChangeListener (
PreferenceChangelListener pcl);

public abstract void addNodeChangelistener (NodeChangelListener ncl);

ublic abstract void removeNodeChangelListener (NodeChangeListener ncl);

gublic abstract void exportNode(OutgutStream os) 7 - Import/EXport
throws IOException, BackingStoreException;

public abstract void exportSubtree (OutputStream os)
throws IOException, BackingStoreException;

public static void importPreferences (InputStream is)
throws IOException, InvalidPreferencesFormatException{}

riva

57 10.02.16 Retrofitting monoliths for the future makes IT easier.

B Rule #8: Think on type safety

* Reason for this design:
rivate String date;
priv w9 custom formats/host APIs

o .
public void setDate(String date); Flaws:

public String getDate(String date); - Unclear format

— No validation
- Missing datatype
« Alternatives:
« Use JDK time API or JodaTime

trivadis

58 10.02.16 Retrofitting monoliths for the future makes IT easier. "N

59

B Rule #9: Avoid over-engineering

public class UID{

}

10.02.16

private String uid;

public UID(String uid){
this.uid = uid;

}

public String getUid(){
return uid;

}

public void setUid(String uid){
this.uid = uid;

}

Retrofitting monoliths for the future

» Reason for this artifact: type safety
* Flaws:

— Not thread safe
— No validation
— No documentation

— Adds unnecessary complexity
» Alternatives:

e - URIs, e.g.
new URI(“user:al23456");
trivadis

makes IT easier. E BN

B Rule #10: Hide internals at all price

 Flaws:

public InternalDataSetImpl getDataset(

— EXposes internal data
String setId, String location,

String userId, String databaseName, — Requires internal data as input
String... rules);
— Parameter types are error prone
public void performAction(); - Meaningless method name
— Unconstraint parameters and return
public String manage(Object... args);

types

HE E B Il
60 10.02.16 Retrofitting monoliths for the future makes IT easier. "N

B Rule #11: Only pass data or functional types

Flaws:
public interface MyFancyService{
— Requires passing a service
public XY evaluateXY(
Paraml param, - Not remote Capable
EvaluationService service);

Improvements:

- Remove service argument

- |t is an implementation detalil
Note:

— OK for simple functional interfaces

— Be aware this is broken with

trivadis

61 10.02.16 Retrofitting monoliths for the future makes IT easier. LI

remoting!

B Rule #12: Make APIs Remote Capable

* JSON enabled Datatypes
e Strings
 Numbers
» Boolean
» Arrays
* Maps (JSON Obiject)
- So everything must be mappable

to this few things!

trivadis

62 10.02.16 Retrofitting monoliths for the future makes IT easier. C I

B API Design — Summary

* API Design is the key discipline of software engineering
e Start small!
* Be very causcious to add functionality

* is it the same concern

* can't it be done with existing functionality
* If the API feels too complicated, it definitively IS!
* Be aware that you have to rework it at least 3 times to get it right
* Involve colluegues that have experience building public APIs
* Eat your own dog food!

trivadis

63 10.02.16 Retrofitting monoliths for the future makes IT easier. "N

Summary

trlvadls

makes IT e

65

B Summary

10.02.16

Microservices, Containers and Resilient Design are the Future.

Monoliths are inherently broken for building highly scalable, resilient systems.
Decoupling affects everything: your infrastructure, your organization, your data,
your skills.

It's a long and difficult path.

You will probably fail.

But IMO you dont have a choice *

Act now!

* compare the impact on taxi companies when Uber.com entered the market t r I v a d I s

Retrofitting monoliths for the future makes IT easier. [I B]

B Referenzen

* Sam Newman: Building Microservices. O'Reilly, 2015

* Martin Fowler: Microservices. http://martinfowler.com/articles/microservices.htmi

* Resilient Software Design:
https://jaxenter.de/unkaputtbar-einfuehrung-resilient-software-design-15119

* API Design in Java: https://dzone.com/articles/how-design-good-regular-api

trivadis

66 10.02.16 Retrofitting monoliths for the future makes IT easier. mEw

http://martinfowler.com/articles/microservices.html
https://jaxenter.de/unkaputtbar-einfuehrung-resilient-software-design-15119
https://dzone.com/articles/how-design-good-regular-api

Monolithen fur die Zukunft trimmen

Anatole Tresch
Principal Consultant

Tel. +41 58 459 53 93
anatole.tresch@trivadis.com

(Trivadis
makes IT
easler.

trivadis

makes IT easier. E BN

67 10.02.16 Retrofitting monoliths for the future

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	Folie 67

