
3 things you must know

to think reactive
JUG.ch - August 2015

Manuel Bernhardt - @elmanu

Agenda
1. Reactive?

2. Mutability & Immutability

3. Functions & Higher-order functions

4. Why functions?

5. Functional for Reactive

Who is speaking?

• freelance software consultant based
in Vienna

• Vienna Scala User Group

• web, web, web

Who is speaking?

• freelance software consultant based
in Vienna

• Vienna Scala User Group

• web, web, web

• writing a book on reactive web-
applications

http://www.manning.com/
bernhardt

Did you say reactive?

Disambiguation
• Reactive Programming

• Functional Reactive Programming

• Reactive Application

• Responsive Web-Application

Disambiguation
• Reactive Programming � async data flows

• Functional Reactive Programming � async data flows + FP

• Reactive Application � architectural pattern

• Responsive Web-Application � Twitter Bootstrap

Why Reactive:
many cores

• End of the single-core multi-core era

• Many players in the space

• Tilera, Cavium

• Adapteva Parallela

• Xeon PHI

Why Reactive:
many cores

• Meizu MX4 Ubuntu Edition

• Octa-core MediaTek MT6595
chipset

• 2GB RAM / 20.7 MP rear camera,
2MP front-facing / 16GB built-in
flash storage

Why reactive:
distribution
(theory)

• scaling out to handle large loads

• scaling out / replication to handle
node failure

Why reactive:
distribution
(reality)

• networks, networks, networks

• they fail all the time

• Jepsen series1

1 http://aphyr.com

Reactive: how?

public class PaymentController {

 public PaymentConfirmation makePayment(CreditCard card) { ... }

 public PaymentHistory getPastPayments() { ... }

}

Reactive: how?
@Elastic(minNodes = 5, maxNodes = 15)
@Resilient(gracefullyHandleNetworkPartitions = true)
public class PaymentController {

 @Responsive(latency = 500, timeUnit = TimeUnit.MILLISECONDS)
 @MessageDriven(messageProvider = Provider.AKKA)
 public PaymentConfirmation makePayment(CreditCard card) { ... }

 @Responsive(latency = 800, timeUnit = TimeUnit.MILLISECONDS)
 public PaymentHistory getPastPayments() { ... }

}

Why Reactive: summary
• distribution accross CPU cores

• distribution accross networked machines

• need tooling to work with this type of distribution

Mutable state

Why mutable ?

• memory expensive!

• can't afford to keep past state in it

• re-use, overwrite, optimize

Mutable issues - example 1

Mutable issues - example 1
$scope.reservation = {
 id: 42,
 start: moment({ hour: 13, minute: 15 }),
 end: moment({ hour: 14, minute: 30 })
};

timeline.setOptions({
 min: $scope.reservation.start.startOf('hour').toDate(),
 max: $scope.reservation.start.add(3, 'hour').toDate()
});

Mutable issues - example 1
$scope.reservation = {
 id: 42,
 start: moment({ hour: 13, minute: 15 }),
 end: moment({ hour: 14, minute: 30 })
};

timeline.setOptions({
 min: $scope.reservation.start.clone().startOf('hour').toDate(),
 max: $scope.reservation.start.clone().add(3, 'hour').toDate()
});

Mutable issues - example 2

car.setPosition(0);
car.setPosition(10);

Mutable issues - example 2

The problem with
locks / latches

• solution workaround for a broken
conceptual model

• huge coordination overhead! Even
more so when distributed

• hard to reason about

• performance hit

Mutability: summary
• increased difficulty for the programmer (moving parts)

• makes life hard when working concurrently

Immutable

state

Immutable state -
why now?

• main memory is cheap!

• disk memory is cheap!

We can afford copies of past state
around in order to reduce
coordination efforts

Immutable state -
how?

case class Car(brand: String, position: Int)

val car = Car(brand = "DeLorean", position = 0)
val movedCar = car.copy(position = 10)
val movedCarLaterOn = car.copy(position = 30)

Working with different
version

"Snapshots" of reality

Immutable state -
how?

• clever immutable data structures,
e.g. Bitmapped Vector Trie 2

• do not copy data around - point to
unchanged data instead

• constant time for all operations

2 http://lampwww.epfl.ch/papers/idealhashtrees.pdf

Immutable all the
way down

• immutability changes everything 3

• programming languages

• databases: insert-only, event
stores

• SSD drives

3 http://www.cidrdb.org/cidr2015/Papers/CIDR15_Paper16.pdf

Immutability: summary
• we can afford to keep everything, with good performance

• reduces the headeache of coordination accross CPU cores
and networked nodes

• audit trail of changes for free

Functions

Functions, the Starwars Lego way
(three kinds of awesome united)

Pure function

Side-effecting function

Side-effecting function

Side-effecting function

The dark side clouds everything. Impossible to see the future is.
-- Master Yoda

Again a pure function
(this time with a laser gun)

Hmm...

Function composition

Function composition
def assemble(parts: (Head, Body, Legs, Hair)): HanSolo = ...

def arm(h: HanSolo, lg: LaserGun): ArmedHanSolo = ...

Function composition
def assemble(parts: (Head, Body, Legs, Hair)): HanSolo = ...

def arm(h: HanSolo, lg: LaserGun): ArmedHanSolo = ...

def build(parts: (Head, Body, Legs, Hair), lg: LaserGun):
 ArmedHanSolo =
 arm(assemble(parts), lg)

Higher-order
functions

Definition
A function that takes
another function as

parameter (or produces a
function as result).

Higher-order
functions

val users: List[User] = ...

val (minors, majors) =
 users.partition(_.age < 18)

Higher-order
functions

val users: List[User] = ...

val isMinor =
 (user: User) => user.age < 18

val (minors, majors) =
 users.partition(isMinor)

Higher-order functions
def AuthenticatedAction(f: Request => User => Result) = Action { request =>
 findUser(request).map { user =>
 f(request)(user)
 } getOrElse {
 Unauthorized("Get out!")
 }
}

def showSettings = AuthenticatedAction { request =>
 user =>
 userSettingsService.findSettings(user).map { settings =>
 Ok(views.html.settings(user, settings))
 } getOrElse {
 NotFound("We lost all your settings. Sorry.")
 }
}

Functions - Why ?

Functions

• portable and re-usable behaviour

• data changes, behaviour can be re-
used

• functions as data transformation
pipelines

Functions = data transformation
pipelines
val addresses = users.filter(_.age > 18)
 .map(_.address)
 .sortBy(_.city)

Build increasingly complex behaviour through a series
of transformations driven by composing functions

Functional

for reactive

Reactive
applications

• distributed in nature

• need to be resilient to failure, adapt
to changes

• asynchronous all the way down

Asynchronous
callback hell

var fetchPriceList = function() {
 $.get('/items', function(items) {
 var priceList = [];
 items.forEach(function(item, itemIndex) {
 $.get('/prices', { itemId: item.id }, function(price) {
 priceList.push({ item: item, price: price });
 if (priceList.length == items.length) {
 return priceList;
 }
 }).fail(function() {
 priceList.push({ item: item });
 if (priceList.length == items.length) {
 return priceList;
 }
 });
 }
 }).fail(function() {
 alert("Could not retrieve items");
 });
}

Asynchronous &
functional

val fetchItems = WS.get("/items").getJSON[List[Item]]()
val fetchPrices = WS.get("/prices").getJSON[List[Price]]()

val itemPrices: Future[List[(Item, Option[Price])]] = for {
 items <- fetchItems
 prices <- fetchPrices
} yield {
 item -> items.flatMap { item =>
 prices.find(_.itemId == item.id)
 }
}

itemPrices.recover {
 case ce: ConnectionException =>
 log.error("Could not retrieve items")
 List.empty
}

Immutable
Function

Composition

Thank you
http://www.manning.com/bernhardt

@elmanu / manuel@bernhardt.io

Questions?

