-/ Buckminster

Eclipse Buckminster
The Definitive Guide

Henrik Lindberg, Cloudsmith Inc.
Thomas Hallgren, Cloudsmith Inc.

Draft Draft

Eclipse Buckminster: The Definitive Guide

by Henrik Lindberg and Thomas Hallgren

0.6 - include/exclude patterns explained for group and action. New Examples— building product, building legacy
sites. New Troubleshooting chapter. Minor updates of reported issues. Buckminster command 'install' added in

headlessinstall instructions.
Copyright © 2009 Cloudsmith Inc. All Rights Reserved.

This book and the accompanying materials are made available under the terms of the Eclipse Public License v1.0 which is available at http://
www.eclipse.org/org/documents/epl-v10.htmll.

http://www.eclipse.org/org/documents/epl-v10.html
http://www.eclipse.org/org/documents/epl-v10.html

Draft Draft

Dedication

This guide is dedicated to all software developers who have voiced their frustration with manually
putting software build systems together, and to all early adopters of Buckminster that have voiced
their frustration over the lack of examples and documentation when trying to construct an automated
system.

Don't worry, I have my hat on, and
I think this is what the documentation
suggested...

\

Stew has hisfirst build tool experience.

Draft Draft

Table of Contents

= =0T PSP X
WHhy USE BUCKIMINSLEN? ... it e e e e e e e et e e e e e aanaees X
Why read this DOOKc.uiiiiiiii e e e e X
ThiS DOOK'S GUTIEINCE ...cevviieeiii et e e Xi
Conventions used iN thiSBOOKoouiiiiiiii e Xi
Getting examples from thiS DOOKoovuiiiiiiiii e e Xi
ReqUESE FOr COMIMENT ... e e e e e e et e e e ean s Xii
ACKNOWIEAGEMENTSeiiii e e e e e et e e e e e e e aanaees Xii

[1 L oo [0 (o o T PP 1
O o 1 o P 2

EClipSe tECNNOIOQY . oevuiiiiieei e e e e e 2
o 1 o) G 2

L = 110 1 1 P PPN 2

Java Development TOOIS (IDT) ..vvvueiereeii i e e e e e e e e e e e 2
Plugin Development EnVironmMent (PDE)cvvvuieiunieeinieiiiieeeieeeiiieesieeannas 3

Rich Client Platform (RCP)ccuuiiiiiciiie e 3

P2 e T AR 3

The Eclipse COMPONENE tYPES ...vuuiiei it e e e e e e e e e e e eaens 3
Plugins, features and OSGi buNAIEScc.vveviiiiiii e 3
FragMENES .o 4

L 00 (1 o £ UPPPTPPR 4

THE WOIKSDACEievi et e e e e e e e e e e aans 4
The Target Platformooeei e e e e 5
[IF=T0 o g oo 1o (1= 4 o o 5
ANT e A, TR csse s B e s eernae s 6
A o - SO . . 000 00000000000 PEETEEETREEEER 7
The Installable UNItooooeii e 7
Metadata FEPOSITONYuiiiiieii et e e e e e et e e e e 8
YN 4] = ot B =00 1 o Y AP 8
Combined / co-located repOSItONIEScvvvuiviii e e e e 9
0] 11 PP 9
Y2151 (= 1 = 9
L0 =0 0] 1= P 10
0o 1T 1 o N 10
0TS = 1o PP 10
The SDK @QENT ... e e e e 11

The director appliCationccouiiiiiiiei e 11

The P2 INSLAllEF ... 11

The EPP WIZArcooeviiiiei et 12

The Buckminster iNStallercoovieuiiiiii e 12

S T oL o 12
S 01017 Y/ 13
3. BUCKMINStEr INIFOAUCTIONvieiiiii e 14
FUNCLIONAl OVEIVIBW ...ttt e eeeeanas 14
GEtting COMPONENESiitiieei et e e e e e e e e e e e et e e e e e et eeaneeanns 15
L0 11070 11 | 20
ComponeNt attribULEScvvvieii e e e 21
(©041070 8= 01 =o' 1 21

N o: 0] £ TSP UP PP PTRPPI 22
Turning something iNto @ COMPONENTcuuviiiieiii e e e e e 22
Decorating a component with additional advicecccooeviviiiiiiineeinns 23

ST 1010 7= Y 23

I = T ot 0 T g = PP 25
(=S 01U o= 1V = o 26

The search for the COMPONENEoiiiiii e 26

Draft Eclipse Buckminster Draft
CrealiNg @ RMAPuui et ettt ettt ettt ettt 27
EdItiNG @ RMAP ...t et 28
Designing a RMAP — SOME 8OVICEciiiiiiieeiiii et 28
[T07= (o] €= PP 28

HOW O WItE PELLEITIS ... et 29

(=T 0 I 1 o PP 29
Parameterized IOCAOTuurieiiii et e 30
REAITECES ..o e 30
LOCELOrS SUMIMAYierieiiieeee ettt et e e et e e eenns 31
SEArCh PALNS ...t 31
L ()Y L= £ P 32
REBAEN TYPE .. e 32
Providers and authentiCationoooiieuiiiiiiiiiie e 38
COMPONENE TYPES .. eeeeeetie ettt e eres 39
VEISION CONVEITEY ...iiitieiiiit e ettt e et e ettt e et e e e e at e e e ena e eeens 41
Handling indir€Ctioncooouuiiiiiiii e 42

PDE map — extended Providerc..vveeeeeiiiiiiieeeei e 44
PrOPEITIES .t 44
The RMAP XML QOCUMENT ...ttt ettt et e e e e 44
SUMMBIY et ettt e e e et et e e e e e e e e e eae s 45
5. COMPONENE QUENY .ottt ettt ettt e et ettt e e e e et n e e e e e eannas 46
One query to get them all... ..o 46
Opening an EXiSting CQUERYcuuuuiiiiiiiieieii ettt 46
Creating @ NEW CQUERYuuuieiitn ittt e e ettt e e eeti et e eet e e eeai e e e eae e e eani e e ennans 47
The CQUERY EQItOr ...ouiiniiiiiie e e e eans 48
The editor Main talduuiii 48
0 o) g 0o SN 49
General atriDULES ... 50
Attribute qUalifiCatioNcouuiiiiii 51
SPECial FEQUITEMENTSuiieeiit ettt e e et e e e eae e eees 51
RESOIULION SCOPE ...ttt e 52
SEECHION CIITEITA ... eeeee e e 52
OVETIE (VEISION) ettt ettt ettt e et e et eeenb e eees 53
OVEITAY e 54
PrOPEITIES ..t 54
DOCUMENEAEION ...ttt et 55
Materialization WIZarduiiiiiiiiieii e 55
AAVANCEA SEEEINGS ... eevvneeeeti ettt e e et e e e e e eai e 58
Watching the Paint dry...ooeeiiiiei e 59
Resolve and Materializeuiiiiiiiii e 60
SUMMBIY ettt e e e e e e een s 60
6. COMPONENES ... ettt ettt ettt ettt e e et r et e e e e e et e ean e ene e 61
The comMPONENt’S BNBEOMYceeveneiiiii ettt e e eeaans 61
CSPEC 8NGO CSPEX tvvtieiittiie ettt e e ettt e ettt e et e e e et e e e et e e e e ena s 63

THE CSPEC EAITON ... et 63
ViIiewing @ CSPEC ... 64
Creating @ CSPEC, OF CSPEX ..cuuietuetiuaetneeetaaeunaaetnaeeanaeeanaeaetaeeaaeetnaaeanaaeennns 65
NBME BN VEISION vttt ettt e e e e e eaaans 66
ATIITDULES <.t 67
Reference to the component itself ..., 69
N 4 = £ 69
Lo TN o TP UP PPN 71
oo P 75
(€1 01 (0] £ T TP 84
DEPENAENCIES ...ttt e e et e ettt e e e e e 86
Automatically generated meta dataloveeeevniiiiii i 88
BOOKIMEIKS ...ttt e 89
7. Bill Of MaefialS (BOM)iiiiiiieiiiii ettt eeees 90

Draft Eclipse Buckminster Draft
THE BOM'S BNEIOMIY ...ciiitieeeeii ettt ettt e e e e e e s 91
MELETAIIZING @ BOM ...ttt e et e e et e e e e e e 91
VIBWING @ BOM ...iiitiieeiitt ettt ettt ettt e et e e e e enaaas 91
SUMMBIY et ettt ettt et e e e e e e eaaes 92

8. MSPEC — Materialization SPeCifiCationc.ocoeeueiieieiiiiieiiiiineeii e 93
CrealiNg @ MSPECiiiiiiieeieit ettt e et e e et e e ettt e e e et e e et e et e b e e e era e aee 93
EdItiNG 8 MSPECuiiiiiii ettt 94
The MSPECMOTUS OPEraNGdiccvvuieiiiiieieiii et 94
I = o] o I Y 1 ST TE PP 94

USING PrOPEITIES ..ttt e et e et eeees 95
RUIES .. 96
MELETAlIZING B MSPECiiiiiiiee ettt ettt e e eea e e 96
SUMMBIY et ettt e e e e e e ean s 96

O, WBISIONS ..ttt ettt 98
OMNi Version intrOdUCTIONcoouuiiiiiiiie e 98
Buckminster and OmMNi VEISIONooieuuiieiiiiiie et e e eeees 99
Buckminster's Named fOINMELSuuiiiiuiiiiii e 99
VEISION TANGES ... ettt ettt ettt ettt e et e et e et e b e e e e et e e e e aba s 99

L0, PrOPEITIES ...ttt eaaas 101
Property eXpansionc...ieoiiiiee e 101
Setting property value With “property”ooeeeeeiiiiiiieeee e 102
USiNg “PropertyElEMENt”ooieiiieiei e 102
Property fUNCLIONSuiiiiii e 102

RePIace fUNCHION ...uiii e 103
SPIE FUNCLION ..t 104
PrECEOBNCE ...ttt et et e 104
TYPICAl PIrOPEITY USE ..ottt ettt et e e et e e e e s 105

11. Buckminster USer INTEIacecoouuiiiiii e e 106
COMPONENT EXPIOTEN ... ettt ettt et ettt e e e e e eeae e eeanes 106
CompPOoNENt OULHINEoeeiiee e 107
NEW FIlE@ WIZAIASccoeveiieii e 107
BOM VISUBHIZES ...t 108
INVOKING @CLIOMNSvteiietie ettt ettt eeeneas 109
EAITOrS ...t 110
PrEfFEIEINCES ...t 110

12, TroubIESNOOLING ...cevvueieeii ettt e e e 113
INSEAITALION ISSUES ...ttt et eeees 113
HEAOIESS ISSUBS ...ttt e 114
RESOIULION ISSUES ...ttt ettt e e 114
MELEFTAlIZALTION ISSUBSceeiiieee e 115
EXECULION ISSUES ...ttt e e s 115
COMPONENT ISSUBS ...ttt ettt e et e et e et e e et eeeeaa s 115

T EXAMPIES <. ettt 116
13. BUilding @ P2 UPAaLe SITEunieieiiieieei ettt e 117
Creating the CONTENT ... e 117
Creating the PIUGINiii e 117
Creating the FEAEUNEcoove e 117
Creating the Site fEatUreoooiiii i 117
BUIIAING the SItE ... 118
USING the UPAELE SITEcevuiiieiii e 119

14. Building a Legacy Update SItecceevuniiiiiiiiieieiii e 120

15. HEIO XIML WOTTA ...t et 126
Without BUCKIMINSIENiiiii e 127
With BUCKMINSLEr 1N USE ...t e e 127
ThEe RMAP et 128
The CQUERY ...ttt et 128
RUNNING the EXaMPIE ... 129
How the code iS SIUCTUNEdcoovuiiiiiiii e 129

Draft Eclipse Buckminster Draft
OrQ.AEMOWOITAS ... 129
0rg.demMO XML PrOVIAEriiiiiii e 131

16. BUIldiNG RCP ProAUCEScceiviiiiiiii et 134
GELtiNg the COUEcovviiiiii e 134
SHTUCKUNE ettt ettt e e e e e e e e e eees 135
THE RMAP .ottt e et eeab e ee 136
USING “USEBUII ..o 138
Building the Update SItecc.uuiiiiiiie e 138
INStalling the ProdUCTcocueeiii e 138

Installation using the p2 installerooiiiiiiii e, 138
Creating an installable Zipoooveveiiiiii 140
THE CSPEX ..ot 140

17. POJO PIOJECES ..ottt ettt ettt e e et e et e e na e 141

18. NON JAVA PrOJECES ...ttt e e 142

19. RMAP EXBMPIES ..ottt e 143
The “dogfood’ RMAP ... 143

IV REFEIENCE ...t et 147

[. COMPONENT TYPES ...eerieiii ettt ettt ettt et et e e e e et e e e eaeeees 148
PUCKMINSIEr ... 149
ECHPSEFEALUNE ... 150
[ST P PP UPPPTPRPPIN 155
(00 V7= A 17 (V= 0 VRPN 156
OSTIDUNGIE ... 157
PDE (BDSIFACL) ..eeveieieiiiee et 160
POJO (ADSIFBEL) vttt 162

R o (o = PRSPPI 163
ANT BCLON .ottt 164
COPYTar et ACt i 0N GCLOTuueie et e e e 167
€Cl i PSEe. BUI I 'd GCLOT ... 168
€Cl i PSE. Cl AN BCLON ... 169
EXECUL OF BCLOT ...ttt et ettt e e e eas 170
F et CREr ACTOK ..o 172
J @I PIrOCESSON GCION ..euiitie ittt eane 174
J AU @NE BCIOT et e 176
NUE T BCTOT ..o 177
P2Si t €GENEr At OF GCLOT ...t e e e e e e e 178
STIMUL AT ON @CTOT ...ieitie ittt et e e e 179

[, BUCKMINSIEr ANT T8SKS ...ieiitiiiiiii ettt et e e e e e eaees 180
FilESELGIrOUD SUPPOIT ... eeeeii ettt ettt e et e e e e eeeans 181
buckminster impPOrtRESOUITEciveii e 183
buckminster. JastTimeStamMPuuiiiiii e 184
buckminster JastREVISIONccoouuiiiii e 185
PUCKMINSLEr . SUDSHITULEeeeeei e 186
buckminster.versionQUAalITIErcoouiiiiiiii 187
buckminster.SigNatureClEANEYcooiiiieiiiii e 189
PUCKMINSLEr.PEITOIM ..ooee e 190

LV OIS e e 191
TAIOELAICH .ot 194
TAIOEL.OS ... 195
(= 0 1< I 0O PP PPN 196
TAIOELWS .o 197

V. Headless COMMANGScoiiitiieiiiii e et e e e eees 198
BUCKMINSLEY ...t e e e 199
[iStcommands (ISCMAS)coeveeiiii e 202
PUITA (IMBKE) ... e 203
ClBAN . e 204
get preference (QEPref) ... e 205
IMPOIT (FESOIVE) ..ttt et e e e e e e e eaaens 206

Draft Eclipse Buckminster Draft
list preferences (ISPrefs) ... 207

[01= 170101 1 TP SOPPPTRUPPIN 208

Set preference (SEPIEF) ... e 209
unset preference (UNSELPref) ... 210
import target definition (IMPOrttarget)couvuieiiiiiiieiiii e 211

list target definitions (ISArgELS)vueeieeii e 212
export preferences (EXPOITPrErS) i 213
import preferences (IMPOITPrefs) ... i 214
TNSEAIL <. e e e e 215

T S 1 (= TSP PP UPPPTRR 216
UNINSEBIL ... et 217

V1. BUCKMINSIEr XML SCREMES ... ciiiiiieiiiii e 218
BC (COMMON-1.0) ..ottt e 219

CS (COPEC-1.0) ..ttt ettt eaaas 220

CO (CQUENY=1.0) ...eeieutneeeiti ettt et e et e e et e e e e e e aa s 221

MA (MEADAIA1.0) ...ceevriieieii et 222

MP (MaVenProVider-1.0)ccouuieieiuiieeiiiie e eenens 223

OPMI (OPML=2) ettt 224

pPMP (PDEMEPPIOVIAEr-1.0)cocuuuieiiiiieieii ettt 225

FM (RM@D-1.0) . oeiniiiiii ettt e et e e s 226

XD (XNREMI) e 227

Xi (XMLSCheMaiNStanCe)oeeieeiieiiii e 228

VL APPENAIXES ..ttt et e e e et e e e et e aaee 229
AL TNSEBITELION ..ot 231
Installing for EClipSe SDKcooiiiiiiiiiiiieece e 231
Installing the HEadleSS ProdUCLc.uuiiiiiiiiiiiiiie e 232
10700107 ol (o] £ PP 234
SUBVEISION (SVN) ..ieiite ettt ettt e e e e 234

PEITOICE (PA) ettt 234
Configuring Eclipse for XML Editingoooeviiiiiiiiiiiiiecei e 234

B. EXtending BUCKMINSIEriiiiiiiiiii e 235
00 (ol = (= o PP UPPPPPRSPPPIN 235
VEISION TYPE ..ttt 235

RMAP EXEENSIONSeettieeeeit e et e e ettt e et e e et e e ettt e e e eet e e e enbaeeeenbaaeeees 235
Extending REAJEr TYPE ...oovvniiiiiii et 235

Extending Component TYPEccuuueiieiiieieiii ettt 235

Extending Version CONVEITEYoieiiuuiieiiiiiieeeiie et e e 235

(000 = A (= 1S 0] N 236
CUSEOM TESOIVEL ...ttt et 236

C. OMNi VErSION DELAIScovunieiiiiie e 237
INEFOTUCTION ...t 237
BaCKGroUNGcoeiiiiii e 237
IMPIEMENTALION ...t e 238
VBISION ..ttt et 238
L000]17] 072 11150 o H PP TOPPRTT 238

Raw and Origina VEersion SIHNQc.uuveieiiiieieiieeeei e e 239

OMNi VErSION RANGE ...coveieiiiii e 239

Other range fOMMELScoevveieeeii e 240

Format SPeCifiCatioNuuuiiiiiii e 240
Format Pattern EXPlanalionooieeeuiiiiei e 242
Examples of Version FOMMELSvviiiiiiiiiiiiieeei e 244
TOOING SUPPOIT ...ttt ettt ettt e e 246
More examples uUSiNg “FOMMAEL"oooieriiieiii e 247

T ST 248
RESOUICES ...ttt ettt eenes 250

D. BOOKMArkS and OPMLuuiiiiiiiieieii et 251
BOOKIMEIKS ... 251
AULNOTING OPML ..ttt ettt e e et e e et e e e et e e e enaneaeens 252

Vi

Draft Draft
List of Figures
2.1 Anatomy Of @ TU oooeiii e 8
2 o 72 1 - 1o o 9
3.1. Buckminster from 10.000 ftcoeuuiiriiii e 14
3.2. Trangitive MaterialiZationcccouuiiiiiiiii e 15
3.3. Resource Map and REPOSITONESuvvviieiiiieii et e e e e e e e e e e e e e e e e eaeen 15
3.4. Federation Of RESOUICE MaDScivuiiii e e e e e e e e e e e e et e e e e eaneees 16
3.5. RESOUICE M FOULESeuieeiieieeie e et e e e e e et e e e e e e e e e e et e et e et eean e e e et eeaeenns 17
R V= = g Tz o I 1Y o= 17
3.7. Telling Buckminster What 10 g&Loiviiii e e e e 18
3.8. Ordering at “BUCKY BUIGEI™oouiiiiiiii e e e e e e e e e e e e eanes 18
3.9. Ordering at the BUCKY DEliccvuiiiiici e e e 19
3.10. Getting COMPONENES — SUMMBIY ...vuuevvrneeeineeeteeett e eanaeeaneeeaneeeansesaneeaneeanaeennaeennns 20
G 00 I O 0 oo = o1 20
G0 72 @0 070 1= | AN 111 1 | = N 21
G300 G T @0 T 001 1= | AN o 1 T 22
3.14. Component Specification EXENSION — CSPEXuivviuieiieiiiieiieeeiieeeieeeeieeeiae e eeanes 23
3.15. BUCKMINSLEr SUMIMAIYvuieiiieiiieeei e et e e e e e e e e e et e e e e e e e e et e e e e e ean e eanneeannaees 24
3.16. BUCKMINSIEr HEBAIESS ...t 24
4.1. Sample content from an ibiblio Pageovvvniiei e 37
R 41 o = g o) Vot T o) 42
4.3, MACh ElEMENT ..ee i e 43
5.1. Materialization Wizard' S firSt PAg ...vuuevvvnieeii e 55
5.2. Wizard with target platform components ShOWNccoovviiiiiiiiiiiicii e 56
5.3. Wizard's MaterialiZation PAgeueeeueiii i e e et e e e e e e e 57
6.1. Secret revealed — where components Come fromc..ooviiiiiiiii i 61
(S o 411070] 1= | = (] 1 1)V 63
6.3. A file tree With COMPONENEScouuiii e e e e e e e 68
(S o 0 =47 0] 1 1)V 76
7.1. DEPENdENCY VISUBIIZENc.vuiiiieeii ittt e e e e e e e e e e e e 92

Vi

Draft Draft

List of Tables

10.1. Materialization property Value PreCeIENCEc.uuiiinieii e 104
10.2. Action invocation property Value preCedENCEcvvuviinieiie e e e 105

viii

Draft Draft
List of Examples
4.1. locator and Search Pathccoiiiiiiii 27
=] o = 1 (o) PSP 30
4.3. locator with parameterized search Pathcooeiiii i 30
A U 1= oo o] = £ 31
T o (01 o = P 32
ST U1 T o S o (0. o = 34
Y 4 =0 L= PP 37
A.8. VEFSION CONVEITEY ...iieutieeiiiieeeeeti e et ettt e e e et e e e eete e e e eat e e e eate e e e eaa e e e eetn e eeennn e eeenanns 41
4.9. USINg PDEM@PPIOVIESiiiiiiiii e e e e e e e e et e e e eaneees 44
5.1. Default SUffix and RENEMINGcovuiiiiiii e e e e e e eanaeees 59
9.1. An OSGi VErsion eXpreSSEA iN FAWceuu.eeueieriiieeeieeeieeeeeeaa e et e eete e et se et e eraaaannaaes 99

Draft Draft

Preface

Software development is becoming software assembly, with components sourced from around the
world and based on awide range of implementation technologies. The Eclipse Plug-In Development
Environment (PDE) does a great job of streamlining development componentized plug-ins and fea
ture-sets when using the Eclipse IDE interactively. However, the PDE manages only those compo-
nents implemented as Eclipse plug-ins, and uses a different way of building when automating builds
in “headless fashion”. There is also only limited support in Eclipse for materializing the project
workspace per se — i.e. fulfilling all external and internal component dependencies.

Buckminster’s objective is to leverage and extend the Eclipse platform to make mixed-component
development as efficient as plug-in development, and to make automated building as simply a choice
of invoking the one and only build definition from within the graphical user interface, or from the
command line. To accomplish this, Buckminster:

* introduces a project-agnostic way of describing a development project’s component structure and
dependencies

* provides a mechanism for materializing source and binary artifacts for a project of any degree of
complexity and

* builds the end result by orchestrating the execution of built-in and user-provided build and test
actions.

Why use Buckminster?

As a developer, you want to stay focused on the construction of your code, you expect it to be built
interactively giving you instant error feedback. Once your code compiles, you expect to instantly be
ableto run/debug it — and when you make changesto the codeit hot depl oysinto the running instance.
At some point the edit/debug cycle is over — you have a set of components, and unit tests.

But you're not really done, of course. Y ou still need to share what you've done so it can be integrated
and built on abuild server, tested, fixed, rebuilt, retested etc. The vision for Buckminster issimple —
the system should just take care of all thisfor you automatically!

Most of the information needed is already formally expressed in your code, so Buckminster can figure
out alot about the components and how things should be put together. There are certain choices you
made as a devel oper that are almost impossible for Buckminster to figure out on its own. So, alittle
work is till required on your part. But hopefully alot less. Another important set of benefits comes
from Buckminster's ability to run the same actions both interactively in the IDE and headlessly on a
server. Thisisparticularly useful for organizations implementing continuous build integration and test
automation, aswell as for open source development where anyone should be able to build the source.

Why read this book

We've attempted to make this book a clear, concise and definitive reference. We've tried to cover the
bases regarding using Buckminster in the most typical usage scenarios. We've also tried to provide
enough detail to serve as a starting point for more specialized scenarios, including customizing Buck-
minster itself. Following are the key topics we address:

» The general nature of Buckminster. Not everyone wants to learn Buckminster from the bottom
up by working through the xmL schemas. So we will quickly get you up to speed on Buckminster's
architecture and what it can do for you.

» How to get and install Buckminster.

Draft

Preface Draft

This

» How to get software components from various sour ces. Buckminster provides the mechanisms
to get software componentsin source and binary form from avariety of sources such as source code
repositories, Eclipse p2 update sites, and Maven.

* How toinvoke actions that perform builds and other common tasks.

» Best practices when working with Eclipse plug-in projects, and when building RCP applications.

» Publishing the built result so it can be consumed by users.

 Solution cookbook with examples of how to solve various common issues when building software.
» Setting up continuousintegration with Hudson and Buckminster.

* Unit testing.

» Extending Buckminster.

» Reference documentation.

book’s audience

We expect that most readers have familiarity with Eclipse in general. When describing Buckminster
featuresthat directly related to devel oping Eclipse plugins, OSGi bundlesin general, writing complete
RCP applications, managing p2 repositories, or using Buckminster for C++ development, we expect
the reader to have an understanding of development using the respective technology. Although we do
provide introductions to the technologies surrounding Buckminster, as it would otherwise be difficult
to understand the full picture, these introductions are by no means intended to serve as anything but
starting points for further explorations.

Conventions used in this book

Most books show you all the conventions used, but there are only a few things that needs to be men-
tioned...

Manually inserted line breaks

Examplesin XML tendsto get quitewide, and line breaks must beinserted or thelineswill be truncated.

When thisisthe case, we include a [0 where the line is broken, and one or several = characters on the
subsequent line to denote that what follows is a continuation of the previousline. Hereis an example:

http://somihere. outthere.com 8080/ w t h/ | ong/ pat h/ and/ paraneters/|i kel
—?t hi sOne=wi t hAVal ue&andThi sOne=wi t hAnot her Val ue

-&t hi sThi r dPar anet er =wi t hYet Ani t her Val ued
-&soForth=unti | TheLi neNeedsToBeBr okenUpAgai h&andThenSonme=ext r aSt uf f At TheEnd

If you typein one of these examples, you should remove everything from the O to thelast — (inclusive)
on the next line and and have no line breaks.

Replaceables

Replaceables denote text that is variable in nature — the replaceable part is something you would
type, or that is generated by the system. We use the guillemots characters « and » around the part that
should be replaced e.g. copy «fronNanme» «t oName».

Getting examples from this book

The examplesin this book can be obtained from the Buckminster source code repository. Up to date
information is found at the general Buckminster project page at Eclipse.

Xi

Draft Preface Draft

The Buckminster project page islocated at http://www.eclipse.org/buckminster.

Request for comment

Please help us improve future revisions of this book by reporting any errors, bugs in examples, con-
fusing or misleading statements, or examples that you would like to see included.

Please report issues with this book in the Eclipse Bugzilla under the category Tools — Buckminster
- documentation. The Eclipse Bugzillaisfound at https://bugs.eclipse.org/bugs/.

Acknowledgements

Buckminster has been in development for quite sometime. A precursor to Buckminster was devel oped
in 2000, at the company Frameworx Inc. with the purpose of supporting the company’s distributed
development of a “software as a service” framework. Ironically, the component that resonated the
most with the company’s clients was the possibility to use this internal component, for traditional
development. Many thanks to Kenneth Olwing, who at Frameworx was the driving force behind this
system.

BEA Systems, and more specifically the BEA Java Runtime Products Group, home of the JRockit
JVM (now part of Oracle), isan early adopter of Buckminster. They have devel oped (and continue to
develop) a set of tools for Eclipse and needed a convenient way to execute headless builds of these
tools in orchestration with building the avm itself. BEA sponsored development of Buckminster for
a period of two years and provided real world production issues that helped increase the usability,
stability and overall quality of Buckminster. Special thanks to Marcus Hirt for his enthusiasm, and
continued support.

Bjorn Freeman-Benson helped write the first introductions to Buckminster, and had the courage to use
Buckminster when assembling the update site for the Ganymede release. The interest in the “ Gany-
matic” helped increase the awareness of Buckminster and we noted alot more traffic on the Buckmin-
ster newsgroups and we got many new Users.

Early adopters among the Eclipse projects include stp, and ECF. Many thanks to Oisin Hurley, and
Scott Lewis for the confidence in letting Buckminster build their projects.

Oisin Hurley, and Marcus Alexandre Kuppe are worth special thanks as they have never missed an
opportunity to get hurt by the latest experimental Buckminster features and thereby helping us sort
out the useful from the stuff that never should have been written. Thanks for all the great feedback!

David Williams, the Galileo build master, isusing Buckminster’ s repository aggregation functionality
to assemble and verify the repository for the Galileo release. We are grateful for the confidence and
the help we received from David tracking down the cause of issues, which is not an easy task in a
system as large as Eclipse. Also, specia thank you to the p2 and PDE teams in resolving issues when
things were getting rough.

Finally, without all the val uable feedback from the Buckminster user community in form of bug reports
and patches — a big thank you! Buckminster would not be what it is without your help.

We are also very grateful to Cloudsmith Inc, our current employer, and its investors for making it
possible for us to work on Buckminster.

TO-DO: Itisnot yet possible to acknowl edge those that hel ped putting this documentation together...

Xii

http://www.eclipse.org/buckminster
https://bugs.eclipse.org/bugs/

Draft Draft

Part I. Introduction

This part is intended as a quick introduction to Buckminster’'s functional domain which includes provisioning,
building, sharing, testing and publishing software components.

Central concepts such as the Eclipse workspace and target platform, 0sGi and the Eclipse Plugin Devel opment
Environment (PDE), and the Eclipse provisioning platform (p2), are explained and put into context. Specifically,
this chapter discusses how Buckminster works.

Draft Draft

Eclipse

This chapter contains a brief overview of selected Eclipse technology and how it relates to
Buckminster’s domain of composing component based systems.

An overview of Eclipse concepts such as the workspace, target platform, component types such as
plugins and features, is also found in this chapter.

You will also find a brief introduction to ANT, although not strictly Eclipse technology, it is still used
by Eclipse and Buckminster.

Eclipse technology

A selection of Eclipse Technology explained.

Equinox

Equinox is the name of the 0sGi runtime underlying the Eclipse IDE. It is a general purpose OSGi
runtime. Equinox is (among many things) responsible for the loading (and unloading) of components.
It functions as the container for the rest of the system.

For more technical information about 0sGi — see http://www.osgi.org/About/Technol ogy.

Platform

The Eclipse Platform providesthe core frameworks and services upon which al plug-in extensionsare
created. It also provides the Equinox runtime in which plug-ins are loaded, integrated, and executed.
The primary purpose of the Platform is to enable other tool developers to easily build and deliver
integrated tools.

Java Development Tools (JDT)

Java Development Tools (JDT) isthe set of tools build on top of the Eclipse platform for developingin
the Java programming language. It includes arich set of functionality for editing, compiling, debug-
ging and running java code.

When used alone, created projects are “plain java’ and management of dependenciesis handled in a
manual fashion and with thiscomesall the classic javaissues with specifying aclass path, and making
sure al the required parts are available when running the code.

You will find more information about using Buckminster with “plain java’ in Chapter 17, POJO
Projects.

http://www.osgi.org/About/Technology

Draft Eclipse Draft

Plugin Development Environment (PDE)

The Plugin Development Environment (PDE) is a set of tools built on top of the Eclipse platform
and 0T for developing Eclipse Plugins as well as more general 0sGi bundles. PDE has a rich set of
functionality to work interactively with the additional meta data found in plugins and bundles and
supports all required operation from construction to publication.

The relationships between Eclipse plugins, features, and 0sGi bundlesis further addressed in the sec-
tion called “ The Eclipse component types”.

PDE also includes PDE-build, which consists of generation of ANT scripts that are then used to build
software headlessly.

Buckminster provides a much more convenient way of invoking the various build actions in PDE than
the script based PDE-build, as Buckminster does not generate scripts.

Rich Client Platform (RCP)

The Rich Client Platform (RcpP), is the name for the Eclipse technology that makesit possible to write
genera purpose applications based on the Eclipse platform. Theterm “RCP application” is often used
to denotethetop level product such asthe Eclipse IDE. Two well known open source applications built
on RCP are the bittorrent client Vuze (Azureus), and the RsS reader RSS Owl. There are also many
smaller Rcp application in the Eclipse family, such asthe p2 and Buckminster installers, the p2 agent,
i.e. small independently packaged utilities with a user interface.

Many companies build their internal applications using Eclipse RCP.

Buckminster provides support for building complete RcP-products with a minimum of effort.

Equinox p2 is the relatively new provisioning platform (introduced in Eclipse 3.4 Ganymede), de-
signed to be a platform for many different kinds of provisioning solutions, and specifically designed
to be a replacement for the Eclipse Update Manager. In Eclipse 3.5 Galileo p2 is both functionally
rich and well tested with over ayear of use, and with close to 2000 unit tests having been constructed.
In 3.4 it existed in parallel with the Update Manager, and in 3.5, p2 has replaced it completely.

As p2 is heavily used by Buckminster, and p2 also defines the format of the typical end result (an
installable system, or plugins to such a system) we have included a somewhat longer description in
Chapter 2, p2 as we believe this technology to be new to most users.

The Eclipse component types

The Eclipse system contains several types of “components’; 0sGi bundles, plugins, features, frag-
ments, and products. In this section we present an overview of what they are, and the role they play
in the composition of a software system built on Eclipse.

Plugins, features and o0sGi bundles

The terms “plugin”, “feature”, and “bundle” (short for osGi bundle) refers to Java components that
contains meta data information that makes it possible to manage their life cycle. The terms “plugin”
and “feature” are specific to the Eclipse platform, and “bundle” is the generic software component
handled by an osGi runtime. Since Eclipse is built on the Equinox 0sGi runtime, it can make use of
all three types; bundles, plugins, and features.

Draft Eclipse Draft

Bundle

A bundle is the fundamental type. In addition to being the container for the code it has meta data
describing its dependencies on other bundles, and requirements on packages expected to be present
when using the bundle.

Plugin

A plugin, is also an 0sGi bundle. What makes it special is that it also can contain information that
makes use of the Eclipse extension mechanism — a declarative way to define that a bundle contains
code that extends functionality in some other bundle.

Feature

A feature, is a grouping of plugins and other features. It defines a unit of what should be installed
together. The feature is a configuration — a bundle may specify that it requires that a certain java
package must be present, but the bundl e says nothing about where this package should comefrom. This
can be specified in the feature. This separation allows a bundle to be used in different configurations
without requiring that the bundle itself needs to be changed.

Fragments

A fragment is a special kind of bundle with what could be called a “reverse dependency” on a host
bundle. Fragments are typically used to implement optional code that isincluded in a configuration,
often filtered on parameters like installed language, operating system, hardware architecture and user
interface technology. As an example, afragment could contain code that is only needed during testing
or debugging, contain features available only on a particular platform, or for a particular language.

A fragment can aso have norma dependencies — these come in effect if the fragment is selected
for inclusion.

Fragments are included in a configuration by requiring them in a feature.

Products

A product is a special grouping mechanism used to define a “top level” product (such as the Eclipse
IDE itself). Unfortunately, the tools that help maintain the group aspect of the product definition are
somewhat lacking (in comparison to the same functionality for features), and we recommend that
the product definition is used only to define the product aspect, and that all grouping is defined in a
singlefeature that is referenced by the product. An examples of how to do thisisfound in Chapter 16,
Building RCP Products.

When a product definition also acts as a grouping mechanism, it is referred to as a “bundle based
product”, and when it refers to feature(s) (we recommend using only one) it is said to be “feature
based”.

In addition to referring to the feature(s) or bundles being the configuration for the content of the
product, the product also has areference to a“branding bundle” that contains items such as the splash
screen and icon for the product.

The Workspace

The Eclipse Workspace contains projects. These projects can be specialized (i.e. plugin project, feature
project etc.). When you are looking at content in the Eclipse Navigator, or Package Explorer you are
looking at content in projects.

Y ou can get content into the workspace by:

Draft Eclipse Draft

* creating new projects and importing files manually

* importing a complete projects from somewhere on disk

 importing one or several projects from a source code repository

« linking to content in the correct format somewhere outside of the workspace

* importing from a*“team project set” file, which containsalist of projectsto check out from a source
code repository.

 importing from source bundles (thisis primarily used for debugging and patching).

Asyou can see, thereis only one option that is suitable for automation — using the team project set.
Many set up their projects to include such afilein a“meta project” and users begin by checking out
this project and then importing using the team project set.

The pitfalsis that the team project set must be maintained manually. As dependencies are added or
removed, the set of files required in the workspace may differ, and there is no way to control loading
some projects from a branch or atag.

Solving this particular problem was actually one of the very first requirements for Buckminster — as
you will seelater, Buckminster provides convenient population of the workspace for the typical case,
and it is quite easy to load particular parts from branches and tags.

The Target Platform

The target platformis a definition of the set of features/plugins to use when running the code being
built. Y ou can say that the codeis built for aparticular target platform. By default, the target platform
is defined to be the same as the Eclipse IDE — this means that when you are running your code in the
self hosted environment you will not encounter missing bundles. When however you export and run
the code separately, you will almost certain be hit by surprises.

Prior to Eclipse 3.5 there was no good way of managing atarget platforminthe IDE. A target platform
was simply an Eclipse configuration in a directory.

In 3.5 the functionality to handle management of the target platform has been added. Multiple Target
Definitions can be created. A definition can be saved to file (for later loading). It is also possible to
make one definition the active target platform. The new Target Definition defines a set of locations.
Each location can be one of:

Directory A directory in the local file system.

Installation Aninstallation (such asan Eclipse sDk) inthelocal file system.
Features One or more features from an installation.

Software Ste Downloads plug-ins from a p2 repository.

The preferred way of handling target platformsin 3.5 is to create one (or several) with the IDE and
then save the definition to afile. Buckminster can use such definitions, and you can also materialize
atarget platform using Buckminster.

Launch configuration

A launch configuration is a definition of how to launch/run/debug something from within Eclipse.
There are multiple classes of launchers for Eclipse covering running plugins, 0sGi frameworks, tests,
etc. Launch configurations can also launch servers or just run external commands.

Draft Eclipse Draft

Don't confuse launch configuration with target platform. The (eclipse type) launcher launches the
active target platform definition with the configuration specified in the launch configuration. This
makes it possible to switch target platforms, build for that target, and then launch what was built for
testing.

Many devel opersusethe EclipselIDE itself asthetarget platform, and then definethe set of features/plu-
gins to run in the launch configuration. In Eclipse 3.5, where target platform management has been
improved, it is better to define an exact target platform and then have a smpler launch configuration
that just use what is in the workspace and everything enabled in the target platform. This separation
of concernsisvaluable asthe target platform definitions are reusabl e across many products/launchers,
and makesiit easier to migrate components to newer targets.

ANT

Apache ANT is a Java based build tool that is both well known and widely spread. ANT is integrated
with Eclipse, and Buckminster.

The Buckminster integration consists of
» Buckminster actions can be implemented as ANT scripts.

* Itispossible to invoke Buckminster actions from ANT-scripts.

Draft Draft

P2

An introduction to the Eclipse provisioning platform

Equinox p2istherelatively new provisioning platformintroduced in (Eclipse 3.4 Ganymede) designed
to be a platform for many different kinds of provisioning solutions, and specifically designed to be a
replacement for the Eclipse Update Manager. In Eclipse 3.5 Galileo p2 is both functionaly rich and
well tested and it has now replaced Update Manager completely.

Equinox p2 is still new technology, and does not yet have an official API, and much work remains
in utilizing its full potential. Replacing the use of the Update Manager in Buckminster with p2 was
a big task since Buckminster and p2 in part are overlapping in functionality. Buckminster also steps
outside of the osGi domain which is the primary focus in p2 and PDE. The transition has been very
successful thanks to the cooperation of the p2 and PDE teams — all three projects have gained from
this, Buckminster can now use the much richer p2 to perform provisioning, and have access to PDE
functionality via APIs — gone are the mysterious paths taken to overcome deficiencies in the old
Update Manager. Equinox p2 has gained increased generality by the addition of the Omni Version
capability which makes it possible to use p2 to resolve dependencies for non 0sGi components. The
Omni Version is covered in Appendix C, Omni Version Details

This chapter is only a brief introduction to p2 meant to establish the key concepts.

The Installable Unit

The central concept in p2 is the Installable Unit (1U). It is an entity named in a name-space having a
version e.g. theor g. ecl i pse. equi nox. bundl e named or g. myor g. hel | owor | d having version
1.0.3.

Draft p2 Draft

Figure2.1. Anatomy of an 1U

Properties
) ! @)
Provided |

Capabilities Required
Capabilities

7 (id, \q

. \‘j * .*.* .
Artifacts L j ™ Actions

Dependencies are handled by declaring required capabilities which are matched with provided capa-
bilities also declared in a1u. Specificaly, al 1us have a declaration that they provide themselves as a
capability. This makes it possible for one Iu to require another. The dependency mechanism is very
flexible as it allows addition of new capability types. Capability types for Eclipse related types (i.e.
plugins, bundles, features, java packages, etc.) have already been defined and are used by p2.

An iU’ sartifacts— i.e. the content the U is describing, is referenced via name and type, and when the
artifacts are needed, they are looked up in ap2 artifact repository.

The 1u also contains touchpoint instruction; actions that are invoked in specified phases of a provi-
sioning job e.g. when installing of uninstalling. The instructions can be things like copying files, un-
Ziping an archive, changing startup parameters etc.

If an 1u requires special installation instructions these must naturally be installed before an attempt
ismadeto install the 1U itself. A mechanism called meta requirements allows an 1U to declare these,
and can then trust p2 to handle resolution and installation of these when an installation of the 1u itself
is requested.

Metadata repository

The meta data describing components — i.e. the 1Us, are stored in a p2 meta data repository. Techni-
cally, ametadata repository is an interface and there are severa implementations delivered with p2.

» A simple meta data repository stored in afile system directory
» A composite meta data repository that references other meta data repositories
» An Update Site based repository (i.e. the structure used by the older Eclipse Update Manager)

 Specialized repositories that enable the current installation (among other things) to be used as the
meta data repository.

Artifact repository

An artifact repository contains the contents of 1Us such afiles, zip archives, jar files, etc. Technicaly
an artifact repository is an interface and there are several implementations delivered with p2. The
available repository implementations are similar to the meta data repositories (i.e. simple, composite,
update manager based, and special).

Draft p2 Draft

There are many advanced options such as controlling how artifacts are physically stored and sent over
the wire; verbatim, packed, or as a delta.

Combined / co-located repositories

Although p2 is capable of handling that meta data and artifact repositories are stored in completely
different locations (anywhere addressable by a URI), the most common set up (and the only one sup-
ported from the Eclipse SDK’ s user interface) is a combined (or co-located) repository where a meta
data repository and an artifact repository is addressed viaasingle URI.

Profile

The p2 profileis acentral concept — an installation of a product is described by a profile. It contains
the meta data for everything that is currently installed. Thus, installation always takes place into a
p2 profile.

A profile maintains a history, and it is possible to roll back to a previous configuration. As you may
guess, a profile can also function as arepository, making it possible to “copy” parts of an installation
from one profile to another.

p2 internals

Internally, the provisioning work is divided up between p2's mgjor parts. The director handles provi-
sioning requests such as installing or uninstalling one or several 1us. The director performs the work
by using the meta data available in a profile, combined with the meta data in associated meta data
repositories (those that have been used to install components from, or repository referencesjust about
to be added to the profile). This information is then fed to the planner which is responsible for re-
solving al requirements (dependencies). The resulting plan is fed to p2's engine which executes the
work in phases (in simple terms — it collects items, downloads/mirrors artifacts, instals, and then

configures them).

Figure2.2. p2in action

W = 1

1

Data transfer

Metadata fetched
Director and constraints Transports
analyzed Hittp/Https
File system
Volume
Mirroring
Provisioning
operation Repositories
requested p2
Update Site

U install, uninstall,
update operations

Engine Artifact availability
and mirroring
Eclipse/OSGi
Native/OS

IUs configured

5 : Profile updated
into runtimes

% ‘ ,
Runtimes % / Profiles

Draft

p2 Draft

The planner uses saT4J to handle the complicated NP-complete problem of resolving requirements. It
isinteresting to note that thereisaguaranteethat if thereisasolution, it will befound, and it will bean
optimal solution (i.e. optimal in the sense of adefined set of weights such as*“later version is better”).
The use of saT4Jisamajor leap forward compared to the old Update Manager (may it rest in peace).

Categories

From an end user perspective, an important part of p2 is the handling of categories. They are used to
group related features and arrange them in a structure that makes sense for ahuman installing software.
Thefeatures (although onelevel up abovethe (to auser) amost incomprehensiblevery technical plugin
names) are still often quite technical in naming, and it can be very difficult for auser to understand the
purpose of a particular feature. Y ou have probably already seen the use of categories, as they enable
you to browse the content under labels like “java development”, and “modeling” as opposed to just
seeing along alphabetical list with project names.

Prior to Eclipse 3.5, categories were authored in the Update Manager's si t e. xm file stored in an
updatesite. Such category informationisread by p2 when it readsan older update site. When producing
new p2 repositories however, the category information needsto be authored differently. In Eclipse 3.5
there are three ways; use the new Category Editor which creates a file that PDE makes use of when
exporting to a p2 repository, use the (provisional) p2 publishing advice which is stored inap2. i nf
file in the component being published, or use Buckminster which supports definition of categoriesin
build properties.

Publishing

The act of making components available for consumption by p2 is referred to as “publishing”. It is
an area that overlaps with three key technologies; p2, PDE, and the Eclipse platform, and if you look
under the covers, you will see that they work in close cooperation.

PDE understands the source components, the meta datathat makesthe java projects be plugins, features
or products. These are translated into the p2 form (1us), containing information and instructions that
makes it possible to install them and control the startup of the equinox environment.

Publishing components as p2 repositories does not require any additional authoring of p2 specific
artifacts. More specifically, you do not need to author the 1us — this is done by the PDE specific
publisher.

Prior to Eclipse 3.5, publishing was done by first producing an update site, and then generating the p2
combined repository from the output. Thisis basically what p2 does when it encounters an old style
Update Manager site— “publishing” if you like, the update site on the fly. Although thisinterpretation
of update sitesis still supported, the recommended way of publishing is viathe p2 publisher asit has
moreinformation available. (Asyouwill seelater, Buckminster providesavery convenient mechanism
to execute p2 publishing).

Installing

Installing from p2 repositories (or update sites adapted by p2) can be done by auser of the Eclipse SDk
directly inthe sDk’s*"install new software” dialog. With update manager, thiswasthe only (managed)
choice— most experienced users simply dropped the required filesinto the Eclipse install ation fol der
structure (and this worked most of the time). Now, with p2, an install is fully managed to ensure
that all requirements are met and that needed actions such as setting startup levels, and modifying
initialization parameters take place during installation. This ensuresthat things actually have a chance
of working, be updated, and eventually uninstalled.

With p2, the options are many, especially since p2 does not require that the system being installed
into is active when performing the install — it can be done by an external p2 “agent” (thereisautility

10

Draft p2 Draft

application called the “p2 agent” which is one example of such an agent. The“p2 installer” is another
such example, and the sDK itself also has such an agent).

,éb Note

Thevariousagentsall sharethe samep2 code— thedifferenceisthat they aredesigned to
be used in different situations, and thus they expose only information required to support
the particular task they were design to handle.

Since users have become accustomed to “dropping in” things that should be installed, this is also
supported in p2, but the plugins and features are now dropped in a special folder that is monitored
by p2. When it encounters new material in this folder, p2 will perform the same type of managed
installation as when installing from repositories. There are several caveats when using drop-ins to
install, and it is not the recommended approach as the higher quality metadata provided by publishing
isunavailable.

The SDK agent

The p2 sbk agent manages installations into the SDk when used from the user interface. But the func-
tionality of this agent can also be accessed from the command line to perform installation as an exter-
nal agent. Thisisreferred to as “running the embedded director app”.

Users of Eclipsewill typically not use this embedded agent, and instead perform installation work via
the user interface. The user interface and backing functionality can also be used in RcP applications,
and there are many configuration option available to cater to different installation and update policies
(on demand, automatically on startup, completely hidden from the user, update only (no new install,
no uninstall), lock down of used repositories, etc.

The sbk agent allows the user to add and remove repositories (under Eclipse — Preferences), or
directly in the “install new software” dialog. The user can see what is installed, select new featuresto
install from selected repositories, perform the installation, and much more.

Since the sDK agent is designed to install into the running sbk itself, many of the advanced features,
such asinstalling into an arbitrary profile, control advanced repository layout through the use of bundlie
pooling and shared installs are not present in the user interface. One of the other agents should be
used for this purpose.

The director application

The director application is part of every Eclipse sSDk and can be invoked from the command line. The
director app is also packaged as a separate headless product with a reduced footprint. The headless
director application is maintained by the Buckminster project. (See Appendix A, Installation, for how
to obtain it).

The director application makes it possible to control the more advanced features in p2, while still
having convenient command line options available for the most common operations.

We will shown examples where the headless separate director application is used and how to get it is
explained in the section called “Installing the Headless Product”.

The p2 Installer

The p2 installer should be seen as an exemplary implementation of an installer, its user interface is
quite unsophisticated, and it lacks many production grade qualities such as detailed progress informa-
tion, and error reporting. That said, it isstill avery useful utility when a user interface based installer
is wanted.

11

Draft

p2 Draft

The p2 installer in its default configuration is designed to install the Eclipse sDK. It is pre-configured
with all the parameters, and when invoked after downloading, all that is required by the user isto tell
the installer where it should install the SDK.

It is however possible to feed the p2 installer a different set of parameters by providing a properties
file with the information regarding what to install from where, and then modifying the startup of the
installer to override the built in default. This requires far less effort than creating a custom installer
and may be sufficient for many smaller applications.

Thep2installer isused in one of the examplesto install a RCP application — see Chapter 16, Building
RCP Products.

The EPP wizard

Finally, the Eclipse Packaging Project (EPP) has written an application called the EPP-wizard, a RCP
application with a RAP user interface which is driven by meta data to allow a user to select between
high level EPP packages such as “Eclipse classic”, or "Web development”, and then add support for
optional technologies (such as Buckminster).

At the end of the process, the EPP-wizard provides the user with a configured p2 installer, that when
downloaded and invoked will install exactly what the user picked from the available options.

The Buckminster installer

The Buckminster project also provides an experimental installer. It is designed to be started via Java
Web Start or via a Java applet and it gets itsinitial parameters indirectly via a URL. Originally this
installer used Buckminster’s provisioning capabilities and before p2 this was one of very few options
available when an external, web startable installer was wanted.

The Buckminster installer also includes a JsoN client, and is capable of engaging in adialog with an
smart repository and thereby present more information about what is being installed, manage a sign-
in dialog, branding, and much more.

The Buckminster installer is however not yet considered released — its APl may need further changes
to be suited for general use, and testing is limited. Using this installer requires setting up the server
side correctly and this part is not included in the installer, and no documentation is provided.

Shipping

By shipping we mean making the published material available to the intended consumers. Y ou may
think of thisas “publishing” (i.e. making something publicly available), but thisterm is aready used
to mean making the internal meta data found inside projects public to the outside world in the form
of p2 repositories.

Infact, thereisno support in Eclipse to handl e the steps required once such publishing hastaken place.
Theresulting folder structure with filesin them are simply written to disk, and there everything ends.

The most common way of shipping is making the published result available on a web site. And in
cases when what is shipped is supposed to be installed into the Eclipse sDk, or consists of plugins for
some other RCP application, thisis as simple asjust copying the result written to disk by the publisher
to the appropriate directory where aweb server picksit up.

If creating a complete application however there are more to consider. Users will typically not have
the application installed to begin with, so user must start by downloading something. As seen in the
section called “Installing” there are several installers available that can serve as a starting point —
from the headless director application, to the interactive Buckminster installer. The benefit of using
theseisthat thereis no need to ship the compl ete application pre-configured for different platforms —
asthisishandled by theinstaller. Unfortunately, asthe variousinstallerswere all created for aspecific

12

Draft

p2 Draft

purpose, and some being more “exemplary”, you may find that they may not suffice if you are going
to ship amore high profile application, and you may want to write your own installer.

Y our options for shipping includes:

 Pre-configured installations per platform. To do this, you typically run the headless director app —
telling it to install for one particular configuration (operating system, window system, architecture,
language, etc.) into alocation on disk. The result is then zipped-and-shipped.

* Aninstaller configured to install the application from a remote repository. This has advantages as
the initial download is small, and the bulk of the installation is performed by p2 which supports
parallel downloading, selection of mirrors, and compressed artifacts. It is also very simple to add
download of newer versions as everything is stored in a central repository.

» Zipping up a p2 repository with everything and a configured installer. The benefit is that the user
will download everything that is needed to local disk, and can perform the install while not being
connected to the Internet. The downside is that the repository contains components that are never
used on the platform where it isinstalled.

Thisform is suitable if you are shipping on a cb/DVD.

* Delivering application via a Linux package manager such as RPM creating a read only and shared
installation that is then extended via an embedded p2 agent.

» Hybrid form, where the basic application is downloaded using one of the above mechanisms, but
where bulky extras are installed viaa p2 agent embedded in your application (like the Eclipse SDK
p2 agent), or via an external installer.

In addition to deciding on how to ship — you must also decide on how you want to compose the
required repositories. Y our options include;

 Creating a composite repository with a reference to the main Eclipse repository for everything that
isused from the Eclipse platform. This has the advantage that “your site” is always up to date with
the latest repository content, and you do not have to store copies of everything in your repository.

» Creating an aggregated meta data repository that contains the meta data from the Eclipse main
repository as well as your site(s), but uses the existing artifact repositories via a composite artifact
repository. This has the advantage over the simplest form in that al of the meta data is obtained
in a single download, and since you are reconstructing the meta data, you also have more control
over the categorization of features.

* Mirror everything you need to your repository and then deliver everything from your servers. The
benefit is that you have full control, but you do not make use of the Eclipse mirrors, and you must
periodically update your mirrors.

Buckminster has support for aggregating sites — this functionality has been used in the Eclipse 3.5
Galileo release to compose the final Galileo repository. The Buckminster site aggregator is not de-
scribed in this book.

Summary

Equinox p2, is a provisioning platform and as such has arich and flexible feature set. Being rich and
flexiblealso meansthat itiscomplex. Itiscomplex initself asit issolving avery difficult problem, and
it is doing so with 0sGi technology that under the covers need to perform complex tasks so devel opers
can focus on the functionality instead of the mechanics of configuring adynamic system —all in order
to provide consumers of the resulting software with a high quality software provisioning experience
— simply click install, and run automatic updates.

In the following chapters we will show how Buckminster, p2 and PDE work together, and how you
can used Buckminster to handle some of the complexities.

13

Draft Draft

Buckminster Introduction

Thischapter isan overview of thefunctionality in Buckminster. Y ou probably want to read this chapter
before continuing with the second part of this book.

Functional Overview

The highest level description of what Buckminster doesissimply asfollows. Y ou want to build some-
thing, and have nothing of the material you want to build. You tell Buckminster to materialize the
component you are going to build, and then you tell Buckminster to build it. This produces output
within your workspace, or somewhere on disk.

Figure 3.1. Buckminster from 10.000 ft

Before

Action
“materialize” “

Action
“build” Y-

Materialization fetches components so they can be
worked on. Actions such as build can then be performed.

When you request the component to build (A, in the example above), Buckminster will not only fetch
this component, but also resolve al of its dependencies transitively.

14

Draft Buckminster Introduction Draft

Figure 3.2. Transitive M aterialization

When requesting component A, it in turn requires B, and C — they both re-
quire D, B requires F, and F in turn requires G, similarly C, requires E and H.

Getting Components

The first two questions are usually, Where does Buckminster get the components? and Where does
Buckminster store them?

Figure 3.3. Resource Map and Repositories
up work targed
CVS SV aeee P2 Mawn L oo [

RMAP

N Edeoeddod

Components are looked up in aresource map (RMAP) which
holds the rules for accessing different types of repositories.

When Buckminster needs acomponent, alookup is performed in aBuckminster resource map (RMAP).
TheRMAP containsrules how to trandate arequest for acomponent of some particular typeand version
to arepository location of a particular repository type, and how to address the component within this
repository.

Buckminster supports a wide variety of repositories, and it is possible to extend Buckminster with
new types.

» CVS—itispossihleto reference components found in HEAD, in branches and via timestamps.

» SVN — it ispossible to reference components found on trunk, branches, and named tags.

15

Draft

Buckminster Introduction Draft

Update Site — components published on a Eclipse Update Site in the format specified by the
Update Manager (in use up to Eclipse 3.5). In Buckminster for Eclipse 3.5, update sites are read
viap2.

p2 — components available in a p2 repository can be fetched.

Maven — components stored in amaven repository can be fetched.

URL — asingle component can be fetched from a given location.

W or kspace— the components currently in the workspace (probably in source form) are also avail-
able to Buckminster’s resolution process — naturally there is no need to actually fetch them, but
their presence may override resolving to the same component in binary form in some other repos-

itory.

Target Platform — the components in atarget platform are available to Buckminster’s resolution
process — these are also not fetched, but affect the resolution process.

The resource map does not have to be a single map. It is possible to reference other maps.

Figure 3.4. Federation of Resour ce Maps

RMAP
RMAP PB-MAP

RMAP

NWEdodd o

A federation of resource maps, including a platform base builder map.

It can be useful to organize the overal resource map in a distributed fashion. You may want that
different projects maintain amap of their components — which is especially important if projects are
following different naming standards, and when they are performing refactoring of repositories. An
important feature for projects at Eclipseis that the platform base builder maps are directly supported.
Thisisimportant because many Eclipse projectsinclude components from the Eclipse Orbit repository
and a platform base builder map is provided for this repository, and it can be directly used. Some
projects, that are currently building with the platform base builder naturally also benefitsasitiseasier
to transition to Buckminster by directly being able to use existing mapsl.

1Although not required, if you are using the platform base builder maps it is recommended that you switch to a Buckminster resource map as
itiseasier to maintain if you are following typical project naming standards.

Draft Buckminster Introduction Draft

Figure 3.5. Resource Map routes

Resolution can take different routes depending on rules and parameters.

When Buckminster resolves acomponent it can take parameters and rulesinto account when selecting
the route through the map (single map, or federation). Y ou can for instance organize the maps so that
userslooks up componentsfrom alocal repository rather than always going to acentral repository, and

you can organize the map so this can be done when the component name matches aregular expression
(and much more).

Figure 3.6. Materialization Types

v v v v v ¥ \’ v
HEdAedde o
workspace “eclipse” target pl. file system

Buckminster can materialize (store) fetched componentsin different types of locations.

When Buckminster materializes components, they can be stored in different types of locations. Buck-

minster supports Eclipse related locations, and the file system, but can be extended with other types
of locations.

* Workspace — typically projects are materialized to the workspace, but it is also possible to bind
binary components (this was common practice prior to Eclipse 3.5 because of difficultieswith man-
aging the target platform)

» Eclipse — i.e. installing tools into an Eclipse based product such as the Eclipse sDK or an RCP
application. Prior to Eclipse 3.5, this was done by using the Update Manager. Since 3.5 this is
performed using p2.

17

Draft Buckminster Introduction Draft

» Target Platform — i.e. installing into a definition against which components are built. Prior to
Eclipse 3.5 the target platform had to be created separately, and then referenced in later operations.
In 3.5, atarget platform can be dynamically created and installed into.

» File System — i.e. storing the component on disk.

Now you have seen how Buckminster gets components, and where they are stored when materialized.
But how do you tell Buckminster what you want?

Figure 3.7. Telling Buckminster what to get

- < Component QUERY

Getting things is done by submitting a Component Query.

Figure 3.8. Ordering at “ Bucky Burger”

-
7

Telling Buckminster what you want can be as easy as ordering a meal at Bucky Burger...

e
&

Most of the time, the only thing needed is to state the name of the component you want. Buckmin-
ster will then find the latest version of the component. But sometimes you may have very detailed
requirements on your meal.

18

Draft

Buckminster Introduction Draft

Figure 3.9. Ordering at the Bucky Déli

mutable or
not?

source or
binary?

for here or
for to go?

override that broken
provolone 2.0?

we are out of
binaries - do you
want the source
instead?

Give me A,
hold the mayo! HAGE, or
English?

Getting picky at the Bucky Deli. (Are you sure that pepper is south Brazilian?)

Asyou will seelater, Buckminster has avery powerful query mechanism where you can specify many
options:

Do you require source, or prefer source, but can work with binary, or only require binary form.

Do you require source that can be modified and checked in (given that you have authority to do
so naturally).

Do you want to load some components from a branch or tag and override the default.

Do you want to override certain component-version combinations even if requirementsin the com-
ponents say otherwise.

Y ou may want to specify that a search should use a particular path in the resource map for certain
components — perhaps loading them from a central repository instead of alocal mirror.

You may want some components from a release repository, but some should be picked from a
nightly build repository.

Buckminster component queries are entered and edited in a CQUERY-editor — which is explained in
detail in the section caled “The cQUERY Editor”.

19

Draft Buckminster Introduction Draft

Figure 3.10. Getting components — summary

fepos

mE e
G &

Summary of getting a component — a query is resolved and compo-
nents fetched from repositories, and materialized into different locations.

Component

We have aready introduced the term Component without any further explanation. Now isthe timeto
look abit closer at what is meant by a component in Buckminster.

Figure 3.11. Component

s includes

d requires
rce binary

meta data
source
mentation

Component is an abstraction — a named and versioned piece of content.

A component is an abstraction of a unit in a software system having a name, atype and aversion. A
component typically has content 2_ and it can exist in multiple forms — such as source or binary.
When Buckminster obtains the definition of a component, and subsequently its content, a Component
Reader matching the component instance’ s physical shape is used to interpret the component’s meta
dataand trandlate it into a Buckminster Component Specification (CSPEC). Thistranslation takes place
each time the component is requested — there is no need to save the result. This has some important
benefits:

» Noround trip engineering is required. The meta data at the source is used directly.
» Does not require restating already expressed facts such as dependencies.

A Component is not tied to any particular implementation technology — Buckminster works just as
finewith Java, C, PHP, aswith just acollection of files. Evenif it ispossibleto turn just about anything
into a leaf component, in order to be really useful however, there must be some meta data available
that describes the component and its dependencies.

A component without content functions as a configuration or grouping mechanism.

20

Draft Buckminster Introduction Draft

Buckminster have component readersfor several metadataformats, and it ispossibleto add extensions
for additional types. And in case you wonder, it is possible to combine different types of repositories
with different types of component readers (although some combinations are nonsensical as certain
type of meta datamay only exist in certain types of repositories). Hereisalist of available component
readers:

 Eclipsetypes: plugin, feature, product, fragments

* OSGi types: bundle

» Maven: maven pOM (version 1 and 2)

* Buckminster: Buckminster’s cspec and Component Specification Extension (CsPex). Both which
are further explained below.

Component attributes

Components have attributes which are similar to concepts like member variables of a class, or the
properties of a bean. The attributes represents either static data, or are dynamically computed by an
action.

Figure 3.12. Component Attributes

A

lib
headers

Component A’s compile action requires the lib and headers attributes from component B.

The type of an attribute is always an path group which represents a (possibly empty) collection of
files. So, when thelib attribute in Figure 3.12, “ Component Attributes” is read in the compile action
it will get acollection of thelib filesin component B.

It is also possible to declare an attribute to be an aggregation of other attributes (and actions, as you
will see in the next section).

Component actions

Components have actionswhich are similar in concept to methods of aclass. The return typeisaways
a collection of files. From the requester’s view there is no difference between a static attribute and
an action, its value is simply requested — there is no need to know if the returned list of filesis a
static list, or a computed value.

Using the examplein Figure 3.12, “ Component Attributes” — the attribute lib could simply by turned
into an action that computes the list of files to return instead of being a static declaration.

Using the group mechanism makes it possible to do advanced constructs that includes the result of
both static attributes and results from invoking actions.

21

Draft Buckminster Introduction Draft

Figure 3.13. Component Actions

A

lib
headers
<<private>>

makeLib

Private action invoked to produce the value of the lib attribute.

Attributes can be marked to be private, which means that they can only be used from other attributes
in the same component. Public attributes can be read, and public actions can be invoked (i.e. read) by
other components. In Figure 3.13, “Component Actions’ the conpi | e action in A get the value of
l'i binA. Theattributel i b isdeclared to be agroup containing the value of the action nakeLi b. Asa
result, the compile action getsthe list of files produced by makelLi b without knowing it was invoked.
Thel i b attribute could also include the result of other actions, or static attributes.

The ability to encapsulate private actions is very important. Most build technologies do not provide
this distinction and this creates maintenance headaches as it is aimost impossible to know where and
how build actions may be used. The end result is usually that no-one dares to make any changesto the
build system because they don’t know what they will break.

Actors

Y ou may already have wondered how the body of an action isimplemented — What language arethey
written in? The answer is that an actions body is made up of an Actor, and Buckminster has several
types of actors available. Additional actor types can be added as extensions.

Buckminster has several types of actors:

» Java— compile, jar, etc.

» PDE — build bundles, features, fragments and products, pack, sign
e p2 — build arepository

» Genera — fetch files and execute system commands

e ANT — invoke ANT tasks. This is very useful for integrating with existing build systems written
using ANT.

Turning something into a component

As you have seen earlier, there is nothing you have to do if the software unit you are interested in
already has meta datafor which thereisacomponent reader available (asit isfor all the Eclipserelated
types; bundle/plugin, feature, and product).

When thisis not the case what you need to do depends on if thereis meta data available at all, and if
the metadataisrich enough to be useful — if that isthe case, you are probably best of by adding anew
component reader by extending Buckminster. For more information about how to extend Buckminster
see Appendix B, Extending Buckminster. If however, the metadatais missing, or is poor, or you just
don’t want to create an extension, it is possible to use Buckminster’'s native csPeC XML format. The
Buckminster Reader expects to find a csPec file inside the component in a particular location. The
fileis created with the Buckminster cspec editor. Thisisexplained in detail in the section called “ The
csPeC editor”. There is also a hybrid solution possible, for some reason it may not be possible to

22

Draft

Buckminster Introduction Draft

insert the meta data into the actual component, then you can construct an extension that still uses the
csPec format, but where it is stored in an external location. This is much easier to implement than a
full reader, asit only requires handling the association between the two — the meta data format and
parsing can be reused.

/ém Note

Itisonly infairy talesafrog turnsinto prince by amerekiss.

Decorating a component with additional advice

Buckminster has an extension mechanism for component specifications that allows you to decorate a
component with additional advice. Thisis useful in several situations:

* adding additional actions to the component
* overiding faulty meta data

* adding dependencies to underspecified components

hooking actions that should be executed as a component is materialized

* wrapping existing action to some additional work before or after the original action

Figure 3.14. Component Specification Extension — CSPEX

—
bundle A

All component types can be extended with a CSPEX.

An extension is made by storing a csPex fileinside the component — all available component readers
are capable of handling this extension. The CSPEX is using the same format as the CSPEC.

Summary

Buckminster gets units of a software system called components from repositories by looking them
up in aresource map, reading and translating them into a common form, and then materializing them
into different locations such as the workspace or target platform. When the components have been
materialized Buckminster runs actions defined in the components such as building a product or a
repository of plugins.

23

Draft Buckminster Introduction Draft

Figure 3.15. Buckminster Summary

fepos

<>

S s i

Buckminster builds a product.

Build me A
product

Figure 3.16. Buckminster Headless

e

<>

S s i

Look Ma— No head!

Build me A
product

The Figure 3.16, “Buckminster Headless" illustrates the most important feature of them al — the
ability to build exactly the same thing in a headl ess configuration without having to do any additional
authoring!

Readingon. You have now seen an overview of Buckminster and how it relates to other Eclipse
technologies. Y ou should now have ahigh level understanding of the capabilities. Therest of thisbook
is not intended to be read from start to finish (although you may still want to), but instead provide
detailed drill down in the various parts, as well as examples, and reference material.

24

Draft Draft

Part Il. Buckminster

Inthispart, wetake adeeper look into Buckminster. The chaptersare not intended to be read in sequence, although
wetry to follow alogical sequence — starting with the resource map, as that is probably the first thing you want
to set up. Alternatively, you may want to start by installing Buckminster as described in Appendix A, Installation,
and then running through some of the examplesin Part |11, “Examples’.

Draft Draft

Resource Map

In this chapter we take a closer look at the resource map and how its features can be used to map
component names to resources in different types of repositories.

The resource map is one of the first things you are required to set up. Without a resource map, Buck-
minster can only find resources already in your Eclipse IDE.

You can find several examples of resource mapsin Part |11, “Examples’, and some of these may be
immediately useful to you as they map many of the components found at Eclipse.

The work required to create the resource map for your project or or organization depends to a large
degree on how well naming standards have been enforced, and in what type of repository components
arefound. If your components are in p2 repositories, update sites, or in cvs, svN or Perforce, and you
have followed recommended repository layout, and named your projects after the component names,
then the work is quite straight forward.

Ontheother hand, if you are pulling in components by downloading them from downl oad pages found
somewhere on the Internet, and you need to scrape the HTML content returned in order to find the
correct URL for aparticular version, platform, language, etc. then you naturally have more work setting
up the map. Luckily — you also have the most to gain in automating such a manual task.

The search for the component

In the resolution process Buckminster finds that an already found component requires some oth-
er component. As an example say that the component or g. myor g. hel | o requires the component
org. nyor g. wor | d. Buckminster must now find that component to get its requirements (and so forth),
and starts the process by looking up or g. myor g. wor | d in the resource map. In addition to the com-
ponent name, the component also has a type, and possibly a version range that further constrain the
search.

The objective is to find a reader type (how to read the content of the repository), and a component
type (how to interpret content), and then alocation to visit to get the actual content.

Buckminster tries to find these by searching through a list of specified locators. The locators are
searched in the order they are defined. Thelocator has a pattern that is used to match against the name
of the component. If the name is matched by the pattern in the locator, the search continuesin anamed
search path. The search path specifies alist of component providers.

A provider specifiesthat it is capable of looking up components using a particular reader type, and
component type from a particular name to location transformation (specified by a url with additional
rules).

26

Draft Resource Map Draft

Let'stake alook at what that can look likein aRMAP!,

Example4.1. locator and sear ch path

<sear chPat h name="dash">@
<provi der reader Type="cvs"®
conponent Types="o0sgi . bundl e, ecl i pse. f eat ur e, buckni nster"©
mut abl e="true" @
source="true">0
<uri formt=":pserver: anonymous@lev. ecl i pse. org: / cvsr oot/ t echnol ogy, org. ecl i pse. dash/ { 0} " >0

<property key="buckm nster.conponent" />@
<luri>
</ provi der>
</ sear chPat h>

(8]

<l ocat or searchPat hRef ="dash" pattern=""org\.eclipse\.eclipsemonkey([\.\-].+)?"/>
<l ocat or searchPat hRef ="dash" pattern=""org\.eclipse\.dash(\..+)?" />

<l ocat or searchPat hRef ="dash" pattern="~org\.nozilla\.rhino" />

O A search path is declared and named “dash”.

® Then,look at thelocators— the search path “dash” isreused by all thelocators. Different patterns

are needed to match the different component names found in the dash repository. In case you

are wondering about the patters; or g. ecl i pse. dash. sonepart. hel | o could be the name

of acomponent.

A provider isdeclared witha‘cvs’ reader type

Thereader types are declared — we are interested in 0sGi bundles (plugins, and plain bundles),

eclipse features, and components that use Buckminster meta data.

O Theattribute mutableis set tot r ue because we want searches for mutable source (i.e. projects
checked out from cv's that can be worked on and checked in again) to also use this search path.
Note that in this example we are using an anonymous user so in order to be ableto actually check
things in again, someone with write access would have to use the IDE’ s team cvs functionality
to relocate the projects with their user id once they have been materialized to the workspace.
Y ou will seelater how to create entries using authentication — see the section called “Providers
and authentication”.

© Theattribute sourceis set to t r ue because we do want the source (as opposed to some binary
incarnation of the component — we are perhaps even running an older version of the component).

O The uri specifies the location of the component name under the or g. ecl i pse. dash root in
the eclipse technology project’s cvs repository. Note the { 0} at the end, which specifies the use
of aparameter.

@ Theproperty buckni nster. conponent , (which always contains the name of the component
currently being looked up), is used as an argument to the uri in ©.

®0

Creating a RMAP

A resource map is defined in an XML file. The extension ‘. r map’ is used to make it decorated with
the appropriate icon when handling thisfilein eclipse.

Y ou can naturally start by copying an existing RMAP that contai ns something similar to what you want,
or you can start from scratch.

The Buckminster User Interface, has defined New File Wizards for the Buckminster artifacts. So you

canuse File -~ New — Other... — Buckminster — Resource Map file to createa‘new_r map. r nap’
in a project of your choice. The created file contains XML name space declarations, but is otherwise
empty.

Once the file has been created, it is opened for editing.

the XML name space declarations, and use have been omitted to increase readability.

27

Draft Resource Map Draft

Editing a RMAP

There is unfortunately no graphical editor available, so editing of the resource map is done using an
XML editor for Eclipse (or naturally some other XML editor of your choice).

Aswith every xmL artifact used in Buckminster, the RMAP is described by an XML schema (see Buck-
minster XML Schemas). If you make an XML editor aware of the location of the schema, it will be able
to help you with automatic code completion, validation, and valid attribute values (see the section
called “Configuring Eclipse for XML Editing”).

Designing a RMAP — some advice

When you are creating your first RMAP, you are probably going to just “hack away” until you have
something that works for your project. As you are doing so you are getting to learn how the RMAP
can be used.

Our experienceisthat organizations (and individual s) over time has created |ots of components where
strict adherence to naming standards has not been followed. We have come across things like:

» Some users thought the names were too long — “1 don‘t want my Eclipse project to be called
com myconpany. soner oot . nyproj . titanic. nodul e-a. nybundl e, | want to namethem af-
ter me, and then the name of the bundle!”

» Waéll, the product was called “titanic” earlier, but marketing did not like that name, so we changed
it to “titan”, we modified the name of the root in the source code repository, but did not bother with
all the other names — except in some parts of the repository.

» “Some of our projects have misspelled project names, and it is just hell to change all the scripts.
Oh, and some have misspelled components too :)”

So — faced with reality, what should you do? Should you try to create maps that map everything
in arepository, and deal with all the peculiarities in this repository across different projects? Should
you delegate the work to the respective project and compose a master resource map out of what the
projects provide? Should you undertake alarge “ naming standard hygiene” project to clean up al the
past sins and mistakes?

WEell, only you can tell what is appropriate for you. Fixing the odd mistake in naming in a smaller
project is probably doable at alow cost and risk and well worth doing in order to reduce complexity.
However, in an environment with many components handled by a geographically distributed engi-
neering organization and in many repositories, and with a multitude of handcrafted build scripts —
well, you could always try to get a budget...

A pragmatic balanceis probably the best advice— map what you need, focus on getting your project’s
build automated and leave the rest unchartered. Pick things to automate where you have the most to
gain and then continue with the next. Once things are automated, it is much easier to change the bad
naming if you want to perform some cleanup. In some cases (depending on the source code manage-
ment system used), it can be difficult to move things around so you may just have to live with having
to handle the complexities in the mapping. The good news is that once projects are automated, users
can rely on Buckminster’s resolution to do the work for them, rather than having to ask a colleague
where in the repository a particular component may be located. (“Y ou were looking for version 3... |
thought you said 4 — well, the project was called “titanic” back then, and it was before we cleaned
up the references, and oh, yes, it isin the old source code control system — let me seeif | remember
the URL and the branch name we used for maintenance on the released 3.5a...”).

Locators

The locators are the entry point into the map — the patterns you provide for matching on component
names controls where the lookup continues.

28

Draft Resource Map Draft

The absolutely simplest locator would direct everything to a single search path:

<l ocat or sear chPat hRef ="everyt hi ng. f ound. here" />

Omitting the pattern is perhaps not very useful on its own, but becomes useful when you want to
continue trying with more locators as shown in the section called “Fail on error”.

How to write patterns

The locator patterns are based on Java regular expressions. If you need a primer, or more informa-
tion about Java regular expressions look at this tutorial [http://java.sun.com/docs/books/tutorial/es-
sential/regex/].

Letslook at an example:

<l ocator ... pattern=""org\.eclipse\.eclipsenonkey([\.\-].+)?"/>
<l ocator ... searchPathRef="dash" pattern=""org\.eclipse\.dash(\..+)?" />

Both patterns start with a~ which means that the matching is anchored at the start of the input (and
theinput in this caseisacomponent name). The pattern then continues with explicit name parts where
period delimiters in the name are escaped with\ sincea. otherwise means“any character”.

At the end of the second pattern you see (\ . . +) ? which means zero or more occurrences of aliteral
period followed by a sequence of one or more characters. Thisis a good pattern to use when projects
(i.e. component containers) are named after the component names and period is the only separator
used.

At the end of thefirst pattern you seethe construct ([\ . \ -] . +) ? which accepts ahyphen or aperiod
as separator.

This rule was created because the component or g. ecl i pse. ecl i psenonkey- f eat ur e could not
be matched with the simpler rule (\ . . +) ? since that rule requires a period after ecl i psenonkey.

N Tip

~ -

Although your patterns only have to be precise enough that they discriminates between
the providers, you may later want to compose larger maps and it is a good idea to make
surethat your patterns exclude what is outside of your map’s domain. Start your patterns
with ~ and your unique prefix (e.g. or g. your or g...).

Fail on error

When alocator has directed to a search path, acomponent will either be found by one of the providers
on the path, or the lookup will fail with an error. By default, the search will stop on an error, but
it is possible to tell the RMAP that the search should continue with the next locator. Let’s ook at an
example, where we look things up in the Eclipse Gali leo? and Orbit® repositories.

2Galileo is the name for the Ecli pse 3.5 release, and the Eclipse Galileo repository contain the official coordinated release.
30rbit is the name of the Eclipse repository of externa (3d party) components that have been approved for use and redistribution from
eclipse.org. i.e. components with acceptable license and pedigree.

29

http://java.sun.com/docs/books/tutorial/essential/regex/
http://java.sun.com/docs/books/tutorial/essential/regex/
http://java.sun.com/docs/books/tutorial/essential/regex/

Draft

Resource Map Draft

Example 4.2. fail on error

<l ocat or sear chPat hRef =" nmyWay" pattern=""org\.myorg(\..+)?"/> @
<l ocat or searchPat hRef="org. eclipse.galileo" fail OnError="false" /> @
<l ocat or searchPathRef="orbit" /> ©

© Everything beginning with or g. nyor g isdirected to myWay . If not found, the search fails.

® Everything elseis directed to the path or g. ecl i pse. gal i | eo (a path that looks things up in
the Eclipse Galileo repository). Here f ai | OnError is set to f al se as we don’t want to set
up patterns for Galileo and/or the Orbit repository. (Astheecl i pse. i mport reader caches an
index of the repo, the omission of the pattern does not have a negative effect — it can quickly
determine if acomponent isin the repository. Y ou only need a pattern if you wanted to exclude
some components from being looked up by this locator).

® If wedid not find the component in the Galileo repository, the search continues with the orbit
search path (there is no pattern). Thisis our last stop before giving up so we want to fail on error
(the default setting).

Parameterized locator

So far, we looked at static declarations that picks a search path based on only the component name.
But what if you want to pick up certain components from one repository such as a nightly build, and
get therest from the rel ease repository? Clearly, you could insert anew locator with a pattern to match
the particular component and direct it to a search path for the nightly build, but this is discouraged as
it requires you to actually change the RMAP, and is specific to aparticular case. The next time around
you may need several components, and some other user will be needing another mix.

A parameterized locator issimply alocator that references a search path based on aproperty value. As
you will seelater, it ispossibleto set property values, and associate property valueswith individual (or
groups of) components at the time when you are requesting them (see the section called “ Properties’).
In simpleterms, thismeans, that instead of requesting “ Give me component A”, you will request “Give
me component A, but pick B from nightly repo”.

Example 4.3. locator with parameterized sear ch path

<l ocat or searchPat hRef =" nyWay" pattern=""org\.nyorg(\..+)?"/>

<l ocat or searchPat hRef ="org. ecl i pse. pl atform ${useBui |l d}" fail OnError="fal se" />@
<l ocat or searchPat hRef ="org. ecli pse.galileo" fail OnError="fal se" />
<l ocat or searchPat hRef="orbit" />

© The${useBuil d} insertsthe value of the property useBui | d in the search path name.

Asyou seein Example 4.3, “locator with parameterized search path”, you can include property values
in the string that is areference to the search path. What you need to do is simply to set up one search
path for each alternative repository you are interested in.

A common setup isto have repositories that reflect the software process. The projects at Eclipse typi-
cally set up aseries of repositoriesfor nightly, integration, milestone and release builds— so suitable
values for the useBuild property could be NBUI LD, | BUI LD, MBUI LD, and RBUI LD.

As an example, the search path or g. ecl i pse. pl at f or m MBUI LD would be set up to access the
platform’s milestone build repository.

Redirects

Asmentioned earlier, it is possible to reference one RMAP from another and thus build a federation of
maps. Thisisdoneby using ar edi r ect element instead of al ocat or — it workslikethelocator, but
instead of continuing in asearch path, it imports areferenced RMAP (referenced with ahr ef attribute),
and continues with the imported map’s locators. Y ou can only have one redirect, and it must appear
last.

30

Draft

Resource Map Draft

5 Note
Y ou can use parameterized references for redirects as well.

Example 4.4. Using redirects

<l-- Exanple A ->
<l ocat or sear chPat hRef =" nmyWay" pattern=""org\.nyorg(\..+)?"/> @
<redirect href="http://ww.myorg.org/ maps/ our map. rmap" failOnError="false" /> @

<l-- Exanple B -->
<l ocat or searchPat hRef =" nyWay" pattern=""org\.nyorg(\..+)?"/>

<redirect href="http://wwm. nyorg.org/ maps/ ecl i psemap. rmap" /> ©

© A locator for my thingsin my project
@ A redirect to amap on myorg’'s web server that maps all projects at myorg.
©® A redirect to amap on myorg’'s web server that maps all the eclipse projects.

Locators summary

Thelist of locatorsisthe entry point in the map and they are used to direct the search to a search path
with declared providers or to adifferent RMAP viaaredirect. It is possible to parameterize the search
and thus create support for common use cases such as.

» Select between repositories like nightly, or release, globally, or on a per component basis.

» Select between different maps based on user’ s location by having a property that selects an appro-
priate repository mirror.

» Let acommitter property control if you get mutable source or source bundles for debugging.

» Make per developer overrides when experimenting by using alocal RMAP that ends with redirect
to the official RMAP for the project or organization.

Search paths

A search path is a reusable element in a RMAP that defines how a component name is looked up in a
repository and transformed into useful meta data. The search paths can be declared in any order —
the search is conducted in the order specified by the locators.

The search path consists of one or several provider declarations where the provider defines a com-
bination of a reader type (how to access the content in the repository), a component type (how to
interpret the content found), a location to the repository, and a means to locate a component within
the repository.

A search path isinitself quite simple — in addition to having a name, and alist of provider elements,
it can have an optional documentation element where a description of how the path is supposed to be
used, what it references etc. can be included.

A sear ch path must have at least one provider. A search path typically contains one provider, but
itispossibleto specify morethan one— inwhich casethe provider capable of returning the component
with the highest matching score compared against the request will be used. If two providers return
the same score, the provider declared first is used. When making arequest, options can be set that are
compared to attributes set in the provider declarations to reach the score.

Request options. Therequest optionsindicate the wanted shape (mutabl e source, source, or binary),
and if the request can be relaxed (i.e. if source is not mutable, is it ok with unmutable source, and if
sourceisnot available at all, isit ok with abinary result). The request options are set in advisor nodes
when making the request. Thisis explained in detail in the section called “ Advisor nodes”.

31

Draft Resource Map Draft

Providers

A provider declares a combination of a reader type (how to access the content in the repository), a
component type (how to interpret the content found), alocation to the repository, and ameansto locate
a component within the repository. A provider also declares attributes that are used when calculating
amatching score used when determining which provider to use among several in a search path.

Example 4.5. provider

<provi der reader Type="eclipse.inport" @
conponent Types="o0sgi . bundl e, ecl i pse. feature" @
mut abl e="f al se" ©
source="fal se"> @

<uri ©Oformat="http://downl oad. ecl i pse. or g/ ecl i pse/ updat es/ 3. 4?i nport Type=bi nary"/ >
</ provi der>

©® Thereader Type attribute contains the name of a reader for a particular type of repository (a
connector to a particular repository type such as cvs, svN, or p2, or something specialized like
theecl i pse. i nport reader used in this example).

® The component Types attribute contains a comma separated list of component types this
provider can handle. Naturally, this provider will not be considered if arequest is made for some
other component type.

©® Thisisadeclaration that this provider isincapable of producing mutable components (i.e. source
that can be modified and committed back to a source code repository).

O Thisisadeclaration that this provider is incapable of producing buildable source for the com-
ponent.

@ Thisisadeclaration of thelocation of the repository. A f or nat attribute containsastring where
parameter replacement can take place. Since we are using the ecl i pse. i nport provider, the
protocol is given, the only thing needed is the URI to the location, and an option in the URI that
indicatesi npor t Type=bi nary.

Selection of areader type, and component typesis straight forward, and so is the specification of mu-
table and source. It starts to get complicated when it comes to the combination of a reader/component
type, and the specification of the location. For well structured content with rich meta data, it is as
simple asin the example, but it can also get quite complex with very detailed mapping for something
available via adownload URL.

Reader type

Ther eader Type attribute specifies the reader that Buckminster should associate with this provider.
The value of this attribute must specify the fully qualified name of a reader”.

The Buckminster framework provides reference implementations® for the following reader types® (all
which are explained in more detail in subsequent sections).

Available Reader Types
Ccvs A reader capable of navigating and reading cvs repositories.

svn A reader capable of navigating and reading Subversion repos-
itories. The SVN repository reader assumes that any reposito-
ry contains the three recommended directories trunk, tags and
branches.

p4 A reader capable of navigating and reading Perforce reposito-
ries.

“The name originates in the plugin that provides the reader.
5meaning that these implementations could be replaced by other plugins providing a compatible implementation.
5The namein bold is the name of the reader asit should appear in the reader Type attribute.

32

Draft Resource Map Draft

maven, maven2 The maven reader can read Maven 1 repositories, and maven2
reader has support for reading Maven 2 repositories. Both read-
ers are capable of navigating and reading Maven repositories.
Itisbased ontheurl . cat al og reader.

(sitefeature) Deprecated in Eclipse 3.5. Useecl i pse. i nport instead.

eclipseimport A reader capable of reading anything that can be read by p2
(i.e. p2 repositories, and the older eclipse update sites), as well
as being capable of reading a PDE map-file.

This reader is replicating the Eclipse sDK capability to import
features and pluginsfrom an arbitrary site. NOTE that the type
of import (binary, or source) iscontrolled using aurl parameter
in the repository locator.

url A reader capable of reading one singlefile appointed by an URL
(typically ajar, dll, or other pre-compiled artifact).

url.catalog Readsfilesfrom a specific catalog (folder) appointed by aURL.
Currently only supportsthefi | e URL scheme.

url.zipped Reads individual files from a zip archive appointed by a URL.

local Thelocal reader is capable of reading existing components (i.e.

previously materialized) just using the component meta-data.

If you are interested in extending Buckminster with a new reader type — there is more information
in the section called “ Extending Reader Type”.

éb Note

Thedifferent reader types have different capabilities, and usethelocation URI in different
ways. Please consult the specific section for each of the reader types.

CVS reader

Thecvs reader is capable of reading content from a cvs repository. This reader isintegrated with the
team cvs support in Eclipse. This meansthat authentication isintegrated, and you have several differ-
ent options how to handl e passwords as described in the section called “ Providers and authentication”.

Y ou must have the Buckminster cvs feature installed to use this reader.

Here is an example:

<provi der reader Type="cvs"
conponent Types="ecl i pse. f eat ur e, osgi . bundl e, buckm nster"
source="true"
nut abl e="true" >

<uri format=":pserver:anonynous: secret @xanpl e. org:/cvsroot/test,teststuff/{0}" > @
<bc: propertyRef key="buckm nst er. conponent"” />
<luri>
</ provi der >

©® Thecvs reader canusethe: pser ver protocol totalk to cvs. Herethe user named anonynous.
with password secr et connects to the cvs root / cvsr oot / t est . It prepends al component
nameswith/ t est st uf f/ to get to thelocation. Although it isusually possible to add elements
totheroot (e.g./ cvsroot/test/teststuff, {0}),itisnot aways possibleto do thereverse
(eg./cvsroot, test/teststuff/{0})astheremay berestrictions on accessto the directory
stated as the root.

33

Draft Resource Map Draft

SVN reader

The svn reader is capable of reading content from a Subversion (SvN) repository. This reader isin-
tegrated with the team svn support in Eclipse. This means that authentication is integrated, and you
have several different options how to handle passwords as described in the section called “ Providers
and authentication”.

Y ou must have one of the Buckminster svN featuresinstalled to use this reader. Y our choice depends
on if you are using Subclipse, or Subversive as your svN client. See Appendix A, Installation for
details regarding svN installation and configuration.

Example 4.6. using svn provider

<provi der reader Type="svn"
conponent Types="o0sgi . bundl e, ecl i pse. feature, buckm nster"
mut abl e="true” source="true">

<uri format="http://dev.eclipse.org/svnroot/tools/org.eclipse.buckm nster/trunk/{0}0O
=?nmodul eAf t er Tag&anp; nodul eAf t er Branch" >
<bc: propertyRef key="buckni nster.conponent" />
<luri>
</ provi der >

The svN repository reader assumes that any repository contains the three recommended directories
trunk, t ags, and br anches. A missing t ags directory is interpreted as no tags being available. A
missing br anches directory isinterpreted as no branches being available.

Different organization choose to handle the structure under branches and tags differently — i.e. either
you find the named things (modules) under trunk, tags, and branches, or you find trunk, tags, and
branches under the named module. A single project repository typically has trunk, branches, and tags
at the top level. Repositories with many top level projects typically use the top level projects as the
first level in the repo, with trunk, branches, and tags under each top level project. The svN connector
can not figure this out on its own — it needs a bit of help.,

The URL used asthe repository identifier must contain the path element t r unk. Anything that follows
thet r unk element in the path will be considered amodule path. The repository URL may also contain
aquery part where the order of module vs. trunk/branches/tags can be declared. The query part may
have four different flags:

moduleBeforeTag When resolving atag, put the module name between thet ags
directory and the actual tag (e.g. .../ t ags/ nodul e/ t agged-
By Mar y).

moduleAfter Tag When resolving atag, append the module name after the actual

tag (e.g. .../ t ags/ t aggedByMar y/ nodul e).

moduleBeforeBranch When resolving a branch, put the module name between the
br anches directory and the actual branch (e.g. .../ br anch-
es/ nmodul e/ mar ysBr anch).

moduleAfter Branch When resolving a branch, append the module name after the
actual branch (e.g. .../ br anches/ mar ysBr anch/ nodul e)

A fragment (#) in the repository URL will be treated as a sub-module. It will be appended at the end
of theresolved URL (e.g./ t r unk/ x?nodul eBef or eTag#y becomes/ t ags/ x/ nyTag/ y).

Credentials. The svN connectors support putting the user name and password directly in the URL
using the standard URI notation.

http://your nanme: your passwor d@xanpl e. org/ svnroot/. ..
https://yournane: your passwor d@xanpl e. org/ svnroot/. ..
svn://your nane: your passwor d@xanpl e. org/ svnroot/. ..
svn+ssh: //your nane: your passwor d@xanpl e. org/ svnroot/. ..

Y ou can naturally use parameters for name and password

Draft Resource Map Draft

<uri format="https://{0}: {1} @xanpl e.org/svnroot/trunk/{2}";>

<bc: propertyRef key="exanple.user" /> @

<bc: propertyRef key="exanpl e. password" />

<bc: propertyRef key="buckni nster.conponent"” />
</uri>

©® Theexanpl e. user isaproperty that ispassed in viaone of the available mechanism for settings
properties. See Chapter 10, Properties.

Perforce (P4) reader

The perforce (p4) reader is capable of reading content from a perforce repository. Y ou must naturally
have the Buckminster perforce connector as well as Perforceitself installed. See Appendix A, Instal-
lation, for details regarding installation of Perforce support.

<uri format="p4://{0}: {1} @xanpl e. org/ depot/ nodul e/ {2} "; >
<bc: propertyRef key="exanple.user" /> @
<bc: propertyRef key="exanpl e. password" />
<bc: propertyRef key="buckmi nster.conponent" />

<luri>

© Theexample.user isaproperty that is passed in via one of the available mechanism for settings
properties. See Chapter 10, Properties.

Maven 1 and 2 readers

The maven reader is used to read binary artifacts that have Maven meta data, in the form of amaven
pom file. Use the maven2 reader if the repository is using the Maven 2 format. Y ou must have the
Buckminster Maven connector installed to use a Maven reader.”

Advanced maven mapping

The maven reader can be given extrainformation in the provider element to handle mappings between
component names and the maven dual identifier for . Components mapped from Maven are given
a component name where group id and and artifact id are concatenated with a separating /. Normally
there is no need to perform mapping between the two forms — but in some cases, like when a com-
ponent existsin source form with aflat structured name (like x.y.z), it is not possible to automatically
map this asit isimpossible to determine where the group id ends, and the artifact begins — (it could
bex/y.z orx.y/ z)

The advanced mapping requires a maven provider extension kept in a separate XML schema, so the
RMAP document should contain the following name space declaration:

<rm r map
<l-- other nanme space declarations go here -->

xm ns: mp="http://ww. ecl i pse. org/ buckm nst er/ MavenPr ovi der - 1. 0";
>

To use these, the provider element itself must be declared to use:
Xi : type="np: MavenPr ovi der"

(asthe normal pr ovi der element does not allow the maven extension elements as children), then to
add the mapping — place anp: nappi ngs entry in the provider, with child np: ent ry elements, one
per mapping. (In case thereis any doubt, the np: ent ry name attribute is the component name).

<provi der
xsi : type="np: MavenProvi der"
reader Type="maven"
conponent Types="naven, osgi . bundl e" nut abl e="f al se" source="fal se">
<uri format="http://repol. maven. org/ maven2"/>
<np: mappi ngs>
<np:entry

A contribution to Buckminster from the Maven project to give Buckminster full maven 2 is currently stuck in Eclipse IP review.
8Maven uses a group identity and an artifact identity as the unique component identity.

35

Draft Resource Map Draft

name="or g. apache. acti veny. core"
groupl d="or g. apache. acti veng"
artifactld="activenqg-core"/>
<np:entry

nane="sl f4j .1 og4j 12"
groupl d="org. sl f4j"
artifactld="slf4j-1o0g4j12"/>

</ nmp: mappi ngs>

<l-- pore stuff ... -->

</ provi der >

Eclipse import reader

Theecl i pse. i mport reader can read anything that can be read with Equinox p2 (see Chapter 2, p2).
In its standard configuration, p2 is capable of reading both p2 repositories and older update sites. It is
also possible to extend p2 with other types of repositories, but thisis transparent to Buckminster.

,éb Note
The type of import (binary, or source) is controlled using a URI query parameter in the
repository locator.

An exampleisshown in Example 4.5, “provider”. Note that the URL usesan URL query to defineif the
import is binary or source (i npor t Type="sour ce", ori npor t Type="bi nary").

Theecl i pse. i nport reader mimics the behavior of the Eclipse IDE’s ‘import features or plugins'.
Theresult of the import isthat aproject is created in your workspace and the class path of that project
is set up to include any jar file included in the project. If the plugin has source, the source will be
unfolded into the project.

Theeclipse.inport reader is also capable of reading PDE maps that use the the map file formats
referred to in PDE-build as; “Map file entry for CVS’, “Map file entry for other repositories’ and “ ANT
‘GET, ur | *-format”®, and treat them as a repository. One such map isfound at:

http://downl oad. ecl i pse. or g/t ool s/ or bi t/ downl oads/ dr ops/ R20090529135407/ or bi t Bundl es- R20090529135407. nap

It has content that looks like this (partial sample):

pl ugi n@om i bmi cu, 3. 6. 1=CGET, htt p: // downl oad. ecl i pse. or g/ t ool s/ or bi t/ downl oads/
-dr ops/ R20090529135407/ bundl es/ com i bm i cu_3. 6. 1. v20080530. j ar
pl ugi n@om i bmicu, 3. 6. 0=CGET, http: // downl oad. ecl i pse. org/tool s/ orbi t/ downl oads/ O
-dr ops/ R20090529135407/ bundl es/ com i bm i cu_3. 6. 0. v20080530. j ar

pl ugi n@om i bmi cu, 4. 0. 1=CGET, htt p: // downl oad. ecl i pse. or g/ t ool s/ or bi t/ downl oads/ O
=-dr ops/ R20090529135407/ bundl es/ com i bmicu_4.0.1.v20090415.j ar
pl ugi n@om i bm i cu, 4. 0. 0=CGET, htt p: // downl oad. ecl i pse. or g/t ool s/ or bi t/ downl oads/ O
—-dr ops/ R20090529135407/ bundl es/ com i bmicu_4. 0. 0.v20081201.j ar
pl ugi n@om i bmi cu, 3. 8. 1=CGET, htt p: // downl oad. ecl i pse. or g/ t ool s/ or bi t/ downl oads/
—-dr ops/ R20090529135407/ bundl es/ com i bm i cu_3. 8. 1. v20081217. j ar

pl ugi n@om i bmicu, 3. 4. 5=CGET, htt p: // downl oad. ecl i pse. org/t ool s/ or bi t/ downl oads/ O
-dr ops/ R20090529135407/ bundl es/ comibmicu_3.4.5.jar

Thisbehavior intheecl i pse. i nport reader istriggered if the URI endswith ‘. map’ .

URL reader

The ur | reader is used in situations where you want to get a single artifact. You can either refer
directly to the component withtheuri element, or useanmat cher element to parse/scrape the content
of the URL to get alist of possible URLS to components to match against. A good example is a ftp
URL to adirectory. (Contrast this with that you would have to specify a separate provider/reader for
each separatefile).

%Y ou can read more about PDE mapfilesinthisEclipse Helpfilefor Eclipse 3.5 called PDE Build Advanced Topicsg/Fetching from Repositories
[http://hel p.eclipse.org/galileo/index.jsptopic=/org.eclipse.pde.doc.user/tasks/pde_fetch phase.htm]

36

http://help.eclipse.org/galileo/index.jsp?topic=/org.eclipse.pde.doc.user/tasks/pde_fetch_phase.htm
http://help.eclipse.org/galileo/index.jsp?topic=/org.eclipse.pde.doc.user/tasks/pde_fetch_phase.htm

Draft Resource Map Draft

Themat cher isquite smart — an attempt is made to read the content asvalid xML (many sites deliver
what is stated to be XML or XHTML, but it may still not be valid), and if thisfails, the content istreated
as“rogue’ HTML and is scanned as flat text. In both cases (structured valid XML, or flat text), asearch
ismadefor elements, and the referenced URLS are collected into alist of “catalog
content”.

You still have to pick something from the resulting list of URLS, and this is done with a mat cher
element. A mat cher isapowerful mechanism'®, and is explained in more detail in the section called
“Handling indirection”.

Example4.7. url reader

<provi der reader Type="url" @

conponent Types="jar" @

mut abl e="f al se" ©

source="fal se"> @

<uri formt="${matchedURL}"/> @

<mat cher @
base="http://mrrors.ibiblio.org/pub/mrrors/apache/ nyfaces/ binaries/" @
versionFormat="..."> @

<mat ch nane="matchedURL" ... /> ©
</ mat cher >
</ provi der >

The reader typeissettour|

We expect the found URLSto lead toj ar files

We set both sour ce and nut abl e to false as we do not expect to find references to source
projects that we can bind to the workspace, nor make changes and commit them back.

We expect to be reading the component at aURI that getsits value in the parameter mat chedURL
— e 0.

A mat cher elementisused — it definesthe base URL (i.e. the* pageto read”) and how aresulting
version string should be turned into a processable version.

Thebase isthe URL to the“page” to read — here apage from ibiblio.org, containing amirrored
apache repository. A sampleis show in the figure below, but you can visit the URL in a browser
to seeitsfull content.

¢ © o 8@0

Figure4.1. Sample content from an ibiblio page

nmyf aces-comons12-1. 0. 0-bin. tar. gz. asc 15- Sep- 2008 19:57 197
nmyf aces- commons12- 1. 0. 0-bin. zi p 15- Sep-2008 19:57 1.2M
nmyf aces- cormons12- 1. 0. 0- bi n. zi p. asc 15- Sep- 2008 19:57 197
nmyfaces-core-1.1.6-bin.tar.gz 16- Aug- 2008 13: 01 2.9M
nmyfaces-core-1.1.6-bin.tar.gz. asc 16- Aug- 2008 13: 01 197
nmyfaces-core-1.1.6-bin.zip 16- Aug- 2008 13: 01 4.7M
nmyfaces-core-1. 1. 6-bin. zip. asc 16- Aug- 2008 13: 01 197
nyfaces-core-1.1.7-bin.tar.gz 05-Jun-2009 15:06 2.9M

...

0 In this example we expect the versions used on the page to use a non 0sGi version format. See
Chapter 9, Versions, for more information about version formats. If no version format is speci-
fied, the version strings must be in a format that can be directly parsed by omni version — i.e.
OSGi or omni version’s raw format.

© Weuseanat ch element to search through thelist of generated linksfound at the matcher’ sbase
URL — the final URL that is matched becomes the value of the property declared in the match
element’s nane attribute — i.e. mat chedURL. (The body of the match element is not shown
here, only how the result of a mat ch is returned to ©. In fact, to really parse the page in this
example, we need to use something more powerful than the mat ch element — but the principle
isthe same. The real matching is shown in later examples).

Owhich is a nicer way to say that they are a bit complex...

37

Draft Resource Map Draft

URL catalog reader

Theur! . cat al og reader is used in situations where you have a content in your file system'! in a
format suitable for interpretation by one of the available component types.

éb Note
Theuri attribute should be areferenceto adirectory.

URL zipped reader

Theur! . zi pped reader is used in situations when the component you are interested in is an item
insideazip file. The content of the zip file should bein aformat that can be understood by the selected
component type.

,éb Note
Theuri attribute should be areferenceto the zip file.

Local reader

Thel ocal reader is used in situations when the material you are interested in aready exists in the
file system in the form you want. In this case, Buckminster does not materialize anything (i.e. no
downloads or copying takes place — contrast thiswiththeur | . cat al og reader). Instead, Buckmin-
ster simply reads the meta data available in the appointed location and binds the location into the
workspace as a project.

Y ou can use this mechanism for different purposes — here are some of the things we know this has
been used for:

Using an unsupported Source Code Control System. Buckminster currently supports cvs, SVN
and Perforce, but you may already be using some other source code control system and do not want
to implement support for your tool. What you can do is to use your tool to create the wanted layout in
your file system (i.e. check things out, or whatever the terminology is in the tool you are using), and
then simply point to that location using the local reader.

Performance Optimization. When Buckminster is used as part of alarger build systems, other
actions may already have materialized many of thethings needed. Materializing them again just wastes
cycles when you are sure the material is already there. It does not matter how the material ended up
in the location — it could have been Buckminster that materialized them earlier.

Structured Download. Y ou are using material downloaded from different sites such asindividual
jar files. You can point to them directly in your RMAP, but this means that they will be downloaded
from the original site each time they are requested (and not in your cache). Instead, you may want to
set up a separate Buckminster materialization of the thingsyou will be using in your organization. The
materialized result can then be made available in different forms. Many use a distributed file system
— and can hence be accessed with the local reader.

/ﬁé‘__o Note
Theuri attribute should be an absolute file system path without the scheme.

Providers and authentication

Some providers/readers may require authentication to connect to the repository. Y ou have different
options in this area and the solution to use depends on your security requirements, and the type of
credentials required.

1 Currently, only the file: scheme is supported.

38

Draft

Resource Map Draft

Interactiveuse. When Buckminster is used from within the Eclipse sDk the authentication is han-
dled the sameway aswhen therepository isused directly. If you have aready connected to arepository
(say using the team cvs or svN functionality) and choose to have Eclipse remember the credentials
then you will not be prompted again for the same repositories. If the Buckminster action triggers re-
quest for credentias, it will be handled and remembered the same way as when using the team func-
tionality. In essence, there is nothing extra/specia that you need to do.

Credentialsin theRMAP. You can store the credentials directly in the RMAP. It is not as crazy and
unsecure as it may sound since this is very useful in cases where you do need to authenticate, but
the user and password are a publicly known — i.e. “anonymous/anonymous’ or similar. Also, if you
take care protecting the RMAP it may still be a viable solution even if the RMAP has user name and
password in clear text.

Credentialsin template. You can pre-populate a workspace and keystore by using the sbk, and
then distribute this“template configuration” to the serverswhere you are building headlesdly. Y ou still
have to protect against someone using these templates to run unauthorized actions. What you need to
include in the template may wary as readers may be different in their handling of storing credentials.

Credentialsin properties. You can store the credentials in properties and use property valuesin
the RMAP. Thisway the RMAP is reusable, and different users can supply their own properties.

Component types

Asyou may recall, component types allows you to specify alist of the types of components a provider
is capable of producing. Each component type is a fully qualified name of an implementation that
provides translation of the native/external meta data associated with the component to the internal
format used by Buckminster.

It is possible to extend the component types as described in the section called “ Extending Component
Type'.

Buckminster has reference impl ementations'? for the followi ng component types (see the reference
guide “ Component Types* for details):

component types

osgi.bundle Standard component type for software assets maintained with
Eclipse (i.e. something that has an Eclipse . project or
pl ugi n. xm files). Essentially, an Eclipse plugin.

eclipse.feature An Eclipse feature component.
(eclipsesite) Deprecated.
jar Refers to components that are JAR files and can be treated as

components in their own right. Buckminster will generate a
CSPEC that has no dependencies. This type is intended to be
used when you want to depend on a JAR known to be found
using a common URL.

maven Basically an extended JAR type but assuming Maven repository
dependency information contained in a maven POM.

buckminster Refers to software assets that have no derivable component
specification information, or where a plugin for the particular
component type has not been created. Assumes that the own-

Lthese are referred to as reference implementation since they can be replaced by a compatible implementation.

39

Draft Resource Map Draft

er of the asset has added a manually created (and maintained)
CSPEC inside the software asset. The reader will expect an in-
cluded buckni nst er . cspec to contain the meta data.

(sitefeature) Deprecated.

bom Refers to a component which is a Buckminster Bill of Materi-
als (Bom) artifact as produced by the Buckminster resolution
process. When this is used, the resolution process accepts the
referenced BOM as the resolved solution.

This is very useful in situations where a dynamic res
olution is unsuitable. As an example the component
‘org. sl oppy.enfant.terrible’ may be difficult to re-
solveasmany special paths needsto betaken throughthe RMAP.
With a pre-resolved “static” Bom there is no need to repeated-
ly specify the complicated advisor nodes and property settings
required to make the poorly specified enfant.terrible resolve —
just because it is required by other components. When (even-
tually) the bad component isfixed, it is easy to switch back to
adynamic approach again since the change takes place only in
the RMAP.

Another example is when some other system is producing a
configuration, and it should be used “asis’ — rather than try-
ing to transform this system’ smeta datainto Buckminster com-
ponent specifications and then letting Buckminster repeat the
resolution process, it isinstead possible to directly produce the
BOM. This can be especialy useful when interacting with or
migrating from alegacy dependency management system.

N Tip

~ -
Use the bomtype when you don’t want dynamic
resolution of everything.

unknown Indicates components for which no dependency information
can be inferred or has been made available. The component is
till useful, but it only has a name.

Advice regarding components with no meta data

If you need to handle components where there is no meta data, or the meta datais not in aform that
can be handled by Buckminster, you still have afew options.

If you are the owner of the component, or can persuade the owner — the meta data can be added where
it should be added — at the source. It does not matter which meta data format the component owner
adds — it could be 0sGi, or Maven, just as well as Buckminster meta data.

If it is not possible to add the meta data at the source. The component type unknown can beused in a
provider, but a separate component is needed to keep track of the dependencies. In many cases, you
probably have a configuration of such componentsthat should go together, so you can probably create
afeature/grouping component to reference the component with unknown meta data, and then use this
group component elsewhere in your system.

Y ou can naturally also repackage a component, include the required metadata, and then distribute it
instead of the original. Many do this even if it requires maintaining an internal version of the same
component (with the obvious problems if it is mixed with external packages that does not use the
internally repacked version).

40

Draft Resource Map Draft

Version converter

When Buckminster gets components from a source code repository and interprets their version, there
are three cases to consider:

e Thereismetadatain the component that specifiesthe version to use (e.g. osgi . bundl e), and you
want to use the component reader’ s ability to set this version as the version of the component.

» Thereismetadata, but you want the name of abranch or atag to reflect the version of the component
» Thereisno meta datain the component, and the only choice isto derive it from abranch or atag.

Y ou can handle this by using a version converter in the provider specification. Y ou have to decide if
you want the transformation to be based on a branch or atag, and the version format (i.e. version type).
Y ou then have to specify how aversion such astriplet 3. 0. 1 istrandated into a branch or tag name
(perhapstov3_0_1). You also need to specify the reverse — how to transform a branch or tag name
into avalid version string for the selected versiontype— e.g. how togofromv3_0_1totriplet3. 0. 1.

Example 4.8. version converter

<versi onConverter type="branch" versionFormat="..." > @
<transform @

fronPattern="\." ©
fronRepl acement =" _"
toPattern="_"

/>

<transform @
fromPattern="~(.*)$" O
fronRepl acenent ="v$1" @
toPattern=""v(.*)$" ©

t oRepl acenent ="$1" ©
/>

</ ver si onConverter>

© A version converter is declared to convert versions on a br anch — the ver si onFor mat at-
tribute is not needed if the version is of 0sGi type (or if the version happens to be in the Omni
Version raw format). Otherwise, aversion format should be used — see Chapter 9, Versions.
Two transformer elements are used — the first handles transformation between ‘. and * ' as
separator, and the second transforms between a prepended ‘v’ and “no v”.

Since this is a regexp pattern the literal period ‘. ' must be escaped with \ . When doing the
reverse at @, the replace string is not aregexp — and the escape is not needed.

This pattern makes everything; . *’, between the beginning ~ and theend $ captured in aregexp
segment (the*() ‘)

The segment from @ is used in the replacement string (i.e. ‘$1')

This pattern should look familiar — everything is matched in a segment except the ‘v’, and the
replacement is the matched segment.

89 © o 8

N Tip

~ -
Theterms*to’ and ‘from’ are quite confusing asthetransformationisbidirectional. What
you haveto repeat to yourself are“| am converting from a version to abranch/tag-name
using f r onf, and “I am converting to a version from a branch/tag-name using t o”.

You can extend Buckminster with additional version converter types (if branch and tag are not
enough). See the section called “Extending Version Converter”.

41

Draft Resource Map Draft

Handling indirection

As you have seen in the examples up to this point the locations of repositories (or asingle file asin
the case of the ur | reader) have been known, and we have simply entered the location in the ur i
element parameterized with the component name. But there are many situation where the only known
addressisto aweb page where downloadabl e items are listed. In this section we take alook at how you
can handle this situation without having to periodically and manually revisit the web-page with the
listing and then manually update the RMAP. (If you are looking for a mechanism to handle indirection
to source code, see the section called “ PDE map — extended provider”).

Buckminster has amatcher that operates as a*“ content-scraper”, picking out URLS and matching them
against patterns to determine if they represent a component.

The primary intended use for the matcher isfor picking aurL to asingle artifact, but it can also be used
if you find yourself in the odd situation where the only way to get arepository URL isviaan indirection.

You can ignore this entire section if you are just skim reading, it is all about details how to write
patterns that pick out the interesting parts from URLs — perhaps looking something like this:

http://someFor ge. or g/ downl oads/ downl oad. php?pr oj ect =eggnoggé&fi | e=eggnogg_1_0_0- osx-x86-en.tar. gz

Content is matched using a mat cher element that contains a regular expression composed out of a
structure of mat ch and gr oup elements.

The matcher

The mat cher element defines the content to scan, and the version format to use when converting a
found version string into a version. The version format can be omitted if an 0SGi versioning scheme
is used (or if the version string happens to already be in the Omni Version raw format). For other
formats see Chapter 9, Versions.

<mat cher base="http://soneForge. or g/ downl oads/ vi ew. php?pr oj ect =eggnogg"
versi onFormat="..." >
<!-- match and group el enents go here -->

</ mat cher >

The nested nat ch and gr oup elements are used to compose aregular expression.

Although it would be possible to write asingle regular expression to do all the matching, the resulting
expression containing many segmentswould be very hard to write, and even harder to read — it would
also require figuring out the segment indexes to use when putting the mapped pieces together.

Figure 4.2. matcher principle

<matcher ... >
<match pattern "a" />
<match pattern "b" />
<group nanme="t heNunbers" >
<match pattern "1" />
<mat ch name="t heTwo" pattern "2" />
</ gr oup>
</ mat cher >

In Figure 4.2, “matcher principle”, a very simple regular expression is constructed that matches a
string containing “ab12” — the construction is equivalent to the regular expression ab(1(2)), and
in addition the property t heNunber s gets associated with the segment matching 12, and the property
named t heTwo is associated with the segment matching the digit 2.

So, the mat cher element, as well as the gr oup element, creates a regular expression pattern out of
its children by simply concatenating them (in the order they are stated).

Thematch element. Themat ch element defines part (afragment) of the regular expression. It also
has a convenient way to declare literal prefix and postfix string matches where special characters does
not have to be escaped.

42

Draft

Resource Map Draft

Figure 4.3. match element

<mat ch
nane="aPart" @
pattern="[a-z0-9]+ @
optional ="true" ©
prefix="http://somewhere. or g/ downl oads/ downl oad. php?file=" @
post fi x="&f or mat =bi nary" ©

name can be used to make the matched result available in a property — here the value will be
available in the property aPart .

Thepat t er n isarequired attribute (all others are optional) and it used for aregular expression
pattern fragment. Special characters must be escaped with \ if they are to be used literally.
Theopti onal attribute indicates if the the entire match defines an optional part in the overall
matching pattern it is part of. The default isf al se.

Thepr ef i x isaliteral prefix. Theeffect of using pr ef i x isthe sameasif the prefix stringwas at
the beginning of the pattern, but with all special characters escaped (i.e. thereisno need to escape
special charactersinthepr ef i x). Inthefigure, the first part of the URL is matched this way.

© Similartoprefi x, but at the end. In the figure, an extra parameter in the URL is matched.

© o o o

The group element. The gr oup element is basically just a grouping that may have a name. The
resulting pattern isthe concatenation of the mat ch and nested gr oup elements contained in the group.

Extracting metadatafromtheurL. Asascanfor auRrL to acomponent takes place, amechanism
is needed to determine if the URL potentialy is a match (with respect to version, architecture, os,
language, etc.) without having to read all the contents and look for meta data. It may even be the case
that there is no meta data inside the component, so all the search mechanism has is the URL string.
S0, these elements have dual use — they act as part of the textual match (is this a URL of interest at
all), and the resolution (should this component be selected). The metadata-extracting elements can
only be used in agr oup element, and their individual names can not be set. Several of the elements
define values for atarget filter — see Filters. Even if these elements have predefined meaning, their
patterns must be defined.

meta data extracting elements

arch Matches and sets the target filter for architecture. Example
Xx86.

0S Matchesand setsthetarget filter for operating system. Example
macosx.

nl Matchesand setsthetarget filter for natural language. Example
en_US.

ws Matches and sets the target filter for windowing system. Exam-
plecocoa.

name Matches and sets the name of the matched component candi-
date.

version Matches and sets the version of the matched component candi-
date.

revision Matches and sets revision information for the component can-

didate. Therevision is used when arequest is made for compo-
nentsin a particular revision.

timestamp Matches and sets timestamp information for the component
candidate. The timestamp is used when a request is made for
components having a particular timestamp.

43

Draft Resource Map Draft

Note that using matcher’s r evi si on and ti nest anp extractors is equivalent to what takes place
in the source code control repository readers when a file is found —there the meta data regarding
timestamp and revisionisawaysavailableand isalways provided to theresol ution process. If selection
is made based on these values is a different issue.

PDE map — extended provider

The PDEMapPr ovi der isa provider extension that allows a PDE releng source map to be used as an
indirect declaration of cvs and svn readers. To use this extension, the XML schema must be declared.

<rm r map

<! -- other nanme space decl arations go here -->

xm ns: xi ="http://ww. w3. or g/ 2001/ XM_Schene- i nst ance"

xm ns: pmp="http://ww. ecl i pse. or g/ buckm nst er/ PDEMapPr ovi der - 1. 0"
>

Example 4.9. Using PDEM apProvider

<provi der xi:type="pnp: PDEMapProvi der" @
r eader Type="cvs" @
conponent Types="o0sgi . bundl e, ecl i pse. feature" ©
mut abl e="f al se" source="true"> @
<uri format=":pserver:anonynous@ev. eclipse.org:/cvsroot/rt, O

-org. ecl i pse. ecf/rel eng/ org. ecl i pse. ecf. rel eng. maps" ©
/>
</ provi der >

Theprovi der element is declared to be an extended element of type PDEMapPr ovi der .
Ther eader Type isareference to the reader used to read the releng map.

The conponent Types refer to the component types looked up in what is mapped in thereleng
map.

The mut abl e and sour ce attributes refers to the content mapped in the releng map.

Theuri refersto the location of the releng map — the releng map has aformat defined by PDE
and is a map from component names to source code locationsin cvs and SVN.

6 000

/@J Note
The PDEMapPr ovi der extension can be used with any reader type capable of producing
asinglefile (e.g. cvs, svn, p4,and ur | readers).

Properties

We have already used properties throughout this chapter, but there is much more you can do with
properties. Property capabilities are shared across RMAP and CQUERY artifacts, and are therefore cov-
ered in a separate chapter. See Chapter 10, Properties, for details.

Properties are declared at the top level in the RMAP document, but the properties declared there are
not the only properties available when the map is used by the Buckminster resolution process — the
system properties, properties defined in the CQUERY being resolved, etc. can all be used.

As an example, you can set a property like this:

<property key="buil dType" val ue="RBU LD"' />

The RMAP XML document

The RMAP XML document needs to be declared to be an xmL document, and the schemas used should
be declared along with a namespace. Here is a declaration that includes all schemas (the xi , np, pnp
are optional).

Draft Resource Map Draft

<?xm version="1.0" encodi ng="UTF- 8" ?>
<rm r map
xm ns: xi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: re"http: // ww. ecl i pse. or g/ buckm nst er/ Rvap- 1. 0"
xm ns: mp="http://ww. ecl i pse. or g/ buckm nst er/ MavenPr ovi der-1. 0"
xm ns: pmp="http://ww. ecl i pse. or g/ buckm nst er/ PDEMapPr ovi der - 1. 0"

xm ns: bc="http://ww. ecl i pse. or g/ buckm nst er/ Coormon- 1. 0"
>

<l-- The definition of the RVAP -->
</rmrmap>

For more information about schemas see Buckminster xmML Schemas.

Summary

Asyou have seen in this chapter, setting up an RMAP can be as simple as entering a handful of linesin
XML, a the sametimeastheRMAP hasal ot of expressive power to deal with thereal world complexities
of locating components, handling underspecified and erroneous meta data, and handling the required
flexibilities when requiring different configurations of a particular set of components taken from tags
or branches in source code repositories, or from different binary repositories.

Y ou will find complete annotated RMAP examplesin Part |11, “Examples”.

45

Draft Draft

Component query

In this chapter we take a closer look at the Buckminster Component Query (CQUERY), and how it
specifies the request to get components — covering both the simple bucky-meal way (“I am hungry,
never mind where the cheese came from...”), as well as the the deli-counter equilibrist meal order
(*“...only include cheese from milk produced from macrobiotically grazed sheep with iIskcs — Q, G
or R karyotypes, please”).

Y ou can start issuing component queries as soon as you have installed Buckminster. The queries will
then be resolved against the content in your Eclipse workspace, and target platform. Thisis possible
since Buckminster scansthe environment, and keepsitself updated asyour configuration or workspace
content changes. Buckminster can not however correctly guess where everything came from, nor does
it have any knowledge about any repositories. In order to make your queries resolve against reposito-
ries (source code or binary), you need to construct a Buckminster Resource Map (RMAP) as described
in Chapter 4, Resource Map.

One query to get them all...

Running a CQUERY iswhat starts off the resolution and provisioning process carried out by Buckmin-
ster. A CQUERY isexpressedin xML and is stored in afile ending with . cquery’. You can either use
an existing file, perhaps one published on aweb site, or you need to create a new.

When querying, you always query for a (single) root component, and Buckminster will resolve al of
its dependencies. As soon as you entered the query, you can execute it, it is possible to preview and
modify the result, you may also save the resulting resolution in a Bill of Materials (Bom) file that can
be used in various ways— see Chapter 7, Bill of Materials (BOM). Asthefinal step the query can also
carry out the materialization step — i.e. perform the creation of material in your workspace, install
into your Eclipse IDE, or target platform, or place filesin your file system.

Most of the time, there is already some master feature that defines your product, or main feature that
includes everything that is required. But sometimes, you may need to construct this extra configura-
tion component. It does not matter which one of the supported component types you use for such a
configuration, but we recommend the use of a plain java project with Buckminster meta data, or an
Eclipse feature-project depending on the circumstances.

Opening an Existing CQUERY

Y ou can open and execute existing CQUERY files. When Buckminster isinstalled in your Eclipse IDE,
it understands that files with the suffix ‘. cquery’ should be opened with the CQUERY editor’. This

The CQUERY fileitself isin XML format, and may be edited with an XML editor, but you should not have to do that unless you have a
craving for a dose of XML.

46

Draft Component query Draft

appliesto filesin your workspace, in your local file system, and general URLS?. If you have aURL to a
CQUERY fileyou usetheFile - OpenaComponent Query... which opensasmall dialog whereyou can
enter the URL. (If you are running on Windows, you can use File - OpenFile... asit also opensaurL).

b

URL for query:

[http:ffwww.demo.org.fdemaquery.cquer\,{]

(Cancel) Hl—a

Creating a new CQUERY

A new CQUERY iscreated by using File -~ New — Other... — Buckminster — #HHHHERHE tHEHH HHHE .

W

Select a wizard p—

Wizards:

| type filter text)

mﬂ\‘d FTUJCLL TTUTIT CRISUTIY AL Ui
QE.ZF’Iug—in Project
P = General m
¥ = Buckminster
% Compenent Specification Extension file
@Component Specification file
% Resource Map file
P (= CVS

P

@ (" <Back) (GoWexee (Cancel) (Finish

Click on Next, and enter (or browse the workspace and select) the location for the file. Y ou can name
the file anything, but you must keep the extension ‘. cquery’, or Buckminster will not associate it
with the correct editor.

e you do not have to separately download them to disk, and then open them asfiles.

47

Draft Component query Draft

600

New Buckminster Component Query Editor File

This wizard creates a new *.cquery file with that can be opened by a CQuery editor.
A CQuery is used to create a Bill Of Materials of components and materialize them.

Container: | forg.example.project { Browse... 1

File name: | new_guery.cquery

(? [<Back Next > {(cancel) - Finish—)

s
e

The CQUERY Editor

The CQUERY editor allowsyou to edit all aspects of the CQUERY, and is also used to execute the query.
Theeditor isassociated with filesending with ‘. cquer y’, and open automatically asthe default editor
for such files.

When executing the query, it is possible to preview the result, edit the result, and al so to save choices
made regarding edits, and installation destinations.

The editor main tab

2, new_guery.cquery £3 =0

Main

Compenent name: | new guery o
Compeonent Type: '_ ?

Version

Version ﬁ

Designator: [2=

Version:

Type: [‘osi =

Properties

7] Use Properties

Properties:

Resource Map

7] Use Resource Map

RMap URL: o

Main | Advisor Nodes | Properties | Documentation | XML Content

- N —
"] Centinue on error 6 Resolve to Wizard) [_Resolve and Materialize |

© Nameand Component type. Thisiswhere you enter the name of the (top/root) component,
and select the component type from the drop down list. (When the editor opens for a newly

48

Draft Component query Draft

created file, the Component name reflects the filename (here new_quer y), which you need to
change to the name of the component you want to materialize).

® Version, range and version type. In this section you can enter a version, or version range
for the component you are requesting. The drop down has entries for ==, >=, and four different
‘between’ entries (i.e. if from and to should be inclusive or not). When values for both from and
to are required, an extrafield appears. If you leave version empty, the default search is for the
|atest available version.

©® Property File. There are several ways to set properties (see Chapter 10, Properties). This
mechanism allows you to set properties from a properties file. The properties set this way over-
ride properties in the CQUERY itself. If the properties file does not exist, it is ignored (but the
issueislogged). One use of thiscould beto create a“dormant” override system; with areference
to the properties like ${ user . horre}/ . pr oj ect X. proper ti es, then users can provide their
property settings (like user name and passwords to repositories) in that file. The referenceis a
URI, so it is possible to reference a properties file using a URL.

O Resource Map. This section alows you to reference a resource map (RMAP) that maps be-
tween component names and repositories. It ispossible to enter a URI, and system propertieslike
${user. hone} canbeused. If arRMAPisnot used, the resolution takes place against the content
of the workspace and target platform.

© Editor Tabs. The tabs aong the bottom gives access to editing the details of the query —
the final tab allows the resulting XML to be viewed. All the tabs are explained in more detail in
the later sections.

O Processing. The processing section allows you to run the query — al in one go, or interac-
tively. There are also option to save the result. A check box allows you to control if the process
should stop as soon as an error occurs, of if the process should continue to the end anyway.

Advisor nodes

The Advisor Nodes tab alows you to edit the CQUERY Advisor Nodes. They are so named because
they provide advice to the Buckminster resolution process.

- You only need to provide information in advisor

Turn left he@ nodes if you want to modify how an individual com-

ponent (or groups of components) are handled. Ex-

— amples include setting propertiesto control that some

components should be picked from a nightly build

repository rather than the rel ease repository, overrid-

ing dependency metadata (widening or constraining

ranges, skipping an unwanted version, etc), selecting

asubset of acomponent’ sfull dependency graph, and
much more.

49

Draft

Component query Draft

2, new_guery.cquery 2 =0

Advisor Nodes

General

MName Pattern Category Ceneral
org.demo.myproj.* eclipse.featu Attribute Qualification | Name pattern: org.demo.myprej.*
com.test.® osgi.bundle Special Requirements
Resolution Scope Matched Component Type: | eclipse.feature ?
Selection Criteria Skip Component: M
Override
Overlay Folder Allow Circular Dependency: [|

Properties
Documentation

1 12 ©

y

Remove

f ——

Move down |

Main | Advisor Nodes Properties|D0cumentation XML Content

-

" Continue on error Resolve to Wizard \ "’ Resolve and Materialize \

Advisor nodetab parts

Node list. The node list shows alist of advisor nodes. Each entry is identified by the name
pattern the node is set up to match — in this example you see or g. denmo. nypr og. * and
com t est . * which tellsyou there are two nodes. The category column reflects component type
(eg. eclipse. feature, osgi . bundl e, buckm nst er, maven, €tc.). You can create a new
node, remove anode, or rearrange the order of the nodeswith the buttons at the bottom of thelist.
‘Attributegroup selector’. The attribute group selector lets you see agroup of advisor node
attributes at atime — as you can see there are 8 different entries, and there are several options
behind each — simply click on an entry, and the corresponding fields and values are shown to
the right of the list. In the example the ‘General’ attributes group was selected. (Note that all
attributes are for the currently selected advisor node).

Node Attributes. This section shows the attributes in the selected attribute group. In the ex-
amplethe ‘Genera’ attributes are selected, and here you see the name pattern (aregular expres-
sion pattern), matched component type, if matching components should be skipped, and if circu-
lar dependencies should be allowed or not.

General attributes

You can see a screenshot of the general attributes in ‘the section called “ Advisor nodes’’, at ‘Node
Attributes’. The general attributes are used as follows:

Name Pattern This is a regular expression pattern that is used to select the

components that should receive the advice provided in this ad-
visor node. Y ou need to consider the order — the first match-
ing advisor node is used, and the remaining nodes are not con-
sulted.

Component Type You can aso match on component type — a drop down list

lets you select from the list of component types known to your
current Buckminster configuration. (If you provide extensions
to buckminster, make sure the extensions are installed when
editing, or you will not be able to select your extensions). If
you leave this blank, the node will match any component type.

Sip Component If you check skip component, then any component that matches

the name pattern, and component type (if any), will be exclud-

50

Draft Component query Draft

ed from the resulting resol ution, and the excluded component’s
dependencies are not resolved. This is useful when a configu-
ration brings in a component with broken/faulty/old dependen-
cies (and you are going to fix the problem), or when a compo-
nent is brought in and you know it is not used.

Allow Circular Dependency Normally, circular dependencies are treated as an error as it
makes it impossible to determine the correct build order. By
checking this box, a dependency that references an ancestor
will simply be ignored.

Attribute qualification

The attribute qualification allows you to only resolve the subset of dependencies that are required
by the stated attributes. By default, all dependencies are resolved. This is useful when you only need
the value of a particular attribute from a component, and do not want to materialize everything the
component depends on (e.g. runtime parts, test data). You can enter several attributes separated by

comma.

General Attribute Qualification AttrIbUtes
Attribute Qualification | aributes: htmliFiles A list of attributes for which the de-
Special Requirements pendencies should be resolved.
Resolution Scape Prune According To Attributes: M
Selection Criteri . k
e on ST Prune According to Attributes
Overlay Folder An advanced setti ng that resultsin a
Properties pruned component specification. Do
Documentation .

not check this unless you know exact-

ly what you are doing.

Advanced Topic — Attribute Pruning

Pruning attributes means that the resulting component specification CSPEC’ s content is reduced
to only include requested attributes and the dependencies required by those attributes.

Note that materialization to aworkspace in combination with pruning is quite meaningless since
the component meta data is kept in sync with the component’s actual content — the pruning
performed in the resolution process is thereby lost.

Unless you have very specia needs, you should not use pruning.

Special requirements

The special requirements3 lets you control how to deal with source vs. binary, and the shape of the
source (just available, or as mutable/* modifiable’ projects).

General Special Requirements Mutable level

Attribute Qualification [Mutable level: |INDIFFERENT = Controls how the resolution should
Special Requi t — ;

R‘::;‘;ﬂ:ﬂ“::;;:e” * lsource level: [REQUIRE - make a choice between mutable and
Selection Criteria non mutable components.

Owverride

Overlay Folder Source level

Properties
Documentation

Controls how the resolution should
make a choice between component in
source or binary form.

3Thisisa really bad term — there is nothing special about these requirements at all — think of them as ‘ source requirements’.

51

Draft

Component query Draft

The possible valuesfor mutable level and sourcelevel are:

INDIFFERENT
The resolution process is allowed to pick whatever it thinksis best. (Thisis the default, and the
default if you have no advisor node at all).

REJECT
The resolution processis not allowed to select acomponent with thistrait (i.e. mutable or source
form).

DESRE
The resolution process should value acomponent with thistrait higher (i.e. deliver mutable/source
if itisavailable).

REQUIRE
The component must have this trait. The resolution will fail if such a component is not found
(evenif it exists without the trait).

Resolution scope

The Resolution Scope lets you control what resources the resolution process should consider when
performing the resolution.

General Resolution Scope Target Platform
Attribute Qualification | Target Platform: [Should componentsfound in thetarget
Special Requirements | Warkspace:] platform be used.

e tcascnpe Materialization: IT."i
Selection Criteria Workspace
Resolution SENiEEZM

Override Should components found in the
Overlay Folder workspace be used.

Properties

Documentation Materialization

Should Buckminster materializations
be used (i.e. things previously down-
loaded).

Resolution Service
Should Buckminster talk to amap ser-
vice (see below).

The default isto include al in the resolution scope. Some common scenarios where it isimportant to
control the scope are: — when you do not want to find binary versionsin the target platform when you
are working on code that should go into the platform and need to have them in binary form in your
workspace — skip earlier materializations in preference of contacting repositories again.

Resolution Service. Buckminster can talk to a RMAP service via a JSON protocol. It is possible to
turn the resol ution service on/off in Buckminster preferences, see the section called “ Preferences”, and
to specify aprovider of such a service. The default preference setting for resolution serviceis ‘ off’.

Selection criteria

Theselection criteriaattributes|etsyou control if components should be picked from thedefault branch
in repositories or from anamed branch, tag, timestamp or revision. Not all repositories are capable of
this— thereis for instance no notion of branches or revisionsin a p2 repository.

52

Draft

Component query Draft

Ceneral
Attribute Qualific
Special Requirem
Resolution Scope
Selection Criteria
Override
Cwerlay Folder
Properties
Documentation

Selection Criteria Branch/Tag path
ation lgranch Tag path: Thisis asearch path specification for
e branches and tags to be searched.

Timestamp:
Revision: 314151617 Timestamp
Enter a string in timestamp format.
Revision
Enter the name of arevision

Branch/Tag path

Thebranch tag path is used to define asearch path. The branches and tagsin this comma separated
list are searched in the specified order. Branches are entered by simply stating their name, and
tags are entered with aleading slash */ * character. The special keyword ‘nai n’ isused to refer to
the repositories notion of main branch (e.g. ‘trunk’ for svN, ‘head’ for cvs, etc.). Asan example
‘bugl?7, /rel ease3, mai n’ would first look for the component on branch ‘bugl7’, and if not
found there, look inthetag ‘release3’, and finally if not found there either, look in therepository’ s
main branch.

Timestamp

The timestamp is aways in uTc and should be entered in a format corresponding to Java
Dat eFor mat . get Dat eTi nel nst ance(SHORT, SHORT) for the current Locale. For the us|o-
calethat wouldbe ‘M d/yy h:mm a’.

Revision

Specifying a revision means that only content with a revision smaller or equal to the specified
revision should be considered. The support for revision can be different in different repositories,
andtherevisionidentifier translatesto the closest concept. For SvN therepository revision number
isused, and for P4 the change set identity . In cvs, therevision isignored, as cvs does not support
identifiable revisions. Also note that SvN and P4 can combine branch/tag with revision.

Override (version)

Theoverride allowsyou to override the requested ver-

I don't like 2.5 sion/version range of components matched by the ad-
visor node. As an example if you want all requests
for the component ‘X’ to usetherange 3.0to 4.0 irre-

m spective of what is stated in the components that have

d; 0 a dependency on X, you create an advisor node that
&/ ' heard that... matches X and specify the override for the range 3.0
t0 4.0.

f?@?\ =

Y ou have to be careful when creating the pattern — if you specify something like*. *’ and 1. 0. 0 you
have stated that every request for every component should request version 1.0.0. It is best to specify
the full name of the component you want to override to avoid future surprises.

53

Draft Component query Draft

Ceneral Override Override version

Attibute Qualiication Override versionf¥] Turns override on if checked.

Special Requirements Designataor: | 7 == Version =

Resolution Scope - .

Selection Criteria Varsion: 1.2.34 Deggnator

Override Select if version should be ==, >= or
F?“”'a‘t‘_”'d” [Type: lossi 19 between two versions (inclusive/ex-
roperties .

Documentation CI us Ve) .

Version
The version to request. (Two fields
open for the range cases).

Type
Select a version type from the drop
down list.

The version(s) should be entered in accordance with the selected version type format. See Chapter 9,
Versions

Overlay

It is possible to specify an overlay folder (in your file system) that will overlay the found component
during resolution — files in or under the overlay folder are used instead of the corresponding file in
the component. Thisis mostly intended for experiments or temporary workarounds, but can be used
to solve some tricky issues.

Advanced Topic — Meta Data Patching with Overlay

A very advanced use of overlay is to first materialize a patch that fixes meta data problems
in some other component, and then use the materialized patch location as the overlay when
materializing the component in need of patching.

General Overlayfolder (for prototyping) FOIder

Attribute Qualification |Fglder: The path toan Overlay folder.
Special Requirements

Resolution Scope m\'

Selection Criteria) ;

Override

Owverlay Folder
Properties
Documentation

Properties

This part alows you to modify the properties while a component matching the advisor node selection
is being processed. See more information about propertiesin Chapter 10, Properties

General Properties Property L|St
Attribute Qualification | | Key value (" New) Shows the properties that will be set
Special Requirements || repoType [BUILD . . for matchi ng Components

Resolution Scope
Selection Criteria

Override New / Edit / Remove
Overlay Folder For adding, changing or removing en-
Bopepies triesin thelist.

Documentation

Draft Component query Draft

A very common use of property settings in an advisor node is to set values that are used to select a
particular repository in the RMAP. See the section called “ Parameterized locator” for an examplein the
RMAP. |n the screenshot above you can see an example of r epoType being set to RBUI LD.

Documentation

The documentation part can be used to document what the advisor node does. Thisis valuable when
acomplex query is constructed and it can be hard to understand the particular purpose of anode. The
documentation is currently not used anywhere but in the CQUERY editor.

General Documentation

Attribute Qualification | Documentation for this Advisor Node, Use this to
Special Requirements | document what the settings in this advisor node is
for...

Resolution Scope
Selection Criteria
Owerride

Owverlay Folder
Properties
Cocumentation

Materialization wizard

The Materialize to Wizard runs the resol ution and materialization under the control of the materializa-
tion wizard, where you can influence the process. It aso gives you the opportunity to save the settings
you are making for future use. (Y our other choice is to select “Resolve and Materialize” which will
run the entire process in one step — see the section called “Resolve and materialize”). Thiswizard is
also used when materialization is performed as an import of aMSPEC, BOM, or CQUERY, i.e. using File

- Import... » Other - Buckminster — ‘Materialize from a Buckminster MSPEC, CQUERY Or BOM’

Figure5.1. Materialization wizard’sfirst page

—

Buckminster Component Query

Resolution tree

Component specification selection:

@ org.eclipse.core.runtime:osgi.bundle:3.5.0.v20090525#05Gi

[Show target platform components Re-resolve | Unresolve node) 0

Dependencies in org.eclipse.core.runtime:osgi.bundle:3.5.0.v20090525#05Gi:

Name Version Designator Category
org.eclipse.core.contenttype [3.3.0,4.0.0)#05Gi osgi.bundle
org.eclipse.core jobs [3.2.0,4.0.0)#05Gi osgi.bundle m
org.eclipse.equinox.app 9 [1.0.0,2.0.0)#05Gi osgi.bundle
org.eclipse.equinox.commaon [3.5.0,4.0.0)#05Gi osgi.bundle 1
org.eclipse.equinox.preferences [3.2.0,4.0.0)#05Gi osgi.bundle .

(Save BOM \ (External Save BOM \

4]

@) < Back (Next > \ (Cancel \ E Finish 3
4

55

Draft Component query

© This area shows the result of the resolution. By default components from ‘target platform’ are
not shown in the resolution tree. In this example though, we explicitly asked for a component

from the platform, so it still shows up.

® Thislist shows the dependencies in the selected component. Y ou can see the requested range,

and component type.

® Inthissection you can select if you want to see all components from the target platform in the
tree above. The buttons ‘re-resolve’ and ‘unresolve’ lets you retry the resolution. If you had
turned on ‘ continue on error’ you can see red dots for unresolved nodes, and you may try to re-
resolve them. This is useful when facing network issues with some components, or where you
are repeatedly tweaking some information in the repository where the component is supposed
to be found. The "unresolve’ simply forgets the previous resolution for the component and lets

you perform a‘re-resolve’.

O These buttons alow you to save the resolution result as a Buckminster Bill of Materials (Bom)
file. You can save it in a project in your workspace, or somewhere external (in the file system).

Y ou can read more about the BoM filein see Chapter 7, Bill of Materials (BOM).

Figure5.2. Wizard with target platform components shown

800

Buckminster Component Query

Resclution tree

Component specification selection:

¥ @ org.eclipse.core.runtime:osgibundle:3.5.0x20090525#05Gi
F ® arg.eclipse.core.contenttype:osgi.bundle:3.4.0v20090429-18004#05GCi
¥ @ org.eclipse.corejobs:osgi.bundle:3.4.10020090429-18004#05Gi
org.eclipse.equinox.common:osgi.bundie:3.5.0.v20030520-1800#05Gi
» ® org.eclipse.equinox.app:osgi.bundle:1.2.0w20090520-1800#05Ci
org.eclipse.equinox.common:osgi.bundie:3.5.0.v20030520-1800#05Gi

[& .] RN

[

EShow target platform components Re-resolve | Unresolve node

Dependencies in org.eclipse.core.jobs:osgi.bundle:3.4.100.v20090429-1800805Gi:

Name Version Designator Category
org.eclipse.equinox.common [3.2.0,4.0.00#05Gi osgi.bundle

(Save BOM \I I'r External Save BOM \I

f"?'l < Back I'r Next = ‘1 I'r Cancel ‘1 (Finish)

e

Here, target platform components are also displayed in the tree. Green dots means re-
solved, and gray dots means that the component was first resolved to satisfy some
other dependency. Red dots (not shown here) indicate that the resolution failed.

Once you are happy that the resolution contains what you wanted, you continue to the next step where

you can specify where components should be materialized/installed.

56

Draft

Component query

Draft

Figure5.3. Wizard’ s materialization page

8,00

Buckminster Component Query

All specifications resolved

Clobal settings

Destination type: [

Location: o |

Workspace:

(Browse... \

Browse...

On non empty install location: [Update

Selected components:

Name Version

org.eclipse.core.runtime:osgi.bundle

org.eclipse.core.contenttype:osgi.bundle

’:‘ Skip this compenent V! Use defaults Advanced...

Present Bound

org.eclipse.core.contenttype:osgi.bundle 3.4.0v20090429-180 N/A
org.eclipse.core jobs:osgi.bundle 3.4.100v20090429-1 NJA
9 3.5.0v20090525#05C NJA

org.eclipse.equinox.app:osgi.bundle 1.2.0v20090520-180 NjA
org.eclipse.eguinox.commaon:osgi.bundle 3.5.0v20090520-180 N/A

©

(" saveMsPEC) (External Save MSPEC)

4]

@)

< Back | Mext > (Cancel \ (Finish)

4

Here you control the ‘global’ settings where the materialization should go, and what should hap-
pen if the selected destination is not empty when the materialization takes place. These settings
apply to all the components except those that are handled individually in the section below.

Available materializers

file system

p2

(site-mitror)

(terget platform)

wor kspace

A location in your file system.

Thismaterializer isused to create a platform agnostic tar-
get platform. (Thisis not the same as performing ap2 in-
stall, assuch aninstallation isalwaysfor aparticul ar plat-
form). The location is a directory in your file system for
the p2 artifact repository. The p2 materializer essentially
performsthe sametask asthe PDE r epo2r unnabl e ANT-
task, but with more advanced selection criteria (the Buck-
minster resolution process vs. copy entire repository).

Deprecated in Eclipse 3.5. Used when materializing using
the now deprecated Update Manager. Still supported in
the editor for older artifacts.

Deprecated in Eclipse 3.5, and is now an alias for p2 ma-
terializer. Use the p2 materializer instead. Still supported
in the editor for older artifacts.

The materialization will go into a workspace. If loca-
tion and workspace fields are both empty then the current
workspaceisused (thiswould bethe normal case). If only
location is specified the materialization treatsthe location
as aworkspace. If both location and workspace are stat-

57

Draft Component query Draft

ed, then the materialization is made to location, and the
location is linked to the stated workspace.

‘on non empty install’ Here you can control what should happen when the desti-
nation is not empty when the materialization takes place,
you select between update, fail (i.e. report an error), re-
place (remove before materialization), and keep (usewhat
is aready there, do not update).

® Thelist shown isthe result of the resolution — the Bill of Materials (BomM). Y ou see component
name, version, and the two columns ‘Present’ (if the component has been materialized), and
‘Bound’ (if itisbound to theworkspace). Thetext ‘N A’ indicates that the component isafixture
— it can not be materialized — it existsin aform/location that is simply used.

® Hereyou can control if the selected component should be skipped — i.e. not materialized, and if
you want to use the default location (as set in the area (1)). In the example, this button is grayed
out because acomponent from thetarget platformis selected, and itslocation can not be changed.
Unchecking ‘use def aul t’ enablesthe ‘Advanced. . .’ button, and the settings made in the
dialog that appears are used instead of the default.

O The two buttons alows you to save the resulting Materialization Specification (MSPEC) in a
workspace file, or in a file somewhere in your file system. The MSPEC is a Buckminster xML
artifact that adds the final pieces of information in a materialization; i.e the what goes where-
information that is edited on the wizard page. The MSPEC isdescribed in moredetail in Chapter 8,
MSPEC — Materialization Specification .

/ém Note
Asaside of effect of saving a MSPEC, aBOM may also saved, with the same name
as the MsPEC, but with the extension ‘. bond, and areference is made in the saved
MspPeC to thisfile. (If thefile referenced in the MSPEC is already available, the Bom
does not get written. See more details in Chapter 8, MSPEC — Materialization
Specification .

Advanced settings

The Advanced Settingsfor selected components, issimply individual settingsthat do not usethe default
settings. The dialog that appears looks like this:

B el

org.apache.velocity:osgi.bundle

Destination type: (filesystem

ar
——

Parent folder: I'r Browse... \I

Leaf Artifact:

ar
——

On nen empty install location: [Fail

[Unpack Expand Default suffix:
Workspace: Browse...

Project Name:

f"?'l I'r Cancel \I (oK)

e

Destination type Thisis the same list of destination types as in the default set-
tings (i.e. file system, workspace, etc.).

58

Draft Component query Draft

Parent folder

Leaf Artifact

On non empty install location

Unpack

Expand

Default suffix

Workspace

Project name

This is the same as location in the default/ global’ settings —
i.e. the folder where the component will be materialized.

Y ou can renamethefile/folder that will be created by the mate-
rialization by entering thenew nameinthisfield. (Whenusedin
combination with unpack, this is the name of the created fold-
er).

This is the same choice as in the default settings (i.e. update,
fail, etc.).

Unpack implies two things: deflate which turnsa‘x. t ar . gz’
intoa‘x. tar’, and expand which turns ‘x. t ar’ into a folder
‘x’. When selecting unpack, deflate is always implicit and ex-
pand is enabled by default. Y ou can disable the expand if you
only want deflate.

When a component is unpacked, it can also be expanded. See
Unpack above.

Thedefault suffix isused when it isimpossible to automatically
determine the file name (and hence the suffix) of the remote
file. The suffix is only used to determine the content type of
what isbeing read (it does not directly affect the resulting name
of files or folders written in your file system). You can enter
suffixes with multiple parts, i.e. ‘t ar. gz’ asthisisimportant
if you are doing both a deflate and expand of the content (see
Unpack).

Thisisthe same asthe workspace setting in the default/ global’
settings.

When materializing into a workspace a project name can be
stated (if you want it to have a different name than the compo-
nent). Ignored for other types of materializations.

Example 5.1. Default Suffix and Renaming

The combination of default suffix and renaming can be abit confusing, so hereisan exampleto clarify.

If you are downloading nonkey. zi p,

it will be expanded into afolder called monkey in the location

folder (no surprise). If you are downloading 123xe4a56_45- 4 (and thisis the content of the monkey
zip-file, but where you only see the key used by the download service) you set the default suffix to

zi p, and the leaf artifact to monkey.

I am on anticompressants...

\
Sl —
R

Watching the paint dry...

The final step of the process is to materialize the result of the query4, possibly controlled by addi-
tional specification regarding skipped components, special trestment per component etc. Y ou will see

progress reported like this:

4Although, you do not have to perform this step if the purpose of running the wizard was to create aBOM or MSPEC for later use.

59

Draft Component query Draft

|i Problems ('ﬁ:' Javadoc (I_{.:) Ceclaration (E Consaole (ﬁ i Component Outline View (C. Progress &4 5 ¥ =0
=l Materializing (Blocked: The user operation is waiting for "workspace materializer” to complete.) m
=
The user operation is waiting for background work to complete.: 1 operation remaining.
workspace materializer (Blocked: The user operatien is waiting for background werk to complete.)
____________________________ D
Fetching org.apachewvelocity_1.5.0v200905192330 jar (145.34kB of 404.9k...29135407 fupdateSite/plugins forg.apachevelocity_1.5.0%200905192330 jar

Resolve and materialize

The Resolve and Materialize runs the entire processin one step. Use thiswhen you are happy with the
defaults, and have no need to save intermediate results or settings. (See the section called “ Materializa-
tion wizard” if you want more control). Y ou will see a progress dialog that looks something like this:

ML) Resalving query

] Operation in progress...

1 operation remaining.

’:‘ Always run in background

Materializing (Blocked: The user operation is waiting for "workspace materializer” to cam

1 operation remaining.
workspace materializer (Blocked: The user oper... is waiting fer background wark to co

Fetching org.apachevelocity_1.5.0x2009051...rg.apache.velocity_1.5.0v2009051923: 3

b 4

& 3 14 |»

I,r Cancel \1 r << Details \1 {Run in Background 3

A

Summary

In this chapter you have seen the details of the CQUERY, how a query is created and edited with the
CQUERY -editor resulting in afile that can be directly executed to materialize components, or to create
more specialized artifacts (a Bill of Materials (Bom), or a Materialization Specification (MSPEC) for
later more specialized use).

We did not show you the XML schema details of the CQUERY. The only reason to deal with the xmL
directly would be if you are generating queries or have specialized editing/refactoring needs. Please
refer to the Part |V, “ Reference” for the details.

60

Draft Draft

Components

In this chapter we take a closer look at Buckminster’s view of Components, what they are, how they
come into existence, and how they are used to manage configurations and building them.

Central to Buckminster’s description of a component is the xML artifact Component Specification
(csPeC), and its extension mechanism CsPEX. These are explained in detail in this chapter.

Depending on what you are working with, you may not ever need to deal with authoring acspec since
for many component types (e.g. 0sGi bundles, Eclipse features and products) the availability of the
specification is immediate and automatic, and you can simply make use of the component’ s actions.

Figure 6.1. Secret revealed — wher e components come from

£ TaTal - g = Ui 20 =
B- -G AT AT = Bl

11 vt

] i
I|-I Main | Actions | A e

il |

Your IDE is already expecting...

You can find several examples of csPeC and CsPEX use in Part |11, “Examples’, and some of these
may serve as templates for things you may want to do.

In the simplest cases, components arejust there, but you may want to author new configurations, add
or override actions in automatically created CSPECS, reuse existing actionsin ANT, or in some external
build system.

The component’s anatomy

To Buckminster, a Component is described by the following meta data:

name The name of a component is the primary identifier and is con-
sidered to uniquely identify a component when combined with
component type.

61

Draft

Components Draft

type

version

dependencies

documentation

attributes

filter

The type of component. See the section called “Component
types’.

The version of the component using an Omni Version as de-
scribed in Chapter 9, Versions.

A component contains declarations of dependencies on other
components. A dependency isexpressed in terms of component
name, component type, version range, and optionally include a
filter that defines the applicability of the dependency in a par-
ticular environment (e.g. adependency may only bevalid when
resolving for a particular operating system).

A short description (typically one line of text suitable for dis-
play inalist), aswell asalonger description where XHTML can
be used isincluded in a CSPEC.

An attribute of acomponent as seen from the outsideisanamed
list of referencestofiles. On theinside, an attributesis defined
using one of the following:

artifacts
Used for static lists of artifacts.

actions
Used for dynamic/computed attributes. Typically some
sort of build that produces new artifacts. Some actions are
capable of producing more than one result where results
needs to be independently reachable. To handle this, an
action can declare additional attributes that corresponds to
such results.

groups
Used to aggregate other attributes (i.e. artifact, action, or
other groups).

A component’ sfilter is used to determine the component’ s ap-
plicability/inclusion in aresolution in aparticular environment
(e.g. for aparticular operating system, Cpu architecture, etc.).

generators

Advanced topic — Generators

A component can act as a generator of “virtual” compo-
nents. This is useful when a component is brought into
existence by an action/build step and it is impossible to
locate such a component viathe RMAP.

62

Draft Components Draft

Figure 6.2. Component anatomy

dependencies

T

00

\4 generated
R
|]

N -

A component with four public attributes a, b, c, f, and private attributes d, e, de-
pendencies on other components, and a generated component. Illustration al-
so shows that attribute a isagroup consisting of attribute b, d, e and f . The at-
tributesb, c, and d are simple static lists of artifacts, wherease and f are generated.

CSPEC and CSPEX

Buckminster standard configuration includes support for several component types. Such an adapter
interprets the existing meta data in its original form, and tranglatesit into the cspec model. All com-
putations done on components by Buckminster are done in terms of CSPECs. The actual csPeC dataiis
not persisted — it is created each time it is needed (although technically it may be cached for perfor-
mance reasons). Even if the generated cSPEC is not persisted by default, it is still possible to generate
the cspec in XML form for viewing, printing, or possibly for interchange with other systems.

A component that does not have any meta data to trandate, or where there is no adapter for this
particular component type can use Buckminster's cspec xML format for meta data to describe the
component. Thisis done by placing abuckni nst er . cspec filein the component’ s root.

It is possible to extend/decorate an automatically generated csPec by placing a file called
buckmi nst er . cspex in the component’ s root.

Warning

O Although technically possible to also extend a component that is described with a
buckmi nst er . cspec, such aconstruction is not recommended asit just makesit more
difficult to author the meta data.

Both csPeC and CSPEX are expressed in XML (see Buckminster XML Schemas), and the CSPEX is
based on the same schema as the csPec, but adds capabilitiesto replace and removeinformation
by using variousal t er XXXandr enove XML elements. Elementsin acsPex that arenot marked
with al t er orr enove are additions to the referenced cspec.

The csSPEC editor

Buckminster includes a graphical cspec editor/viewer. Asaviewer it is capable of showing the result-
ing component model (i.e. the combination of the automatically generated csPeC and a CsPEX). Asan
editor it can be used to edit a CSPEC artifact.

63

Draft Components Draft

5 Note

Thereis currently no graphical editor for a csPex. Editing is done using an XML editor.
Seethe section called “ Configuring Eclipse for XML Editing”. One alternative approach
isto create a csPEC and edit it with the graphical editor, and then modify the resulting
XML fileinto acsPeEx — which may save you some time if you are new to Buckminster,
and have alot to author.

When the csPeC editor is used as a viewer, it isin read-only mode with editing functions turned off.
You can see that the editor is in view mode by looking at the title in the editor tab (it says “(read
only)"), and in the File menu all operations that saves are disabled.

The editor is a multi-tab editor where different parts of the csPeC are shown/edited on separate tabs.
Here is a screenshot of what it looks like when the editor is opened:

l.;,_é buckminster.cspec &3 =0

Main

Compeonent name: ExamplesForBook

Component Type: '_ buckminster ?]
Versicn
Version: L.0.0
Type: [osci 2]

Main Actinnslﬁ\rtifactslCroupslAIIAttributes Dependencies | Generators | Documentation | XML Content

The editor opens with its main tab selected (for editing the fundamental information; name and ver-
sion). Along the bottom, you see all the tabs that takes you to different partsin the editor.

In this book we have taken the approach to explain the editor concept by concept, showing how the
editor works, together with an explanation of the resulting CSPEC XML, and how it can be extend-
ed with a csPex (as opposed to dealing with the same concept multiple times — we hope this saves
time jumping between sections).

Viewing a CSPEC

Toview theresulting csPec for acomponent you have several options. The csPeC editor can be opened
in view mode (read only) on the resulting csPEC of a component by:

Draft Components Draft

Selecting File — View a selected CSpec... which opensadialog with alist of all components known
to Buckminster in your current workspace. Select the component you want to view.

* Right click on the project folder or any file within the project in the Eclipse Package Explorer, or

the Eclipse Navigator views. In the context menu that appears select Buckminster — View CSpec...
and the csPec for the associated component is opened.

* A CSPEC can be opened from two of Buckminster's views — the Component Outline View, and

Component Explorer. They are both found by selecting Window — Show View — Other... — Buck-
minster, and then the respective view. The Component Outline View shows information about the
component currently selected, and the Component Explorer shows information about all known
components. In either view, the context menu for a Component node presents the choice Open,
which will open the cspec.

/@ Note
It is not currently possible to open components via dependencies.

If you want to open a cspec (or csPex) for editing, you should locate the file in the workspace and
then open it for editing as you normally open other files for editing. The “View a CSpec...”-actions
always open the editor in view-mode (read-only).

Creating a CSPEC, Or CSPEX

To create a CSPEC, or aCsPeX, simply invoke File — New - Other... » Buckminster, and then select

one of . Component Specification file, or - Component Specification Extension file, which will
prompt you for the name of the file, and then create it with the required XML declarations.

The resulting csPec looks like thisinitially (using 0sGi version1.0.0 by default):

<?xm version="1.0" encodi ng="UTF- 8" ?>
<cs: cspec
xm ns: cs="http://ww. ecl i pse. org/ buckm nst er/ CSpec-1. 0"
name="or g. deno. Exanpl esFor Book"
conponent Type="buckm nster"
versi on="1.0.0"
/>

As you are editing, the editor will add needed name space declarations. If you edit the file using an
XML editor, you need to add the namespace declarations yourself. See Buckminster xmL Schemas for
more information.

And the resulting file for a cspex should look like this:

?xm version="1.0" encodi ng="UTF-8"?>

<cspecExt ensi on
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: bc="http://ww. ecl i pse. or g/ buckm nst er/ Cormon- 1. 0"
xm ns="http://ww. eclipse. org/ buckm nst er/ CSpec-1. 0"
>

<dependenci es>
<l-- Place your Dependencies here -->

</ dependenci es>

<gener at or s>
<l-- Place your Cenerators here -->
</ gener at or s>

<artifacts>
<!-- Place your Artifacts here -->
</artifacts>

<actions>

65

Draft Components Draft
<l-- Place your Actions here -->
</ actions>
<gr oups>
<l-- Place your Groups here -->
</ gr oups>

<al t er Dependenci es>
<!-- Place your Dependency alterations here -->
</ al t er Dependenci es>

<alterArtifacts>
<!-- Place your Artifact alterations here -->
</alterArtifacts>

<al ter Acti ons>
<l-- Place your Action alterations here -->
</al terActions>

<al t er Groups>
<l-- Place your Group alterations here -->
</ al t er G oups>

</ cspecExt ensi on>

,ﬁb Note

Y ou should only create a cspeC for a component that is not already trandlated into the
csPeC model automatically. Also note that you should only create a csPex for compo-
nentsthat are automatically translated, and where you need to extend it. If you are unsure
of how thisworks — see the section called “ csPEC and CSPEX”.

Name and version

When opening the csPec editor, it opens with its main tab selected. A screenshot of this can be seen
in the section called “ The cspecC editor”.

The main tab has the following content:

Component name

Component Type

Version

Thisis the name of the component that together with the com-
ponent type is the unique identifier for the the component. A
typical name reflects the organisation creating the component
(eg.org. ecli pse. buckmi nster. core).

Thisis one of the supported types (e.g. osgi . bundl e, or
ecl i pse. f eat ur e). Seethe section called “ Automatically
generated meta data” for abrief overview, and the reference
guide “ Component Types’ for all the details.

This describes the version of the component. In the user inter-
facetheversionisbroken up intotwo parts; theversion stringin
clear text, asdisplayed intheversion field, and anamed version
format. The selection of the version format determines how the
digits, strings, and delimitersin he version string are trandated
intothe Omni Versioninstance used internally. For information
about versions and version types see Chapter 9, Versions.

\ Tip

~ -

If you are working with osGi bundles, Eclipse
features or plugins you should always use OSGi
versioning. When the choice is yours, we recom-
mend also using OSGi.

66

Draft

Components Draft

CSPEC XML

In XML, name and version are written like this:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<cs: cspec
xm ns: cs="http://ww. ecl i pse. or g/ buckni nst er/ CSpec-1.0" @
name="Exanpl esFor Book" @
conponent Type="buckni nster" ©
version="1.0.0" @

. I @

\%

Namespace declaration for CSPEC.

The name of the component.

The component type.

The version.

Deprecated. The version typeis supported for backward compatibility. Should not be used for
new artifacts.

00600

/ré__u Note
You do not have to change you pre Eclipse 3.5 csPecs as the formats OSG
Triplet,String,andTi mest anp, and OSG are handled. If you however have
created your own versioning scheme you must switch to using Omni Version.

CSPEX XML

A cspPex can override all of these except the component’s name. A CSPEC is bound to a CSPEC via
inclusion in the component’ s root, and it will always extend the component in which it is embedded
— as aconsequence it is not possible to alter the components name. The corresponding section for
acsPex lookslike thisin XML:

<?xm version="1.0" encodi ng="UTF- 8" ?>

<cspecExt ensi on
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: bc="http://ww. ecl i pse. org/ buckm nst er/ Cormon- 1. 0"
xm ns="ht tp://ww. ecl i pse. or g/ buckmi nst er/ CSpec-1.0" @
conponent Type="buckni nster" @
version="1.0.0" ©

versionType="Triplet "0

\%

Namespace declaration for CsPEX isidentical to CSPEC.

Overrides the component type.

Overrides the version.

Deprecated. Overrides the version type. Should not be used in new CcsPex, the version attribute
should be in Omni Version format. Supported for backward compatibility for the types 0SG
String, Tripl et,and Ti mest anp.

[~)

Attributes

There are three types of component attributes; artifacts, actions and groups. These are explained in
the following sections. Several concepts are common to all attributes — these are described here.

Visibility. Attributes are declared to be either private or public. The private attributes can only be
referenced from within other attributesin the same component. The public attributes can be referenced
from other components, and public actions can also be invoked from the user interface, or command
line.

In XML the visibility is declared like this:

67

Draft

Components Draft

<artifacts>
<public nanme="..." />
<private name="... />
</artifacts>

<actions>
<public nanme="..." />
<private name="..." />

</ actions>

<gr oups>
<public nanme="..." />
<private name="..." />
</ gr oups>

This means, that in each section, an attribute of the particular type is created with public or private.

/ém Note

Since the syntax for publ i ¢ and pri vat e elementsisidentical (except for the actual
public/private element name) the following sections are only explaining the syntax using
public elements.

Value. Thevalueof anattributeisawaysan array of path groups, where apath groupisacollection
of paths referencing files or directories/folders. The paths are typically expressed as relative to the
path group’s base (which by default is the component’s root, or specified explicitly), but paths can
also be absolute. A relative base is relative to the component’ s root.

A path that endswith aslash ‘/" isareferenceto adirectory/folder. Absolute paths begin witha“/" (on
Windows an absolute path starts with either *\', */’, ‘drive letter:\’, or ‘drive letter:/).

N Tip

~ -
You can always use ‘[’ as the path separator as it works on all platforms, and creates
fewer issuesasa’\’ isoften used as an escape character.

The artifact and action attributes always return an array with a single path group, and the group at-
tribute returns an array with all values from the grouped attributes. As you will see later, agroup can
also manipulate the base path.

Asthe description is quite abstract — hereis an illustration and some examples.

Figure 6.3. A file tree with components

VAN
/ T

component-A component-B component-C

/ / \ N

plugins features plugins features plugins features

A1 TN / A\ N

a b e f

68

Draft Components Draft

Asan example, if you want an attribute in conponent - Cto includethe artifacts‘g’, and ‘h’, you can
declare the attribute’s base to be an empty string (base=""), and use the paths ‘pl ugi ns/ g’, and
‘pl ugi ns/ h’. You get the same result if you instead set the base like this: base="pl ugi ns", and
set the paths to just ‘g’ and ‘h’. Does it matter which you use? The same files are referenced in both
cases. The answer is. yes, it matters when you are copying the result. Let’s say you copy the result to
alocation‘Z’. Inthefirst case youwould get ‘Z/ pl ugi ns/ g’ and ‘Z/ pl ugi ns/ h’, and in the second
caseyouwouldget ‘z/ g’,and ‘Z/ h'.

If you in each of the components A-C create attributesthat represent plugins and featuresyou can easily
create agroup that merges all plugins (with all paths relative to component root) into a pluginsfolder,
and all features to a features folder. If you however declared al the plugins and feature attributes to
be relative to pl ugi ns and f eat ur es respectively, then the group would copy all of the a-j files
into the same location.

Reference to the component itself

All cspecs have an implicit attribute named buckni nst er . conponent . sel f. The path group of
the buckni nst er. conponent . sel f can bein one of two forms depending on if the component is
adirectory or afile; if the component is a directory, then the base of the path group is equa to the
location of the component and the array of paths is empty, and if the component is a file, then the
base appoints the directory that contains this file and the path array has one path which is the file
relative to that base.

Whenever a combination of component and attribute can be specified as a reference to an attribute,
the default component isbuckni nst er . conponent . sel f.

Thebuckni nst er. conponent . sel f attribute removes the need for you to create an additional at-

tribute just to reference the static content of the component, and makes it easy to reference a compo-
nents content in another component as the name is always the same.

Artifacts

An attribute implemented using artifacts is a static path group; alist of paths stated in the cspec. The
CSPEC editor tab for editing artifacts looks like this:

69

Draft Components Draft
) buckminster.cspec 52 =08
Artifacts
Mame Public General General
someFiles true Documentation | pame: someFiles
Publicc. [
Base Path:
Paths:
Path (New)
Edit

(MNew 3 € Remove

~

Main|Actions Artifacts Crnups|AIIAttrihutes Dependencies | Generators | Documentation | XML Content

External Save As

Ontheleft, thereisalist of declared artifact attributes, their name and visibility isdisplayed. Buttons at
the bottom allowsfor adding and removing artifact elements. To edit an element selectitinthelist, and
then changeitsvalues on theright. There aretwo sets of valuesto edit; General (displayed above), and
Documentation (not shown). The Documentation set consists of a single field where documentation
for the artifact can be entered (XHTML is allowed) — this documentation is for the implementor/user

of the csPEC.

Name

Public

Base Path

Paths

This is the name of the attribute. This name is used to ref-
erence the value. Examples of typical names are jarfiles,
documentation.html, documentation.pdf, headerfiles.

When the checkbox is checked, the artifacts attribute is de-
clared to be public. If not checked it is (not surprisingly) pri-
vate. (See Visihility).

Thisisthe base for al pathsin the Paths section. If Base Path
is empty, the component’s location is used as the base.

Thisisalist of paths, relative paths are relative to Base Path,
and absolute paths may be used. Buttons on the side alows
adding, removing and editing entries.

70

Draft Components Draft
5 Note
Thereisno need to create an artifacts attribute for everything included in the component.
The buckmi nst er. conponent . sel f attribute aways refers to the component itself.
See the section called “ Reference to the component itself .
CSPEC XML
In XML the declaration looks like this:
<artifacts>
<public
name="..."
base="..."
path="..." >
<docunent ati on>
<p>Thi s i s docunentati on</ p>
</ docunent at i on>
<path path="..." />
<path path="..." />
</ public>
<public ... />
</artifacts>
A short-hand notation can be used if there is only one path.
<artifacts>
<public
name="..."
base="..."
path="..."
/>
</artifacts>
Everything except the nane attribute is optional.
CSPEX XML
The csPeEx can extend an artifact declaration. Additions are made using the same declaration asin the
CSPEC. Alterationsaremadeinan al terArtifacts element. Thisiswhat it lookslikein XmL:
<alterArtifacts>
<public name="..." > @
<path path="..." /> @
<renobvePath path="..." /> ©
</ public>
<public ... /> O
</alterArtifacts>
O Theartifact referenced by nameis overridden with the values declared in this element.
® Thispath isadded
® Thispathisremoved
O Anadteration to an additional attribute.

An attribute implemented using groupsis a group of other attributes from the same, or other compo-
nents. The csSPeC editor tab for editing groups looks like this:

71

Draft Components Draft
) buckminster.cspec 53 =08
Groups
Name Public Ceneral General
Cocumentation | Name:
Public:
Rebase Path:
Prerequisites:
Component Mame
f New 3

MainlActinns|ArtiFacts Croups | All Attributes | Dependencies | Generators | Documentation | XML Content

Ontheleft, thereisalist of declared group attributes, their name and visibility is displayed. Buttons at
the bottom allows for adding and removing group elements. To edit an element select it inthelist, and
then changeitsvalues on theright. There aretwo sets of valuesto edit; General (displayed above), and
Documentation (not shown). The Documentation set consists of a single field where documentation
for the group can be entered (XxHTML is allowed) — this documentation is for the implementor/user

of the csPeC.

Name

Public

Rebase Path

This is the name of the group. This name is used to ref-
erence the value. Examples of typical names are jarfiles,
documentation.html, documentation.pdf, headerfiles.

When the checkbox is checked, the group attribute is declared
to be public. If not checked it is (not surprisingly) private. (See
Visibility).

By setting the rebase path, you can connect various path groups
using a common base, making al relative paths in any path
group berelativethe new rebase path. The pathsthat arerelative
to bases that are not under the new rebase path are unaffected.
Asan example — look at Figure 6.3, “A file tree with compo-
nents” and say you grouped the plugins from components A-C
(al arerelative to their respective component root). With are-
base path of Y, and a copy of the result to z the result looks
like this:

72

Draft

Components Draft

Prerequisites

Z
PN
plugins component-B component-C
| |
a plugins plugins
AN AN
c d g h

Thisis alist of references to attributes in the same, or other
components. Buttons on the right allows adding, removing and
editing entries. When adding, or editing, the following dialog
is shown:

P
-

Group - Prerequisite

New Row

Enter new row fields.

Component: ExamplesForBook j

MName: someFiles j

Contributor: E

Filter: target.ws=carbaon

Include Pattern:

Exclude Pattern:

I'r Cancel \I (oK)

Component
The drop-down list shows all component that are added as
dependencies. It is not possible to group an attribute from
acomponent that is not among the dependencies. If Com-
ponent is left empty — it means using attributes from the
component itself.

Name
This is the name of the attribute from the selected com-
ponent. The drop down list shows the available attributes
from the selected component. If the name is |eft empty, it
means to use the referenced component’ s default attribute
(i.e. sdf).

Contributor
Should be checked if the result of the referenced attribute
should beincluded in the group. If unchecked, the attribute
isstill polled for avalue and can thustrigger actions. Asan
example, thisis useful when an action produce unwanted
artifacts like alog-file that should not be included.

73

Draft

Components Draft

CSPEC XML

A group isdeclared in XML like this:

<gr oups>
<public
name="..." @

rebase="..." @
>

<attribute ©
name=" . "
conmponent ="

o

" 0

Filter

A prerequisite can have a filter (see the Filters reference
guide) which makesit possibleto conditionally include the
prerequisitein theresult. The prerequisiteisincludedif the
filter is empty, or evaluatesto true.

Include Pattern

The include/exclude patterns are regular expressions that
are applied to the transitive scope of attributes in the pre-
requisite. Thetransitive scope can be thought of asalist of
«conponent name»#«attri bute name» entries. If you
use an i ncl udePat t er n, only those entries that match
that pattern will be included. If you use an excl udePat -

t er n matching entries will be excluded. The excl ude-

Pat t er n takes precedence in case an entry should match
both patterns. The patterns are applied to each attribute in
the transitive scope where the attribute is represented on
the form «conmponent nanmex»#«attribute nanme» (or
just «conponent name» in case self reference has been
used). The match must be afull match for the expression.
Partial matches does not count. (If you don’'t see the in-
clude and exclude patternsin the user interface you have a
version that istoo old — see Eclipse Bug 283936 [https.//
bugs.eclipse.org/bugs/show_bug.cgi 2d=283936]).

/ér Note
Action prerequisites (i.e. theinput to actions)

are not included in the transitive scope. If
you need to perform include/exclude input
to actions you need to do that in the respec-
tive action. If an action produces addition-
a named attributes (in addition to its normal
product value) then thesearealsoincluded in
the transitive scope (if referenced).

Exclude Pattern

contributor="fal se" @

filter="..."
includePattern="..."
excl udePattern="..."

/>
<attribute ...

(7]

/> ®

<docunent ation> ...

</ gr oups>

(8]
(9]

See Include Pattern above.

</ docunent ati on> ®

74

https://bugs.eclipse.org/bugs/show_bug.cgi?id=283936
https://bugs.eclipse.org/bugs/show_bug.cgi?id=283936
https://bugs.eclipse.org/bugs/show_bug.cgi?id=283936

Draft Components Draft

The group’s name

The rebase path as explained for the editing field with the same name.

The reference to the attribute to include in the group

This is the name of the attribute to include from the specified component, or from ‘self’ if no

component is specified.

Thisis the name of the component to get the specified attribute from. May be empty.

If the value of the attribute should be included in the group, the contributor should be set to true

(which isthe default if contributor is omitted).

000The attributes fi | t er, i ncl udePat t er n, and excl udePat t er n as explained for the same
fieldsin the editor.

® The second attribute to be added to the group

® Documentation for the group — can use XHTML.

©0 0000

CSPEX XML

A group can be extended in acsPex. Adding groupsis done by using the same syntax as in the CSPeC.
Alterations are donein XML using al t er Gr oups like this:

<al ter Groups>
<public
name="..." @
rebase="..." >

<alterAttribute @
name="..."
conmponent =" "
contributor="..."
filter="..."
includePattern="..."
excl udePattern="..."
/>

<renove name="..." /> ©
</ public>
<public ... /> @
</ al t er G oups>

© The name attribute is used to select the group to alter. The attributes of this element overrides
the attributes in the selected group.

® AninneralterAttribute isused to ater one of the entriesin the group, the nane selectsthe
entry to modify, and the additional values override the corresponding valuesin the selected entry.

©® Anentry inthegroup isremoved by using r enove, the nane selects the entry to remove.

O Herean additional group is altered.

Actions

An action is a dynamic attribute. It has the same type of value as other attributes — the difference
being that it can compute the value when the value is requested. Actions may also be used for the
purpose of only invoking them for their side effects (i.e. something the action doesis valuable rather
than a resulting file like some log-file it may produce). An action may also produce more than one
named result.

An action attribute is a quite powerful mechanism, and there are many options and details. Here is
anillustration of the actions's main parts (that is slightly more complicated than the simplest possible
where there isa single input, asingle output, and no required properties).

75

Draft

Draft Components
Figure 6.4. Action anatomy
Prerequisites (R) Component A
S A#attrl attrl
properties >
A#attr2 attr2
A#attr3 attr3
II
1
1
1
1
,I
Vaue of action attribute]
III
1
read(R,S,U) /
write(X,Y) /
/

Product
X | path group| ---------
Y | path group

Internally, an action has an Actor that handles the execution (a plugin, or script). The actor
gets three things as input; properties (to initialize the actor, and control what it is supposed
to do), prerequisites (the input to the action), and product (the result/output path group of
the action). Theillustration shows aliases (R, S, U, X, Y) — these, together with the prop-
erties can be thought of as the arguments to the actor. The actor finds the paths to the data
viathe aliases; the input is found in the prerequisites’ aliases (R, S, U) which references at-
tributes in components (which in turn, eventually, will refer to path groups that references
filesin the file system) — the output locations are found in the product’ s aliases (X,Y) which
are path groups that references the output/result location(s) — most of the time a single path.

The cspPec editor tab for editing actions looks like this:

76

Draft Components Draft
—— . —
o *huckminster.cspec &3
Actions
Name Public Ceneral General
buildme true Properties Name: buildme
hitme true Products
. | Public: Yy
some-action true Documentation
another action false Actor Name:
Always: B
Assign Console Support: M
Filter:
Up-To-Date Policy [ACTOR =
File Count:
Additional File Count:
Prerequisites Alias:
Prerequisites Rebase Path:
Prerequisites:
Component Artribute Alias { New
Edit
f Mew 3 € Remaove >

Main | Actions ArtifactslGroupslAIIAttributes Dependencies | Ceneratars | Documentation | XML Content

External Save As

Ontheleft, thereisalist of declared action attributes, their name and visibility is displayed. Buttons at
the bottom allows for adding and removing action elements. To edit an element, select itinthelist, and
then change its values on the right. There are four sets of values to edit; General (displayed above),
Properties, Products (shown further on), and Documentation (not shown). The Documentation set
simply consists of asinglefield where documentation for the action can be entered (XHTML isallowed)
— thisdocumentation is for the implementor/user of the CsPEC.

The General Section

Name

Public

Actor Name

This is the name of the action. This name is used to reference
the action’s value. Pick a name that is meaningful to a user
wheninvoking it fromalist of actions (e.g. bui | d. j avadoc).

When the checkbox is checked, the action isdeclared to be pub-
lic. If not checked it is (not surprisingly) private. (See Visibil-
ity).

This is the name of the actor type. Currently, there are sever-
a actor types that come with Buckminster. There is one gen-
eral purpose actor that invokes ANT scripts (this actor is called
ant), and several special purpose actors for specific tasks. It is
possible to extend Buckminster with other types of actors. See
Actors reference guide for all the details.

77

Draft

Components Draft

Always

Up-to-date-policy

File Count

Additional File Count

Assign Console Support

Filter

Prerequisites Alias

This checkbox is used to control the up to date policy. When
checked, thisaction will alwaysbe executed (i.e. it things of the
output as never being up to date). If unchecked, the specified
up to date policy is used.

The up to date policy indicates when the actor should consider
the output to be up to date (and not run the action). This setting
isignored if Alwaysis checked. The possible values are:

ACTOR
It is up to the actor to determineif output is up to date.

DEFAULT
Folders are never considered to be up to date, and output
files must be younger than input files.

MAPPER

Each prerequisite is matched to a corresponding out-
put/product. The match is verbatim or using aregular ex-
pression pattern and a replacement. All files must match
and each product file must be younger then its respective
match to consider the product up to date. The Mapper poli-
¢y can be combined with Count policy toindicatethat there
are more filesin the output (that are not present in the pre-
requisites) A count that denotes less then the number of
mapped files has no significance.

COUNT
At least the specified number of filesin the product must
be younger then the youngest artifact in the prerequisites
to consider it up to date.

NOT EMPTY
The output/product is considered up to date if it has con-
tent.

This value is used with the COUNT up to date policy (see
above).

This value is used with the MAPPER up to date policy (see
above).

By default, actions are given access to the console (standard
input/output and error streams). This can be turned off for an
action that produces lots of unwanted output.

Thefilter isused to enable an action only when thefilter expres-
sion evaluatesto true. Thisisuseful when certain actionsshould
beignored on certain platforms. Thefilter iswritten using LDAP
filter syntax (the same way filters are expressed throughout
Eclipse). See Filtersfor moreinformation. Leavethefilter field
empty if you want the action to always be enabled. As an ex-
ample, the filter expression t ar get . os=wi n32) would only
enable the action when running on 32 bit windows.

The prerequisites definesthe action’ sinput. They aresimilar to
agroup, but this group does not have anamethat isuseful. The
prerequisites alias allows you to give the prerequisites group
a name that can be used in the action (e.g. i nput, sour ce,

78

Draft

Components Draft

Prerequisites Rebase Path

Prerequisites

The Properties Section

source-files, €tc.). It is also possible to set aliases for in-
dividual attributesin the prerequisites group — see“Prerequi-
sites’ below.

The prerequisites defines the action’ sinput, and is similar to a
group. The prerequisites rebase path makes it possible to set
the rebase path of this group. See “Group, rebase path” for an
explanation of how rebase works.

This is a list of prerequisites — buttons on the right allows,
adding, removing and editing entries. The prerequisites defines
theinput to the action — and by input, we mean both aconcrete
set of files, aswell as any side effects that must have occurred
prior to executing the action. A difference between prerequi-
sitesand aregular group isthat is possible to specify aliasesfor
the individual attributes. Setting aiases is useful as the actor
would otherwise haveto know the full names of the attributesit
is processing. See the section called “Groups’ for an explana-
tion of the content of prerequisistes, and the dialog that appears
for adding/editing.

The Properties section is used to edit actor proprieties — there are two sets; properties that are used
when the action invokes the actor (called General Properties), and properties that define parameters
to initialize the actor (called Actor Propertiesl). Thisiswhat thislooks like in the editor:

General
Properties
Products
Documentation

General Properties

Key Value
Actor Properties
Key Value

Each list isalist of property entries (a key-value pair). The Actor properties are used to initialize an
instance of the specified actor type (e.g. an ant actor). The actor properties are specific to the type of
actor being used (e.g. the ant actor has properties that references the ANT build file to use). See the
Actors reference guide for information about each actor type' s properties.

On the right of each list there are buttons for adding, removing, and editing entries. When adding and
editing, a dialog pops up where key and value are entered. (A screenshot is not included).

YWhichisareal ly bad name, since al of the properties are for an actor.

79

Draft

Components Draft

The Products section

The Products section is used to define the output of the action. The output (in addition to what is
written to files as a consequence of running the action) is the path group value of the action attribute
(or in specia cases, multiple attributes). This section looks like this:

Product Alias

Product Base Path

Product Paths

General

Products

Properties Product Alias:

Products

Documentation | Product Base Path:

Path

MName Public

The product alias makesit possible to give the resulting output
aname that can be used in the action/actor. Without this name,
the actor would have to know the name of the component and
the name of the action. Examples of aliases could ber esul t
or out put .

The output/product is similar to agroup, and just asin agroup,
it is possible to set the base path of the group using Product
Base Path. See Group, rebase path for more information about
the base path. The product base path is typically a reference
to the directory where the actor has written its output (e.g. the
compiled files).

In a product, an empty base is equal to the variable
${ buckni nst er. out put} which is the designated output
folder for the build of the component.

/ém Note

This is different from an empty base in an arti-
fact. There, it defaults to the value of the vari-
able ${ buckni nst er . home} which isthe com-
ponent location.

If Product Pathsis selected, the output consists of apath group
(i.e. alist of paths relative to the Product Base Path). The but-
tons on the side of thelist allows adding, removing and editing
entries. When adding or editing, a dialog pops up where the
path can be entered. (A screenshot is not included in this book).

Product Pathsis mutually exclusive with Product Artifacts.

80

Draft

Components Draft

Product Artifacts

Yy

If Product Artifacts is selected, the output consists of a group
of generated attributes. The main differencesvs. Product Paths
arethat new individually addressabl e attributes are created, and
that each such attribute hasits own base path. Thisisvery useful
when an action produces more than one result e.g. compiled bi-
naries and documentation. By making the two results available
individually, some other group could include only the wanted
subset, or an other action could have only the wanted subsec-
tion as a prerequisite. The mechanism also provides a separa-
tion of concerns between the action producing the result, and
the result itself. At some later point you may want to refactor
the actions so that compilation does not generate the documen-
tation, and documentation is generated with its own action. By
referring to the attributes that represents the result, you would
not have to change anything where these results are used when
splitting up the actions.

Product Artifacts is mutually exclusive with Product Paths.

The dialog for adding and editing Product Artifacts is similar
to the dialog for editing attributes of artifact type.

Action - Product Artifact

New Row

Enter new row fields.

GCeneral

Ceneral

Documentation | yame:

Public: M

Base Path:

Type:

Paths:

Path | ey

Edit

Remowve

T

Cancel -\I (0K)

See the section called “ Artifacts’for an explanation of the fields.

CSPEC XML

The xmL for actions looks like this:

<actions> @

<public
name="..." @
actor="..." ©

>
<act or Properties> @

<property key="..."

</ actorProperties>
<properties> @

value="..." />][] *

81

Draft

Components Draft

<property key="..." value="..." [>[] *
</ properties>
<docunent ati on>. .. </ docurrent ati on> @
<prerequisites @

rebase="..." ©

alias="..." ©
>

<attribute ®

name="..." ®
conponent="..." ®
alias="..." ®
filter="..." ®

contributor="true" ®
i ncl udePattern="..." ®
excl udePattern="..." ®
/> Il *
</ prerequi sites>
<products> ®
<product ®
alias="..." @
base="..." &
upToDat ePol i cy="..." @&
filecount="..." @ // NOT IN U
pattern="..." @ // NOT IN Ul

replacement="..." @ // NOT IN U
>
<path path="..." /> @ // Sinple strategy
1=
</ product >
</ product s>

</ public>
/1=

</ actions>

8 ® 6 606 660 060 00 o000

Actions are written within an act i ons element. In this element, the individual actions are en-
tered using either apubl i ¢ or pri vat e child element. The syntax isidentical for both (except
the difference in element name), and the example only shows a public element.

A publ i ¢ element is used for a public action — its nane attribute defines the action’s name.
The name of the actor is specified with the act or attribute.

The actor properties are defined as pr oper t y element children of an act or Properti es ele-
ment.

The general properties are defined as pr oper t y element children of an pr operti es element.
Documentation can be provided for an action using adocunent at i on element. It may contain
XHTML.

A prerequi si t es element defines the input to the action.

The prerequisites r ebase path. See “Group, rebase path” for an explanation of how rebase
works.

Specifiesan al i as for the prerequisites that makes its content available to the actor.

Each attribute that should be part of the prerequisites (i.e. theinput) isstated withanat t ri but e
element. An at t ri but e element references an attribute in a component.

The nane attribute is the name of an attribute in some component.

The conponent attribute is the name of the component.

Theal i as attribute defines aname for the attribute that makesit possible for the actor to access
this attribute separately.

Thefi | t er attribute makesit possibleto specify afilter condition that dynamically determines
if the prerequisites should contain this attribute or not.

The cont ri but or flag can be set to true if an action is only included for its side effects. If
contributor isfalse, the value of the attribute is not included in the result.

i ncl udePat t er n, excl udePat t er n — see the corresponding explanation for group prereg-
uisitesin the section called “ Groups”.

82

Draft

Components Draft

CSPEC XML

(-]

D06 6.6

(%)

A product s element defines the output/result of the action. An action can produce more than
one product — the actions result is a group consisting of al such products. Each product may
aso beindividually available as a separate “ generated” attribute.

A product element isused to define a product.

The product alias makes it possible to reference the product from the actor. This is needed to
make the actor aware of where output should be placed etc.

The base isthe base path for the product.

TheupToDat ePol i cy isthe same as the corresponding setting in the user interface.

Thefil ecount defines how many filesin the product that must be present to determine that
the product is up to date in relationship to the prerequisites. This value is used if the up to date
policy is COUNT or MAPPER. When used with MAPPER, the fi | ecount value is the number of
files that must be present in addition to the mapped files. At present, afi | ecount field is not
availableinthe user interface— see Eclipse BugzillaBug 283937 [https://bugs.eclipse.org/bugs/
show_bug.cgi?d=283937].

Thepat t er nisusedincombinationwithr epl acenent . Thisishowever noyetimplementedin
Buckminster — see Eclipse Bugzilla Bug 283938 [https://bugs.eclipse.org/bugs/show_bug.cgi?
id=283938]. The pattern/replacement are used with the MAPPER up to date policy. It is used to
map input names to output namese.g. ‘*. ¢’ to‘*. o’ or similar. Expressed as regexp, this could
be expressed like this:

pattern="(.+)\.c$"repl acenent =" $1. o"

Ther epl acement would be applied to prerequisites paths relative to their respective bases.
repl acenent — see‘pattern’ above.

A product has one or more pat h elements, or has one or more publ i ¢ elementsif individually
addressable attributes are wanted (see next example).

Alternatives for path in product:

<product ...>
<public
name="..."
base="..."
path="..." @
/>
<public
nane="..."
base="..."
>
<path path="..." /> @
/...
</ public>
</ product >

© A simple group with a single path can be defined with a publ i ¢ element with a pat h
attribute. The name isthe name of a created component attribute.

0 A group with multiple paths can be defined with a publ i ¢ element with multiple pat h
child elements. The nane isthe name of a created component attribute.

The xML for actions can be extended. Just like everywhere else in a CsPEX, things you want to add
are just added using the same syntax as in a CSPEC, and the things you want to ater are handled in
al t er «XXX» elements.

<al terActi ons>

<remove name="..." /> ©
<public name="..." actor="..." > @
<alterProperties> ©
<rermove key="..." /> O
<property key="..." value="..." /> ©

</ alterProperties>
<al ter Act or Properties> O

83

https://bugs.eclipse.org/bugs/show_bug.cgi?id=283937
https://bugs.eclipse.org/bugs/show_bug.cgi?id=283937
https://bugs.eclipse.org/bugs/show_bug.cgi?id=283937
https://bugs.eclipse.org/bugs/show_bug.cgi?id=283938
https://bugs.eclipse.org/bugs/show_bug.cgi?id=283938
https://bugs.eclipse.org/bugs/show_bug.cgi?id=283938

Draft

Components Draft

<renove key="..." [>

<property key="..." value="..." />
</ al terProperties>
<alterPrerequisites @

rebase="..."

alias="..."

i ncl udePattern="..."

excl udePattern="..."

>

<renove name="..." /> ©
<alterAttribute ©
name="..."
conponent="..."
alias="..."
filter="..."
contributor="..."
/>
</ al terPrerequisites>
<al ter Product s> ®
<renoveProduct name="..." /> ®
<removPath path="..." /> @
<path path="..." /> // add path ®
<public @
name="..."
base="..."
path="..."
>

<path path="..." /> // add path ®
<removePath path="..." /> ®
</ public>
</ al t er Product s>

</ public>

</al terActions>

6O OEBOO 0O0O0O0COOO

A r enpove that removes the named action.

Defines alteration of the named action, or is a new action.

Defines alteration of the action’s general properties

A defined property is removed.

A defined property is altered, or anew property is added.

Altersthe actor properties (the same way as the general properties are altered).
Alters the attributes of the prerequisites— or if no attributes are stated, just indicates that alter-
ation is wanted of the content of the pr er equi si st es.

A prerequi siteisremoved.

An attribute is altered, or a new attribute is added to the prerequisites.
Specified to ater the pr oduct s.

A product isremoved.

A path is removed from a simple product.

A path is added to a simple product.

Alters or adds a product that defines a new attribute.

Adds a path to the enclosing attribute

Removes a path from the enclosing attribute.

Generators

The Generators tab is used to specify that the component generates other components. This is an
advanced topic — normally components do not generate other components — see sidebar.

Draft Components Draft

Advanced Topic — Generators

The ahbility to specify that one component generates othersis very useful when components are
created by executing actions. A common case is when using modelling and generating code.
A component that contains the model can have actions that generates the java code, XML
Schemas, code in some other language, a client component, a server stub component, etc. As
these are al generated, they can not simply be located in some source repository, and those
component that require the generated components needs to either specify a dependency on the
component that generates what is needed as well as specifying a dependency on the generated
component, or the configuration must already have resolved the component that generates what
isrequired.

In addition to making it possible to work with generated components it also serves as a de-
pendency indirection mechanism. Instead of being dependant on “X looked up in the RMAP” a
dependency to a generated component becomes “X as made available by Y looked up in the
RMAP".

As an example A — G, and X generates G, then either A - (X, G), or C - (X, G, A), in
additionto A - G, must be specified or the resolution will fail to find G.

The editor tab for editing Generators looks like this:

=) buckminster.cspec 52 =08
Cenerators
Name Attribute Component (Mew)

Main |Actinns |Artifacts |Cr0ups |AIIAttributes Dependencies | Ceneratars | Documentation | XML Content

The Generators tab shows alist of defined generators, and buttons on the right makes it possible to
add, remove and edit entries. When a generator is added or edited, the following dialog is used:

85

Draft Components Draft

Yy

CSpec Editor - Generator

New Row

Enter new row fields.

Name: CeneratedComponentName
Attribute: attribute-producing-component j
Component: |component-for-attribute-or-empty/self j
I'r Cancel \I (0K)
Name The name is the name of the generated component.
Attribute The name of the attribute that produces the generated compo-

nent (typically an action, or a product of an action).

Component The component is the name of the component of the attribute.
If left blank, it means the component itself.

CSPEC XML

The XML for generators looks like this:

<gener at or s>
<generator @
attribute="..." @
generates="...." ©
(4]

conmponent ="...."
/>
Il *
</ gener at or s>

© Theattribute isthe name of the attribute in the generating component that produces the
generated component.

® Thegener at es attribute is the name of the generated component.
® Theconponent isthe name of the generating component.

CSPEX XML

The xmL for generators is the same as in the CcSPEC. There are no known component types that have
generators so there is simply nothing to alter.

Dependencies

The Dependencies tab is used to define the component’s dependencies on other components. The
csPec editor tab looks like this:

86

Draft Components Draft

=) buckminster.cspec 52 =08

Dependencies

Name Component Type Wersion Designator Filter (Mew |
org.apache.velocity osgi.bundle 1.5.0 P
org.eclipse.core.runtime osgi.bundle 0.0.0 | Edit
wiki/SVG unknown . .
Remove

Main |Actinn5 |Artifact5 |Group5 |AIIAttributes- Dependencies | Generatars | Documentation | XML Content

External Save As

The tab shows a list of dependencies with columns for component name, component type, ver-
sion/range, and filter. Buttons on the right allows adding, removing and editing entries. The dialog for
adding and editing entries looks like this:

0 itor -
New Row

Enter new row fields.

Name: | |
Component Type: | FH

Designator: [7 == version FH

Version:

Type: 0sGi 3

Filter:

{ cancel) F oK

Thefieldsin this dialog are similar to what is entered in a CQUERY when requesting a particular com-
ponent. Y ou can think of a dependency as regquesting the presence of another component if you like.

Name and Component type. Thisis where you enter the name of the requested component, and
select its component type from the drop down list.

87

Draft Components Draft

Version, range and version type. Inthis section you can enter aversion, or version range for the
component you are requesting. The drop down has entries for ==, >=, and four different ‘between’
entries (i.e. if fromand to should be inclusive or not). When values for both from and to are required,
an extrafield appears. If you leave version empty, the default search isfor the latest available version.
See Chapter 9, Versions for more information about handling versions and version ranges.
Filter. Thefilter is used to specify when this dependency isvalid. If you leave the field empty, the
dependency isalwaysvalid. To restrict the validity, afilter is specified using LDAP filter syntax (just
asfilters are normally expressed throughout Eclipse). As an example, if the dependency is only valid
on Mac OSx you would enter t ar get . os=macosx) . See Filters for more information. .

CSPEC XML
The xML for dependencies looks like this:
<dependenci es> @

<dependency @
name="..." ©
conmponent Type="..." @
versi onDesi gnator="..." ©
versi onType="..." O
filter="..." @
</ dependenci es>
O Dependencies are stated in adependenci es element.
® Each dependency is stated in adependency element. Its attributes defines the dependency.
©® Thenane isthe name of acomponent this component depends on (requires).
O Theconponent Type isthetype of component required.
© Theversi onDesi gnat or isaversion or version range defining the constraints for the required
component. See Chapter 9, Versions, for more information about how to enter versions and ver-
sion ranges.
O Theversi onType isone of the supported version types. See Chapter 9, Versions, for informa-
tion about version types.
@ Thefilter alowsspecification of afilter that dynamically determines the applicability of the
dependency. See the ‘Filters reference guide’ for more information about filters.
CSPEX XML

The xmL for dependencies can be extended — it looks like this:

<al t er Dependenci es> @
<renpbve name="..." conponent Type="..." /> @

<dependency /> ©
</ al t er Dependenci es>

© Dependencies are altered within an al t er Dependenci es element.

® A dependency is removed. Currently, it is not possible to specify the conponent Type which
makes it impossible to alter a ambiguous dependency — see Eclipse Bug 283940 [https.//
bugs.eclipse.org/bugs/show_bug.cgi7id=283940].

©® A new dependency is added, or an existing dependency is modified (if the name and component
type match). The syntax isthe same asin a CSPeC.

Automatically generated meta data

Buckminster standard configuration includes support for several component types. Such an adapter
interprets the existing meta data in its original form, and tranglates it into the cspECc model. All com-
putations done on components by Buckminster are done in terms of csPeCs. The actual CSPEC datais
not persisted — it is created each time it is needed (although technically it may be cached for perfor-
mance reasons). Even if the generated CcSPEC is not persisted by default, it is still possible to generate
the csPec in XML form for viewing, printing, or possibly for interchange with other systems.

88

https://bugs.eclipse.org/bugs/show_bug.cgi?id=283940
https://bugs.eclipse.org/bugs/show_bug.cgi?id=283940
https://bugs.eclipse.org/bugs/show_bug.cgi?id=283940

Draft

Components Draft

You will find al the detailsin the reference guide Component Types, but hereis a brief overview:

osgi.bundle
eclipse.feature
jar

maven, maven2

buckminster

bom

unknown

Bookmarks

Thisisacomponent typefor 0sGi bundles, and Eclipse plugins.
This component type understands Eclipse features.
A component typethat isasinglejar file.

The maven component type transl ates components with maven
1 metadatain amaven poM file. The maven2 component type
handles the maven 2 oM format.

A component using Buckminster’s CSPEC XML as its metadata.

A component of bomtype is replaced by the top component in
the Bom — this takes place in the resolution process and you
will never see or interact with a component of thistype.

An unknown component type is for components where there
is no meta data whatsoever. The only information available is
the component name, and itsversion (or possibly anull-version
when a component is not versioned). An unknown component
has no dependencies.

A note about bookmarks

Buckminster supports including bookmarks containing information about web pages and RSS
feeds in the component meta data since Eclipse 3.4. The mechanism is based on placing a spe-
cia buckmi nst er . opni fileinside acomponent. Although still supported, our current recom-
mendation is to only use this mechanism in components devised for building and publishing
purposes. See Appendix D, Bookmarks and OPML for more information.

89

Draft Draft

Bill of Materials (BOM)

I am
sorry, you are
not on this
BOM!

The Bill of Materials (BoMm) is an artifact containing a packing list consisting of the exact names and
versions of all the components that were resolved by a CQUERY.

TheBOM, in contrast to the other Buckminster artifactsis not something you should edit. It isgenerated
by the resolution process, and can be used for different purposes:

 asinput to the materialization process, either directly, or referenced by a MSPEC.

» asamanifesto for what was used to build a piece of software

90

Draft

Bill of Materials (BOM) Draft

 asinput to visualization — a simple report, or a graphic dependency view
» asinput to external tools — perhaps generating technical release documentation
 asapre-made resolution of acomponent in aRMAP

At this point you have probably already figured out that this is going to be a very short chapter. It is
however still useful to know what the BoM containsin principle, even if you are not going to construct
one by hand.

The BOM’sS anatomy

The BoM contains the following:
» A list of al the components in the resolution

 For each component, a copy of that component’s CSPEC as it was found/generated at the time of
resolution. This means that al of the component’s dependencies, attributes etc. are availablein the
Bom without further lookup.

» For each component, areference to where it was found.
» A copy of each provider (from the RMAP) that were used to resolve an included component.

« For everything copied, all property references are replaced with the values these properties had a
the time of resolution.

A copy of the CQUERY that was used to produce the BoMm.

Warning

O Sinceall property values are expanded and included in the BoM you must be careful with
properties that include user name and password information. They are stored in clear
text inside the Bom.

Materializing a BOM

A BoM isindirectly materialized when executing a CQUERY, or when materializing a MSPEC that ref-
erences a BOM (as described in the respective chapters covering CQUERY and MSPEC). The BOM can

also be directly materialized® by importing it using File — Import... — Other — Buckminster —
‘Materialize a MSPEC, CQUERY or BOM' which opens the materialization wizard (see the section called
“Materialization wizard").

Since the BoM contains a full snapshot (taken at the time of resolution) of all information required
to materialize the components, there is no need for the materialization process to look things up in
aRMAP.

Viewing a BOM

Buckminster keeps an up to date resolution of what is currently availablein arunning Eclipse SDK —
inaway you can think of thisadynamic bill of materials. This set of components can be viewed in the

Buckminster Component Explorer availableviaWindow — Show View — Other... » Buckminster —
Component Explorer, and it is also possible to see the resolution for the component that is currently
selected inthe workspace in the Buckminster Component Outline View, located next to the Component
Explorer inthe menu. These views however, do not show al the detailsin the Bom — you can however

1naturally aresolution must first have been produced and saved into a. bomfile

91

Draft Bill of Materials (BOM) Draft

see the names, versions and dependencies. If you want to see all the information you have to look at
the xmL directly.

There has been some exciting development lately of a graphic dependency viewer. Y ou can read more
about this viewer in the section called “BOM visualizer”. Here is a screenshot of what the graphic
dependency visualizer looks like:

Figure 7.1. Dependency visualizer

Dependency Visualization

~ Navgiation Graph ~ Settings
I [l org.eclipse.buckminster.sii[~]

Filters
> [org.eclipse.buckminster.te X
@ org.apache.commons.net [&= org.eclipse.buckminster.site.external @ Filter Target Platform
. - — e - o r—— m Layout
= - - & org.eclipse.buckminster.subversive.headless.feature [l # org.eclipse.buckminster.subclipse.headles
|3 org.eclipse.buckminster . e Spring Layout
P & org.eclipse.buckminster .
r9-eclipse.buckminste [CEtipbikmse g ([COEEIREBINSESBEENE] o 00 Oirecreq Lsyour
< [org.eclipse buckminster.sit . - -
I [org.eclipse.buckminste @ org.eclipse.buckminster.subversion Grid Layout
> B org.eclipse.buckminster _‘A ¥ A‘_' Horizontal Layout
. . i@ org.eclipse.buckminster.core .
I [org.eclipse.buckminster Vertical Layout

b org.eclipse.buckminster
@ org.eclipse.buckminster

@ og.ecliE.buckminster.dnwnload o og.ecliE.buckminstememl o om.ecliE.buckn @ Tree Layout

Horizontal Tree Layout

|3 org.eclipse.buckminster @og.ecliE.huckminstersax @og.ecliE.huckminster.cdeine
. . Radial Layout
I & org.eclipse.buckminster . . .
< [@ org.eclipse.buckminsterjn org.edlipse.buckminster.runtime Path Highlighting

@ org.eclipse.buckminster @ Dependencies

@ org.eclipse.equinox.sec

. . @ Usage
@ org.eclipse.core.net.linu

. . Path to Root
@@ org.eclipse.equinox.p2.

. . Shortest
@ org.eclipse.equinox.laur
@ org.eclipse.core.net.win ® Al
@ ora.eclinse.eauinox.n?.1> m None

[B [<] [I B}

Summary

The Bill of Materials (Bom) is an immutable Buckminster artifact that contains a snapshot of all the
information used at the time a CQUERY was resolved. When a BoM has been produced, it can be ma-
terialized many times with exactly the same result?.

A BOM can aso be used asinput to aresolution process as a*“ pre-resolved component” which is useful
in situations where a component is difficult to resolve and the details of its resolution is a concern
that should be dealt with separately from those components that require it. (See the section called
“Component types’, for more information about using a BOM in the RMAP — see section about the
bomcomponent type).

2provided that the components artifacts are still in the same locations and are unchanged

92

[T

Draft Draft

MSPEC — Materialization
Soecification

Look, the
MSPEC is blank. Unless you give
me another - I am pouring the cemen
on top of your other building
material...

An MSPEC isjust that — an order to the materialization ‘ delivery agency’, in-
structing it about the details of what to put where and how — or put another way,
it islike the assembly instruction you get with every flat package from IKEA.

By default (when executing a query with “Resolve and Materialize”), the materialization goes into
the workspace. By instead using “ Resolve to Wizard” you can modify the materialization settings and
direct components to different locations (and types of locations). The wizard also lets you save the
materialization settings in aMsPeC file. See the section called “Materialization wizard”.

Creating a MSPEC

A MSPEC can be created by saving it in the CQUERY Materialization Wizard. This will also create a
BOM with the resulting resolution and the MsPeC will have a reference to this Bom.

You can also create a MSPEC manually, as a new XML file. Currently there is no “New File Wizard”
for MSPEC. (As an aternative copy one created by the CQUERY wizard as a starting point).

93

Draft MSPEC — Material- Draft
ization Specification

A msPec should be saved in afile ending with *. mspec’.

Editing a MSPEC

Thereis no specific editor for the MsPeC artifact although the materialization wizard sort of functions
asone, so you will most likely use use axML or text editor. Using an XML editor is preferred asagood
XML editor can be made to understand the MSPEC schema and thus validate what you write and also
aid with code completion. See the section called “ Configuring Eclipse for XML Editing”.

To edit amsPEC in the wizard, you start by importing the MSPEC as the import will start the material-
ization wizard where you can modify the content and save it (you do not have to execute the actual
materialization).

To import use either ‘File - Import... - Other — Buckminster - Materialize from Buckminster
MSPEC, CQUERY Or BOM’, (or starting with the ‘Import..." command in the context menu over a MSPEC
file), and the materialization wizard appears. Y ou can read more about how this wizard works in the
section called “Materialization wizard”.

The mMmsPECModus Operandi

A MSPEC can refer to aBOM, or a CQUERY. When the MSPEC is materialized and isreferring to aBoMm,
it will usethisinformation directly. When using a CQUERY, the query isfirst resolved and the resulting
BOM is then materialized. (The terms static-MSPEC, and BOM-MSPEC are sometimes used to denote a
MSPEC referencing a BOM, and dynamic-MSPEC, or CQUERY-MSPEC for the CQUERY case). In both the
static and dynamic case, the result is alist of components, and these are the components that can be
controlled with the MsPEC (i.e. you can not introduce an arbitrary component into the mix in the MsPEC,
the component has to have been resolved).

(The materialization wizard understands both static and dynamic MSPECS, and if the MSPEC references
aCQUERY the query isresolved as part of the process— thisis very helpful asyou want to make sure
you don’'t have stale rulesin the MSPEC as it references components by hame/name patters).

The MsPeC describes default settings for the materialization (such as type of materialization, location
and handling of conflict with existing files) — these are used if a more specific rule for a component
does not state something different. The rules use aname pattern to match components and they provide
the settings to use for components that match.

MSPEC In XML

Hereisavery smple MSPEC

<?xm version="1.0" encodi ng="UTF- 8" ?>
<nd: mspec xm ns: nd="http://ww. ecl i pse. or g/ buckni nster/ Met aData-1. 0" @
i nstal | Locati on="/Users/henrik/ TMP/" ©
mat eri alizer="fil esystene" ©
name="Exanpl esFor Book: 1. 0. 0#08G " @
shortDesc="This is a short description" ©
conflictResol uti on="update" O

ur |l ="book- query. cquery" @
/>

© Thisisdeclared to be aMSPEC using the nd name space. (See Buckminster xML Schemas).
® Thissetsthe default location for the installation.

,éb Note
If not specified, the current workspace is assumed by the workspace materializer,
for fil esyst em thefilewill be placed in aproject caled ‘. buckni nst er’ (the

94

Draft MSPEC — Material- Draft
ization Specification

name is configurable under Eclipse — Preferences — Buckminster — ‘Buckmin-
ster project folder’) in your workspace.

® Thisisthematerializer to use (here‘fi | esyst em).

Available materializers
file system A location in your file system.

p2 Thismaterializer isused to create a platform agnostic tar-
get platform. (Thisis not the same as performing ap2 in-
stall, assuch aninstallation isalwaysfor aparticular plat-
form). The location is a directory in your file system for
the p2 artifact repository. The p2 materializer essentially
performsthe sametask asthe PDE r epo2r unnabl e ANT-
task, but with more advanced selection criteria(the Buck-
minster resolution process vs. copy entire repository).

(site-mirror) Deprecated in Eclipse 3.5. Used when materializing using
the now deprecated Update Manager. Still supported in
the editor for older artifacts.

(targetplatferm) Deprecated in Eclipse 3.5, and is now an alias for p2 ma-

terializer. Use the p2 materializer instead. Still supported
in the editor for older artifacts.

wor kspace The materialization will go into a workspace. If loca-
tion and workspace fields are both empty then the current
workspaceisused (thiswould be the normal case). If only
location is specified the materialization treatsthe location
as aworkspace. If both location and workspace are stat-
ed, then the materialization is made to location, and the
location is linked to the stated workspace.

A materializer must be specified.

O The name of the MSPEC can be declared — it is only used for human identification (and error
messages). It isrequired, so declareit with aname that makes senseto you (the default name you
get when creating amsPEC with the materialization wizard is component name, version and type)

© A short description used for human understanding what the node is about (optional).

O The conflict resolution is specified; a choice of updat e, fai | (itisan eror if the location is
not empty), keep (use what is there, do not update), and r epl ace (remove existing first), can
be made.

@ Theurl attribute is a reference to either aBoM or a CQUERY that defines the set of components
to materialize. (Here a CQUERY in the same location as the MSPEC is used so the URL isrelative).

Using properties

It is possible to declare properties with property, or propertyEl enent in an mspecNode. This
gives the ability to set default valuesin arule, and to override them (in a query or on the command
line, etc.) as described in Chapter 10, Properties.

;@_D Note

Y ou have to edit the MsPEC with an XML editor to be able to define properties, as this
is not supported by the materialization wizard. Thereis no restriction on using property
values in he materializer wizard fields — it is only the setting of default values that is
not supported.

95

Draft

MSPEC — Material- Draft
ization Specification

Rules

The rules are very similar to the root of the MmspeC. Each rule is described with a child nspecNode.
Hereisan example

<mspecNode

namePat t ern="or g\ . deno\ . server\..*" @
materializer="filesysteni @

conponent Type="o0sgi . bundl " ©

r esour cePat h="useThi sNane" @

excl ude="fal se" ©

instal |l Location="/usr/local /server/test" @
conflictResol uti on="update" > @

<unpack ©
expand="true" © // default == true
suffix="tar.gz" ® // use if type not known
/>

</ mspecNode>

(1]

(] @g@ © o0

e

The namePattern is aregular expression. All components with matching names will be materi-
alized in accordance with thisrule. The first found rule that matches a component is used.

The materializer touse (e.g.fi |l esystem.

The componentType is one of the support component types (eg. osgi.bundl e,
ecl i pse. f eat ur e) — seethe section called “ Component types’.

The resourcePath is the name of the resulting file or folder (depending on what is being materi-
dized). A relative path isrelative to theinstallLocation. Thisistypically used when arepository
does not provide the real file name when reading a stream. When used with unpack this is the
name for the folder into which the unpack takes place.

A component can be skipped by setting exclude to true, the default isfalse.

See the default setting with the same name.

An unpack element is used to specify that an element should be unpacked, and optionally also
expanded.

If expand is set to true, an unpacked artifact is also expanded. The default is true. Example: an
artifact may beint ar. gz format, and the unpack resultsin a. t ar file, if also expanded, the
content of the tar file becomes available.

The suffix is used to specify the content format of the artifact. Thisisimportant if the repository
does not set the name of the read artifact to reflect the type. As an example, suffix could be set
totar. gz toindicate atar filethat isthen compressed with gz. The unpack can handle multiple
uncompress, e.g. ‘j ar. pack. gz’ first unpacks the gz, then, the pack, and finally (if specified
with expand set to true), expandsthe jar.

Materializing a MSPEC

To materialize a MSPEC use either ‘File - Import... — Other - Buckminster - Materialize from
Buckminster MSPEC, CQUERY or BOM’, (or starting with the ‘Import..." command in the context menu
over a MsPec file). The materialization wizard appears. Y ou can read more about how this wizard
worksin the section called “ Materialization wizard” .

Aswith most of the Buckminster actions, you can also materialize a MSPEC headlessly. See Headless
Commands.

Summary

As you have seen, the MSPEC is a quite simple concept “ specify what goes where”, even if it first
appears to be a bit daunting (“Y et another type of artifact, sigh...”) and with a somewhat roundabout
way of editing (import), and using (also import).

96

Draft MSPEC — Material- Draft
ization Specification

The MsPeC is essential if you need to direct different parts to different places, but does not have to
be used if you do not have this need.

97

Draft Draft

Versions

Buckminster supports versionsand version ranges from different versioning schemes. If you are work-
ing with Eclipse and 0sGi based components, you are probably already familiar with how they work
— and you can continue to use both versions and version ranges expressed just like they are expressed
everywhere else in the Eclipse user interface. If you however step outside of the 0sGi ream, there
are many different versioning schemes in use. Buckminster's version handling is based on the omni
version implementation found in Equinox p2.

In addition to the omni version implementation, Buckminster uses aversion format naming and recog-
nition scheme that makes it easier to handle different version formats in the user interface.

If you are only developing for Eclipse and 0sGi, you will till benefit from the general overview of
version and version ranges, and the handling of version qualifier substitution. If you are using Maven
you will also need to learn about how to handle these types. Finaly, if you are working on extending
Buckminster, or if you want to use Buckminster in domains that use version formats that are (yet)
unnamed in Buckminster, you need to understand more about the full omni version scheme.

The really detailed implementation details are found in Appendix C, Omni Version Detalls.

Omni Version introduction

The omni version isacanonical format. Thereisonly one implementation and it is capable of describ-
ing versionsin awide range of versioning schemes. Thereis no central registry of version formats —
each version or rangeinstance carriesthefull specification. That each version carriesthefull definition
means that versions can be transmitted between systems without risk of not functioning because of a
missing definition. The fact that there is only one implementation means that there is no risk of not
functioning because a particular implementation is not available in a system®.

The omni version’s canonical format is called the raw format, and it is constructed by parsing an
original version string using a format. Since the raw format retains the format and original version
stings, it is possible to recreate the input.

Omni versions always compare version based using the translated raw format. This creates a strict
ordering of all versions across all versioning schemes.

Earlier versions of Buckminster user an extension mechanism that required that a version type extension must be installed in order to parse
and use a specification using the custom version type. In practice, this made it very difficult to define extensions if these were not contributed
and accepted in the Buckminster code base. The omni version implementation in Eclipse 3.5 has solved thisissue.

98

Draft

Versions Draft

Example9.1. An OSGi version expressed in raw
raw. 1.0.0.'r1234' /format(n[.n=0;[.n=0;[.S=[a-zA-Z0-9_-];111):1.0.0.r1234

InExample 9.1, “An OSGi version expressed inraw” you can seewhat the osGi version1. 0. 0. r 1234
lookslikein raw format. Luckily, when using Buckminster, you don’t have to use such stringsin your
input as you will see in the next section.

Buckminster and Omni Version

When specifying versions (and version ranges) in the various Buckminster XML based documents, the
format pattern is referred to via a defined name. When using one of the graphical editors, the version
format can be selected from adrop down list, and the original format string isentered in aseparatefield.

Internally Buckminster users omni versions for calculations.

New named formats can be introduced viaa Buckminster extension point (see Appendix B, Extending
Buckminster). No coding is required, but the extension must be provided by abundle.

,éb Note
Currently, the raw format is not available as a named format. See Eclipse Bugzilla |s-
sue 282397 [https://bugs.eclipse.org/bugs/show_bug.cgi?d=282397], for status on this
issue.

Y ou can add new named formats by extending Buckminster — see the section called “Version type”.

The new implementation in Buckminster for Eclipse 3.5 is backward compatible with respect to how
input is specified. The only notable difference is that comparisons are now made on the canonical
format and it is possible to compare versions using different formats’.

Buckminster’'s named formats

Buckminster has the following named formats:

OSGi The osGi version format on the format
maj or . m nor . micro. qual i fi er where mgjor, minor, and
micro arenumeric, and qualifier isastring. Major must be spec-
ified, but minor and micro defaultsto O if omitted. The qualifier
isoptional.

Triplet A version format used by Maven, and others, which is similar
to osGi, but where an empty qualifier compares as larger than
any qualifier.

String A single segment version using string comparison as performed
by Java String.

Timestamp A version format wheretheversionisexpressed as atimestamp
and compared in ascending order.

For more details on the rules, and how these named formats are expressed, please see Appendix C,
Omni Version Details.

Version ranges

Version ranges are expressed using the following syntax:

’This produced an error prior to Buckminster for Eclipse 3.5.

99

https://bugs.eclipse.org/bugs/show_bug.cgi?id=282397
https://bugs.eclipse.org/bugs/show_bug.cgi?id=282397
https://bugs.eclipse.org/bugs/show_bug.cgi?id=282397

Draft Versions Draft

{T1'C} «l owner -bounds» ["' | «upper - bounds»]{ 7]}

Description:

e Therange must start with aliteral [or (, and end with aliteral] or) .

* «| ower - bounds» isaversion in the specified format

» Theuseof [a the beginning means that the «| ower - bounds» isincluded in the range.

e The user of (at the beginning means that the «I ower - bounds» is excluded from the range such
that any v > «l ower - bounds» isincluded.

» Similarly, a] or) at the end specifies that the «upper - bounds» is included or excluded from
the range.

* |If the optional upper - bounds is not specified, the value of the «I ower - bounds» is used here as
well (and in this case both ends must be inclusive).

» Therange must be well formed so that «I ower - bounds» <= «upper - bounds».

» A single version «x» can be used where arange is expected — this means any v >= «x»

100

Draft Draft

10

Properties

Revision History

Revision 3 July 27 , 2009 HL
Precedence table changed once again
Revision 4 July 28 , 2009 HL

Faulty use of ${{0}} in format changed to warning.

Buckminster’'s property functionality consists of providing access to system properties, the ability to
declare properties, property expansion in attribute values, perform transformation of property values,
away to protect propertiesfrom being changed, and amechanism defining ascope for property values.

Itis possibleto declare and transform propertiesin RMAP, CQUERY, and MSPEC artifacts. M ore specif-
ically, the advisor nodes in a CQUERY can set property values that apply only when the advice is ac-
tivated.

There are two ways properties can be set; by using the smpler property, or the more elaborate
propertyEl ement .

Property expansion

Buckminster supports property expansion in ailmost all attribute values. A property referenced with
${ «property name»} isexpanded, and the expression is replaced with the value of the property
at the time of the expansion.

Advanced property expansion

If the value is aso a property reference it will in turn be expanded. (A limit makes sure that property
expansion does end if there is endless recursion). This can be used in different ways — here is an
example:

<bc: propertyRef key="${aPropertyNanme}" />

Here, the value of the property aPr oper t yNane will be used as the key to lookup the final value.

Warning
O This however does not work:

<«el ement » format="/tnp/ somewhere/ ${{0}}" >
<«function» ...>
</ «el ement »>

This does not work because the { 0} is expanded last by format.

101

Draft Properties Draft

Setting property value with “property”

Setting a property value with the element property issimple. Here is an example:

<property
key="hat Type"
val ue="bandana"
nmut abl e="t rue"
/>

which sets the property hat Type to the value bandana and allows the value to be overridden by
properties set in contexts of higher precedence (see the section called “ Precedence”).

Using “propertyElement”

The element pr oper t yEI enent *hasalot more functional ity than the simpler property element. The
property value is constructed out of a concatenation of constants, the values of other properties, or
transformations applied to such values.

Hereisasimple example:
<pr opert yEl enent

key="hat Type"

nut abl e="true" >

<constant val ue="bandana" />
</ propertyEl enent >

Asyou can see, the only difference from the simpler pr oper t y isthat the value is defined as a child
element instead of an attribute. (The const ant used in this exampleis just one of several functions
to use when composing the value).

Property functions

The property functions are:

Property Functions

constant Defines a constant value.

<bc: constant val ue="Hello" />

propertyRef Produces the value of areferenced property via name.

<bc: propertyRef key="sone.property" />

toL ower Concatenates the value of each child element and makes the
result lower case.

<bc:toLower >
<bc: constant val ue="TAKE ME DOMW' />
</ bc:toLower >

toUpper Concatenates the value of each child element and makes the
result upper case.

<bc: t oUpper >
<bc:constant value="fix me up" />
</ bc:toLower >

IAdmi ttedly, areally bad name choice for this element.

102

Draft

Properties Draft

format Formats a resulting string based on atemplate string where pa-
rameters in the template are replaced with the values from the
enclosed child elements.

<bc:format format="1 amthe {0}, of this {1}">
<bc: constant value="result" />
<br:constant val ue="exanple" />

</ bc: f or mat >

replace Concatenates the value of each child element (except the spe-
cial mat ch element, that optionally isused to specify amore ad-
vanced matching), and replacestheresult with atemplate string
where matched segments can be included. Also see the section
called “ Replace function”.

<bc:replace pattern="."
quot ePattern="true"

repl acement="_" >
<bc: constant val ue="Make nmy . beconme _, please."
</ bc: repl ace>
split Concatenates the value of each child element, and splitsthere-

sult based on aregular expression. The result appears as multi-
ple child elements in an enclosing element. The split function
must be placed last among the children in the enclosing ele-
ment. Also see the section called “ Split function”.

<bc:format format="Easy as '{0}{1}{2}'" >
<bc:split pattern="[0-9]*">
<bc: constant val ue="a34b8c9393" />
</bc:split>
</ bc: f or mat >

ProducesEasy as ' abc' astheresult.

The property functions can be nested to arbitrary depth (except const ant , and pr oper t yRef).

Replace function

The replace function as seen in the section called “Property functions” replaces matched parts in the
input with a replacement template. There are additional attributes that control the functionality, and
amore advanced matching option available.

The boolean quot ePat t er n attribute, when set to true will automatically quote all special characters
giving them literal meaning. The default isf al se.

When using the replace function, either the two attributes pat t er n and r epl acerment should both
be specified, or one or more nat ch child element should be used (for more advanced matching).

Thematch element. A match element performs a match/replace as directed by the attributes pat -
tern, andr epl acement , and the pattern can be automatically quoted with quot ePat t er n=t r ue.

When multiple match elements are used, they are executed in the order they are defined, and the input
to the first is the (non-match-element) siblings, and the input to subsequent match elements is the
result of the preceding match.

<bc: repl ace>
<bc: constant val ue="a. b#c-d" />

<bc: match pattern="\." replacement="_" />
<bc:match pattern="#" replacement="_" />
<bc:match pattern="-" replacement="_" />

</ bc:repl acement >

The example producesa_b_c_d.

103

Draft Properties Draft

Split function

The split function as seen in the section called “ Property functions” splitstheinput based on a pattern.
There are two additional attributes that control the functionality.

style Thisattribute can be set to quot ed, unquot ed or gr oups. The
default isunquot ed.

Use quot ed to automatically quote all special characters (un-
quoted requires quoting special characters if they are wanted
asliterals). Thegr oups stylerequire that segmentsare used in
the pattern, and will use the matched segments as the resulting
values.

limit Limits the number of resulting elements.

Precedence

The context in which a property’s value is set defines the value's precedence. In any given con-
text, the property value with the highest precedence will be used, unless a property value is set with
mut abl e="f al se", which makes it the highest preceding value until the end of the context where
itisdefined.

The following table shows the property precedence during the materialization process (resolution,
download, bind/install/import/copy/etc.).

Table 10.1. Materialization property value precedence

Prior- |Context

ity

1 Provider/Matcher rulein RMAP

2 Advisor nodes in CQUERY (if used)

3 CQUERY

4 MSPEC node (i.e. in amatching node, if used). Does not have any effect during resolution

(materialization nodes are not matched until the end).
MSPEC (if used)

Properties file (passed on command line with - P, or set in the invoke action dialog).

System Properties
Run/Debug Preferences — String substitution (in the IDE).
10 Target platform propertiest ar get . «* » automatically set during startup.

5
6
7 Command Line (specified with - Dexxx»=«yyy»)
8
9

11 Static properties; ecl i pse. home, wor kspace. r oot , | ocal host automatically set dur-
ing startup.

12 Resource Map

As an example — if the RMAP contains the following property definition:
<rm property key="hat Type" val ue="bandana" />

the CQUERY contains the definition:
<cq: property key="hat Type" val ue="bowl er" />

and an activated advisor node contains:

<cq: property key="hat Type" val ue="top-hat" />

104

Draft Properties Draft

then, the value of the property when used asin ${ hat Type} or using an element asin
<bc: propertyRef key="hat Type" />

in aresource map will bet op- hat .

,éb Note

An exception isthrown if aproperty hasut abl e="f al se" set and an attempt is made
to override the value in a context with higher priority.

The precedence when component actions are invoked are the priorities 6-11 as shown earlier — but
repeated in the table below for convenience. Note that property values used during the resolution are
not remembered — that context is long gone when action are invoked.

Table 10.2. Action invocation property value precedence

Prior- |Context

ity
Properties file (passed on command line with - P, or set in the invoke action dialog).

2 Command Line (specified with - Dexxx»=«yyy»)

3 System Properties

4 Run/Debug Preferences — String substitution (in the IDE).

5 Target platform propertiest ar get . «*» automatically set during startup.

6 Static properties; ecl i pse. honme, wor kspace. r oot , | ocal host automatically set dur-
ing startup.

Typical property use

Properties are typically used for two purposes — passing values required when communicating with
repositories such as user name and password, and to provide “routing” in the RMAP where components
are picked from different repositories based on the value of properties.

The default values are typically set in the RMAP. Advisor nodes are used in CQUERY to override the
defaults for specific components (those that match the rulesin the advisor node). Properties set in the
CQUERY itself overrides all the defaults in the RMAP. This can be used to make query statements like
“1 want al components to come from the milestone build repositories, except components matching
org.myorg.hack.* which should come from the nightly repositories”.

105

Draft Draft

11

Buckminster User Interface

Inthischapter we describe the Buckminster user interface. Buckminster isabit “ shy” inthat it doesnot
have much of avisual presence— you find Buckminster’ sfunctionality in editorsfor the Buckminster
artifacts, in popup menus over certain objects, and in some familiar places like the New File Wizard.

Component explorer

The Buckminster component explorer providesaview of all components known to Buckminster. Y ou
can explore all componentsin the workspace as well as those in the target platform.

i Component Explorer 3 ¥ = H

P = Target Platform Components
¥ [Workspace Components
¥ i ExamplesForBook
v ﬁ_é Component Specification (C5pec)
¥ [= Dependencies
cfa org.eclipse.core.runtime:osgi.bundle
QTB org.apachewvelocity:osgi.bundle
T3 wiki/SVG:unknown
P = org.apachewvelocity
¥ i org.demo.monkey
> ﬁ_é Component Specification (CSpec)
¥ i wiki/SVG
ﬁ_é Component Specification (CSpec)

Showing content from the target platform:

106

Draft

Buckminster User Interface Draft

iy Component Explorer &3

¥ [= Target Platform Components
P i com.ibm.icu : osgi.bund

P o comibmiicusource
» i comjeraftjsch : osgi
P (o comjeraftjsch.source
P i javax.servlet: osg
P i javax.servietjsp :os
P i javax.servletjsp.source
P o javax.servietsource
P i org.apache.ant: osg
P (- org.apache.antsource @ os
P i org.apache.commons.codec
P iy orgapache.commons.codec.source
P i org.apache.commons.el : ozg ndl
P iy orgapache.commans.elsource
P i org.apache.commons.httpclient : o
P iy org.apache.commans.httpclient.source
P i org.apache.commons.logging @ osgi.l
P iy orgapache.commons.logging.source
P iz org.apache.jasper : osgi.bundle - 5.5
P iy org.apache jasper.source
P i org.apache.lucene : osgib
P i org.apachelucene.analysis
P i org.apache.lucene.analysis.source
P i orgeclipseant.core ozgit |
P i org.eclipseant.core.source
P iy orgeclipseantui: osgibu
P i org.eclipse.ant.ui.source

€

,éb Note

The explorer sometimes gets out of sync with the set of available components. The col-
lection of the data can be time consuming and is not always up to date (some files can
have changed). If you do not see what you expect, simply press on the refresh button.

To open the Component Explorer click Window — Show View — Other... » Buckminster - Com-
ponent Explorer.

Component outline

New

The Buckminster component outline view shows the main cspec information known to Buckminster
for the component associated with the currently selected resource (i.e. the component for the file that
isactivein an editor or view).

Thisis basically the same view as the Component Explorer, but for one component at atime.
Y ou will soon notice that the component outline sometimes gets confused over what is currently se-

lected — it will then show nothing. Simply selecting the component you are interested again makes
it show up.

To open the Component Outline click Window — Show View - Other... - Buckminster . Compo-
nent Outline.

file wizards

The Buckminster wizardsfor creating new filesarelocated at File — New — Other... » Buckminster.
The dialog looks like this:

107

Draft Buckminster User Interface Draft

8,00 New

Select a wizard

Wizards:

[type filter text

P = General
¥ = Buckminster m
{Z Component Query file
@ Component Specification Extension file
@5 Compenent Specification file

2% Resource Map file
» = CVS

@:I < Back (—N!xtv—) (Cancel) Finish

When using the wizard you will get help with the basic XML declarations, and in some cases a starting
template. Y ou can naturally also create files manually.

BOM visualizer

The BoM visualizer presents a graph view of a resol ution®. It is possible to explore the dependencies
and to get a detailed understanding on how all included components depend on each other. The visu-
alizer offers drill down (see only part of the resolution), see shortest path to root, or al paths, focus
on one component, and arrange the nodes using different layout algorithms. You can select if you
want to see the components picked from the target platform or not. (In the screenshot below, we did
include the platform).

Thevisuadizer is available as an “ editor” for aBom file. So the steps you need to take are:
1. Use aCQUERY to query for the resolution you want.

2. Select “Materiaizeto Wizard”, and then “ Save BOM” (Y ou can then cancel the query as you only
need the resolution meta data, and not the actual components).

3 In the context menu for the created Bom file, select Open With — Dependency Visualizer.

buckmingter C3pec wilki / SVG
B MyTRAD fMAD & org.apach . Exampiesforl
s MEW_Query CQuery

sample-bom.bom

sample.f -~

sample.l New »
E Sfacondh Open = . B oray
4 TT:;; Open With » + B Dependency Visualizer
Show In EBW »
- e [Text Editor
> & orn ::qec‘ = Copy ®C System Editor
vE : P - Copy Qualified Name Default Editor
b mh mES 7 Paste
> mi RE Syst)
» ml Pug-in * Delete E OEhEI’.l..
» weray Build Path | >
A b Refactor NET >

4The visualizer was not released as part of the original Eclipse 3.5 Gdlileo release, but isinclude in the Buckminster updates for 3.5.

108

Draft

Buckminster User Interface

Draft

\,

Tip

You can visualize any component in the workspace or target platform — simply enter

the component’s 1D in the CQUERY editor.

Dependency Visualization

~ Navgiation

(o org.eclipse.buckminster.ui
(@ org.eclipse.ulviews
@ org.eclipse.help
i org.eclipse.core.runtime
(@ org.eclipseul
@ org.eclipse.uiworkbench
@ org.eclipse.core.expressic
i@ org.eclipse.swt
@ org.eclipse.osgi
@ org.eclipse jface
i@ org.eclipse.core.runtime
@ org.eclipse.buckminster core
i@ org.eclipse.ui.workbench.texteditor,
@ org.eclipse.buckminster generic
@ org.eclipse.buckminster generic.ui
@ org.eclipse.uiide
@ org.eclipse.core.resources
@ org.eclipse.buckminster.osgi.filter
W org.eclipse.core.runtime
@ org.eclipse.ui.console
i org.eclipse.jface.text
@ org.eclipse.text
i org.eclipse.core.runtime
@ org.eclipse.equinax.app
@ org.eclipse.osgi
@ org.eclipse.equinox.comm,
@ org.eclipse.core.jobs
@ org.eclipse.equinox.c
@ org.eclipse.equinox.prefer
@ org.eclipse.equinox.regist
i@ org.eclipse.core.contentty
@ org.eclipse jface
i@ org.eclipse.ui.editors
i@ org.eclipse.ui.intro.universal
@ org.eclipse.ui.intro

Graph

(@ org.eclipse.buckminster.ui
(@ org.eclipse.buckminster generic.ui

(@ org.eclipseplatform g org.eclipse.buckminster.generic

(@ org.eclipse.ulide.application
1':
(@ org.eclipse.ul.navigator.resources

/
;

(@ org.eclipse.ul.views.properties.tabbed ' (@ org.eclipse.ul.console (@ org.eclipse.uieditors (@) org.eclipse.ulintro.ur

(@ org.eclipse.ulworkbench.texteditor WoRIEE A IS (g org.eclipse.uinavigator (@ org.eclipse.ulviews (@) org.eclipseu

lpse.compare.core g orgeclipse.uiforms (@ orgeclipseul (o) org.eclipse.equinox.p2.metadata (@) org.eclipse.buckminster.core

srg.eclipse.equinox.p2.engine (G org.eclipse.buckminster.osgifilter (o org.eclipse.buckminster.download (o org.eclipse.buckminster.o

3 org.eclipse.corefilebuffers (o org.eclipse.coreresources (@ org.eclipsehelp (@ org.eclipse.ect.provider filetransfer (@ org.eclips

org.eclipse.update.core @y org.eclipse jface @y org.eclipse.buckminster.runtime oy org.eclipse.ecf.filetransfer @y org.eclipse.text

lipse.core.commands (o) org.eclipse.core.databinding.property (o) orgeeclipseswt (@ org.eclipse.corenet o orgeclipseecf (@)

(@ org.eclipse.core.contenttype (@ org.eclipse.equinox.app (@) org.eclipse.equinox.security (o org.eclipse.ecf.identity @ org.

(@ org.eclipse.update.configurator (o) org.eclipsecorejobs (@ org.eclipse.equinox.preferences (g org.eclipse.equin

(@ org.eclipse.equinox.comman

(@ org.eclipse.osgi

Invoking actions

Y ou can invoke Buckminster actions (i.e. trigger actions in cspecs) from the user interface. To do

this, open the context menu for the component and select Buckminster — Invoke Action... and this
dialog appears:

™ 7 7 Actions of ExamplesForBook

buildme

some-action

Action properties

File:

Browse...

['- Cancel \1 E OK 3

~ Settings

Filters
Filter Target Platform

Layout

Path Highlighting
Dependencies
Usage

Path to Root

*) Shortest

Thediaog showsall publicly available actionabl e attributes (i.e. public actions, and public groupsthat
include actions). Y ou can aso pass properties to the action via a propertiesfile. Thisistypically the
properties file that you also use when running the same action in headless fashion. (The Buckminster
invoke action dialog will remember the path to the last used propertiesfile, as you will see when you
open the dialog a second time).

The screenshot above isjust an illustration. When you are using this with your components, you will
typically see many automatically generated actions. You can see what the automatically generated
actions do in the * Component Types' reference guide.

109

Draft

Buckminster User Interface

Draft

Editors

Buckminster has graphical editorsfor cSPEC and CQUERY — these are covered in the respective chap-

ters.

Preferences

Buckminster’ s preference setting arefound under Eclipse — Preferences... — Buckminster. The Buck-
minster preference pane looks like this: New screenshot needed - the OPML flag is not included - but
see Bug 288359 as the preference pane may be refactored.

Site name
Buckminster project folder
Console logger level:

Eclipse logger level:

Ant logger level:
':' Copy Eclipse log events to Console

Max number of parallel materializations
Connection retry count

Connection retry delay (seconds)

Order of resolution

rmap

<-- Add
Remove --> |
——

Mowve up

Mowve down

default
L Browse...
| DEBUG %
4
3

Resource map URL |

':' Owerride URL in Component Query

E Perform local resolution

Maximum number of resolver threads 4

Troubleshooting

I_(- Clear URL cache -\ Ir Refresh Meta-data -\I

Deprecated.

['-Flesmre Defaults-"] r’ Apply -\I

110

Buckminster User Interface

Draft

Buckminster project folder

Console logger level
Eclipse logger level
Ant logger level

Copy Eclipse log event to Console

Max number of parallel material-
izations

Connection retry count

Connection retry delay (seconds)

Order of resolution

Resource map URL

Override URL in Component
Query

Perform local resolution

Maximum number of resolver
threads

The name of the project where Buckminster keeps workspace
related information. Defaultsto . buckni nst er .

Thelogging level for things that log to the console.
Thelogging level for things that log to the Eclipse log.
Thelogging level for things that log to the ANT log.

When checked, all events to the Eclipse log are echoed to the
console. This means that both Buckminster output and Eclipse
Events will go to the console. This makes it possible to view
them in the sequence they occur. Thisis useful when there are
problemswitharesolution or build, asit isdifficult to otherwise
correlate general problems with build problems when outputs
are separate.

This controls how many materializations (i.e. downloads) to
runin parallel.

In case of a failure to connect/download other than “file not
found”, Buckminster will repeat the attempt after adelay. This
setting tells Buckminster how many timesto try.

This tells Buckminster the amount of time in seconds to wait
between connection retries.

Buckminster supports plugging in different resolution services.
The one service that is always available is the RMAP resolution
service. You may have other such resolution services in your
IDE, in which case, you can select if they are used and in which
order they are consulted.

This is a default RMAP URL. If entered in the preferences, a
CQUERY without aRMAP URL will use this default.

If selected, the default Resource map URL will overridethe urL
in any CQUERY.

&

Note

This is only available when running a CQUERY
from the user interface— not when running head-
less Buckminster. Thismeansthat you should on-
ly use this as a testing/troubleshooting mecha-
nism when you need to run a query with adiffer-
ent RMAP.

If a remote resolution service isin use (See ‘Order of resolu-
tion’ above), this setting will disable the use of any remote res-
olution.

This controls how many parallel threads the resolution process
will use. When running into resolution problemsit is useful to
set thisto 1 — as this disables multi-threading. All trace out-
put will then be in sequence for the single executing thread.
This makes it much easier to read the output. Increasing the
valuewill haveapositive effect on resol ution speed when many
servers are contacted during the resolution, or when the in-

111

Draft

Buckminster User Interface Draft

Enable support for component
bookmarks (oPMmL)

Clear URL Cache

Refresh Meta-data

Restore Defaults

volved servers have high bandwidth and allow many connec-
tions from the same client.

When checked, Buckminster will scan for a
buckmi nst er. opnl filein the component and include the re-
sult in the resolution.

This clears Buckminster’ s cache of downloaded artifacts, thus
forcing Buckminster to download them again.

This refreshes Buckminster’'s metadata. Buckminster tries to
stay in sync with the target platform and the workspace. Thisis
however not perfect as things can change without Buckminster
noticing (no events are generated in some cases, esp. when files
are changed via means external to Eclipse), or where things
change in such an order that Buckminster will get confused.

Handy if you managed to configure yourself into trouble...

112

Draft Draft

12

Troubleshooting

In this chapter we have collected some advice regarding troubleshooting. Throughout the chapters
there are some bits of advice and warnings, but these are not as easy to find when something isindeed
wrong — and it can be hard to tell from the symptoms what is really happening.

.
v o

THISCHAPTERISW.I.P....

Installation Issues

Here isachecklist for common issues when installing:

» Obviously, the first thing to check is that you followed the instructions on the Buckminster Down-
load page.

 Installing the 3.5 version into a 3.4 or vice versais arealy bad idea — make sure you are using
the correct update site.

* Installing the headless support into the standard Eclipse IDE will causeall sortsof problems— check
that you did not use the wrong URL from the download page by mistake.

e There are two different svN adapters to choose from — you can not use both at the same time. If
you tried to install one and it failed — make sure you do not already have the other installed. Some
users have also been confused over which svN client they are using — if you are uncertain check
if you are using Subclipse, or Subversive.

» Sometimesthere areissues with Eclipse download site (infrequent), and sometimes there are issues
regarding mirroring and not all mirrors being up to date (or simply misbehaving). The mirror selec-
tion may be confused over your location and may send you to the least optimal server. You may
also encounter network errors.

In most cases, the issues sort themselves out — just try again alittle later. But there are other things
you can do. Onething isto download the Buckminster archived site and perform alocal installation.
This gives you manual control over from where you are downloading the archive.

113

Draft

Troubleshooting Draft

If you still have trouble installing — try installing into a fresh Eclipse 3.5 installation. The issues
may have nothing to do with Buckminster at all.

Headless issues

Here are some common issues encountered when running the headless buckminster.

When nothing works, and you just get errors... The standard headless can not do much except afew
basic commands. Y ou must install the wanted features into the headless product before it is useful.
If you forget this, you will see error messages for services and classes that can not be found. To
correct, follow theinstructionsin Appendix A, Installation.

Under no circumstancesisit agood ideato install the Buckminster features intended for use in the
Eclipse IDE into the headless product. Make sure you did not use the wrong URL when installing.

Resolution issues

When something is wrong it usually manifestsitself as an failure to resolve a query. There are many
possible causes for afailed resolution — ranging from thetrivial to fix to really hard problems. There
is naturally also a difference how to troubleshoot something not resolving for the very first time (i.e.
when you are just starting out), and when you get resolution errors for something that once worked.

In general there are two types of issues:

Addressing issues — there is nothing wrong with the actual dependencies but the components are
not found when looking them up in the RMAP. This breaks down further into:

* RMAP issues— it does not route the lookup to the correct place.
» Repository issues — the expected content is not there.

Dependency issues — there are erroneous/unwanted/conflicting dependencies.

When looking at a“unresolvable” issue, thereis no way to know the type of problem. Hereis acheck
list:

Doesthe unresolvablerequest |ook reasonabl e (i.e. doesit have areasonable name, correctly spelled,
and with aversion that makes sense)? If not, then the problem isto be found in acomponent that has
stated adependency inerror. Use‘ materializetowizard’ and look at the result to see the dependency
chain that leads to the unresol vable component.

Check the RMAP route taken. Y ou need to turn on logging and also disable parallel resolution (or
you get events from multiple threads to decipher) — this is done under Preferences the section
called “Preferences’. Run the query again, and look at the output — is it using the expected route
through the RMAP? If it is difficult to find the information due to requests for many/similarly named
components, try asimple query that just asks for the unresolved component.

Try awider search — create a query for the unresolved component, but open up the range, and see
what it resolves to — maybe the requested version simply does not exists.

If you seeit trying the correct RMAP route, and the datais in the repository, but it till fails, maybe
you have some mapping/formatting in the RMAP that it iswrong. Try a hacked RMAP where you use
aconstant expression for the actual component, and then query for just this unresolved component
— if possible to get it when using a constant, then you know you have a faulty mapping entry in
the RMAP.

Maybeyou haveissuesthat are specific to areader type— if possible make acopy of the component
in your local file system and set up an entry for it in the RMAP — if this works then you know that
you have issuesin the original RMAP entry for that repository.

114

Draft Troubleshooting Draft

* Maybe you are using stale information — try refreshing the meta data, and clear the Buckminster
cache. Thisisdone under Preferences the section called “Preferences’.

Materialization issues

What are typical issues here? (Authorization obviously.)

* If you see errors for unresolved bundles for platforms other than the one you are running on, then
you are probably trying to build a RCP application (and where this build is not constrained to your
current platform), and you have forgotten to install the Eclipse Delta Pack.

Execution issues

What is typically wrong here? (Did you forget passing properties? Forgetting qualifier replacement?
ANT related issues (I recall having some that Thomas helped me sort out)?

* Wheredid the files go?

 Strange qualifier, or qualifiers say ‘qualifier’

Component issues

If you are having problems with components, here are some things to check:

» Buckminster currently places Eclipse productsin the name space used for acomponent’ s attributes.
You will run into trouble if you have given attributes the same name as a product it includes. The
reverse is also true (you have a product that has the same name as an automatically generated at-
tribute), but thisis very unlikely as the automatically generated attribute names are quit technical.

* If you have troubles with bundles (plugins or features), check that you are using the correct meta
dataformat - they should have“ Bundle-ManifestV ersion: 2" and the meta data should show without
errors in the Eclipse manifest editor.

115

Draft Draft

Part Ill. Examples

In this part we are showing several examples, from the simple Hello World kind, to a full build of a RcP product
and p2 repository. As you probably want to run through these examples live, you should follow the instructions
in Appendix A, Installation, so you can experiment with the examples yourself.

Draft Draft

13

Building a p2 Update Ste

In this example we will build a p2 update site for a plugin and a feature. This example is very easy
to set up from scratch so there is no source available.

This example demonstrates:

* Building asite using automatically generated actions

* Defining a category that is used by “Install new Software”

» Defining and using properties to control the Buckminster build
* Installing from a generated p2 repository

Prerequisites. In order to run this example, you need to have JDT, PDE, as well as Buckminster
installed.

Creating the content

In order to create an update site, we must naturally have something to publish to this update site.
We will create a plugin and a feature that references this plugin. The only role for the feature is to
categorize it and thus make it appear in the p2 user interface for installing new software.

Creating the plugin

Create aplugin by using File - New — Other... — Plugin Project. In the wizard that appears, give
your project the name ‘or g. deno. denopl ugi n’, select Next in the wizard (leave all the default set-
tings) until you reach the template selection page. Select the template called ‘Pl ug-in with a
vi ew, and click Next. Change the View Name from ‘Sanpl e Vi ew to differentiate it from other
samples (e.g. ‘Denopl ugi n Vi ew). Click Finish, and you should get a project in your workspace.

Creating the feature

Create afeature by using File - New — Other... — Plug-in Development — Feature project. In the
wizard that appears, name the project ‘or g. deno. denof eat ur e’ and click Next. A list of available
pluginsis displayed. Select the ‘or g. deno. denopl ugi n’ and click Finish.

Creating the site feature

We need an additional feature that describes what we want to include in the update site we are going
to build. In this feature we will also categorize the content.

117

Draft

Building ap2 Update Site Draft

5 Note

A feature that is published as an update site by Buckminster does not include itself in
the update site.

Create the site feature by using File - New - Other... — Plug-in Development — Feature project.
In the wizard that appears, name the project ‘or g. deno. denosi t e’ and click Finish.

In the feature editor that opens, navigate to the ‘Included Features tab, select Add and pick
or g. deno. denof eat ur e in the pop up list that appears.

Navigate to the build.properties tab, and add the following three lines:
category.id. org. deno. denocat egor y=Cool Features (denp)

cat egory. menbers. or g. deno. denocat egor y=or g. deno. denof eat ure

cat egory. descri ption. org. deno. denocat egory=Cool stuff build in a Buckm nster deno

This defines a category called ‘or g. deno. denocat egory’ and its label, description, and members
are defined.

éb Note

Don't forget to save the feature.

Building the site

Building the site is easy — everything we need is generated automatically, but we have to provide
some properties to Buckminster that defines where the output should go.

These properties can be set in apropertiesfile, or you can set them directly in the IDE under Eclipse —

Preferences — Run/Debug — String substitution. If you want them in a propertiesfile instead (which
is reusable when running headless) then you should create afile called ‘buckni nst er . properti es’
inthe or g. deno. denosi t e project, with the following content:

Where all the output should go
buckm nst er. out put. root =${user. hone}/ denosite

Where the tenp files should go
buckm nst er.tenp. root=${user. hone}/tnp/denosite.tnp

How .qualifier in versions should be repl aced
qual i fier.replacenent. *=generator:| astRevision

These parameters direct where output and temporary-output should go, and it defines how versions
marked as ‘qualifier’ should be handled. Here we selected to use the ‘last revision’ scheme even if
we do not yet have this because our projects are not stored in a source code repository yet. There are
many other parameters that control how the building is done, if signing and packing should take place
etc. Please see ‘description of site.p2’.

With the property file in place, we can now build the site. Right click over theor g. dero. denosi t e

project, and select Buckminster — Invoke Action..., and (if you decided to use a propertiesfile) in the
pop up that appears, browse for the buckmi nst er . properti es file we just created (you will need
to navigate in the file system to find the workspace, project, and then the file since the properties files
are typically placed in the file system, and not in the workspace). When the properties file has been
found and selected (alternatively set the properties using Run/Debug string substitution), select the
action called ‘si t e. p2’ in thelist of presented actions, and click ‘Ok’. Y ou will now see some trace
output, and if everything worked ok, you now have an update site.

118

Draft Building ap2 Update Site Draft

Using the update site

The first question is typically “where is the site?’. Remember that we set the output root to be un-
der ${ user. hone}, so you need to navigate to your home directory, and then to the directory de-
mosi t e/ or g. deno. denosi te_1. 0. 0-ecl i pse. f eat ure/ where you will find two directories
‘site’,and'site. p2’ —thefirst directory isaEclipse 3.4 update site that was built as abonus, and
the‘si t e. p2’ isthe p2 update site. (Y ou will find the output for every project that was built under the
respective project name under ${ user . horre} / denosi t e, and once you are done with this example,
you probably want to remove both this and the ${ user . hone}/ t np/ denosi t e directory).

Y ou can now take the content under ‘si t e. p2’ and make that available as an update site by using

a web server. You can also use it directly in your Eclipse IDE to try it. To do this, go to Help -
Install New Software, and enter the URL to your just created repository (either prependfile:// to
the absolute path, or use the“Local " button to browse for the location).

You will now see the ‘Cool Features (demo)’ category, with the Demofeature as its content. Select
it, and install to run the view in your IDE. (If you do this, you probably want to uninstall it, and then
remove the update site when you are done testing)

119

Draft Draft

Building a Legacy Update
Ste

Buckminster has support for building legacy update sites(i.e. the simpler older format using asite.xml
file). It is however recommended that p2 based update sites are used for Eclipse 3.4 and later. You
can skip this exampleif you are not going to produce legacy sites.

To use the support for legacy update sites, you will need to add the actions to the csPec used to define
the site as the support is not automatically generated by Buckminster (asit isfor p2 site generation).
This example shows you how to do this step by step.

Creating the update site project

To Buckminster, an update siteis not different from any other type of component. \We need to keep the
definition of the update site in a project, and we need some additional meta data to enable convenient
building of the site. Thefirst step isto create the update site project:

1 Right click in the Package Explorer and select New — Project

2. Inthe New Project wizard that pops up, open the Plug-in Development folder

3. Click on Update Ste Project

4. Givethe project aname. In this example we use or g. t est . updat e.

5. Click on Finish

The project appearsin theworkspace and it containsone singlefile, anempty si t e. xm . Buckminster

will use this asthe update site template. This meansthat you can add site categoriesto thisfile but you
should not add any features. Buckminster will generateanew si t e. xml wherethe features are added.

Creating an index.html file

Just create an empty file in the root folder of your new update site project for now and call it
i ndex. ht nl . You can add content to this file that will be what the user will see if they happen to
access your update site with a browser.

Creating the Component Specification

Buckminster describes al components in terms of csPecs. The update site is ho exception. Here are
the steps to create such a cspeC and enter the needed information:

1 Right click on the update site project and select New — Other

120

Draft Building a Legacy Update Site Draft

2. Inthe New wizard that pops up, open the Buckminster folder
3. Select Component Specification file and click on Next
4. Click on Finish to accept the default values for Container and File name

A filenamed buckni nst er . cspec iscreated in the project and the Buckminster cspec editor opens.
Do not change the name of thisfile.

Main information

» The name of the component is normally the same as the name of the project. This makes it easier
to find the component.

e The component type must in our case be set to buckni nst er .

» Theversion can be any 0sGi compliant version suchas 1. 0. 0

Artifacts

Artifacts denotes files and folders that are present inside of a component. The action that will create
the update site needs to know about the si t e. xm template and other filesto copy so we need to add
that to our specification:

1. Click onthe Artifacts tab

2. Click on New below the Artifacts table

3. Enter anamesuchassite.tenpl ate

4. Click on the New button next to the Path table

5. Enter the namesi t e. xm inthe dialog that pops up and click OK

6. Click on New below the Artifacts table

7. Enter thenamesite. rootFil es

8. Click on the New button next to the Path table

9. Enter the namei ndex. ht nl in the dialog that pops up and click OK

We now havetwo artifacts, each with one path. The separation is necessary in this particular case since
the build action will reference the artifacs separately. An artifact may have several paths and you can
add as many files and folders as you wish to the si t e. r oot Fi | es artifact.

Dependencies

We need to define the features that will be included on the update site. Buckminster considers them
to be dependencies:

1. Click on the Dependencies tab

2. For each feature that you want to add, repeat the following:
a. Click on New just next to the Dependencies table
b. Enter the name of afeature component

c. Set the Component Typetoecl i pse. feature

121

Draft Building a Legacy Update Site Draft

d. Click OK

Groups

The build action expects one prerequisite that lists all the feature jars and one that lists all plugin
jars. Conveniently, Buckminster has already generated cspecsfor all features with attributes that will
provide just that. A feature will always have the two public attributes:

feature.jars Thisisthe transitive closure of all features (including the fea-
tureitself) in jared format.

bundle.jars Thisis all the plugins that the transitive closure of all features
isreferencing in jared format.

Since we do not have afeature that describes the update site itself, we need to create two new groups.
Oneto group all the feature.jars, and one to group the bundlejars.

1. Click on New just below the Groups table
2. Enter the name of the group. Call itfeature.jars
3. For each feature that should be included in this group
a. Click on New just next to the prerequisites table
b. Select afeature from the drop down menu.
c. Enterthenamefeature.jars
d. Click OK

Repeat these stepsfor agroup that iscalled bundl e. j ar s that referencesthebundl e. j ar s attribute
of each feature.

Defining site categories

This step is not required, but typically you want to categorize the contents of the update site. In order
to define a Ste Category, you must first create the category in the si t e. xm file and then add it as
agroup in the cspec.

In order to create a category inthesi t e. xnl file, do the following:
1. Doubleclick onthesi te. xnl file. The Update Site Editor opens
2. Onthe Ste Map tab, click New Category

3. Givethe category aname. In this example we will use Basi c

4. Add alabel such as“Basi ¢ feat ures”

Repeat these steps and create an additional categogy named Opt i onal with label “Opti onal f ea-
tures”.

Back to the cspPec editor:
1. Click onthe Groupstab
2. Click on New just below the Groupstable

3. Enter the name of the group, i.e. Basic

122

Draft Building a Legacy Update Site Draft

4. For each feature that should be included in this group
a. Click on New just next to the prerequisites table
b. Select afeature from the drop down menu.
c. Enterthenamefeature.jars
d. Click OK

Repeat these steps for the Opt i onal group.

Attributes, Groups, and Actions are al Attributes in Buckminster terms. A group contains attributes.
Subsequently, agroup caninclude other groups. Thisallowsfor asimplification of thef eat ure. j ar s
group that we created earlier. Instead of having that group include all features, it could instead include
the two category groups, i.e. instead of having:
feature.jars

a[feature.jars]

b[feature.jars]

c[feature.jars]

d[feature.jars]
Basi c

a[feature.jars]

b[feature.jars]
Opti onal

c[feature.jars]
d[feature.jars]

we can simplify and do:
feature.jars

[Basi c]

[Optional]

Basi c
a[feature.jars]
b[feature.jars]

Opt i onal
c[feature.jars]
d[feature.jars]

(The example assumes that a, b, ¢, and d are features and [xxx] denotes attribute xxx).

If you follow the example (simplification or not), you now have four groups, Basi c, Opti onal ,
feature.jars,andbundle.jars.

The action

Thefinal thing to add to the csPec is the action that will trigger the actual build of the update site.
1. Click on the Actions tab
2. Adding General action information

a Click on New below the Actions table

b. Enter thenamebui | d.site

c. Check the Public checkbox

d. Enter the Actor Name: ant

123

Draft

Building a Legacy Update Site Draft

3. Addingthesite. t enpl at e prerequisite

a

b.

e.

Click on the New button next to the Prerequisites table
L eave Component blank (this means current component)

Select si t e. t enpl at e from the Attribute combobox

. Enter the Aliasnamet enpl at e

Click OK

4. Adding ther oot Fi | es prerequisite

e.

Click on the New button next to the Prerequisites table

. Leave Component blank

Select si t e. r oot Fi | es from the Attribute combobox

. Enter the Aliasnamer oot Fi | es

Click OK

5. Adding the features

e.

Click on the New button next to the Prerequisites table

. Leave Component blank

Select f eat ur e. j ar s from the Attribute combobox

. Enter the Alias namef eat ur es

Click OK

6. Adding the plugins

a

b.

C.

d.

Click on the New button next to the Prerequisites table
L eave Component blank
Select bundl e. j ar s from the Attribute combobox

Enter the Alias name pl ugi ns

7. Adding general properties. These properties control the general behavior.

a

b.

C.

In the middle pane, click on Properties
Click on New next to the General Propertiestable

Enter Key si t e. nanme and avalue such ast est . archi vedsite

. Click OK

If you want your site to have some extra suffix such as_i ncubat i on then:
i. Click on New next to the General Propertiestable
ii. Enter Key site.extra.suffix andavauesuchas_i ncubation

iii. Click OK

124

Draft

Building a Legacy Update Site Draft

8. Adding actor properties. These properties control behavior specific to an actor. We need two of
them. One to specify the ant build script that will be used and another to specify what ant target
to call inthat file.

a

b.

C.

f.

Click on New next to the Actor Propertiestable
Enter Key bui | dFi | el d and thevalue buckni nst er. pdet asks

Click OK

. Click on New again

Enter Key targets and the valuecr eat e. | egacy. si t e (inreleases prior to 3.5 thistarget was
cdledcreate.site)

Click OK

9. Finally, we must specify the product of this action and give it an aliasthat it passes on to ANT.

a. Click on Productsin the middie pane.

b.

C.

Enter the Product Aliasact i on. out put
Enter the Product Base Path si t e/

This concludes the csPec editing.

Saveit using cMD-Sor File - Save.

Building the site

Right-click on your project, select Buckminster — Invoke action - build.site. The output will
end up in ${user. t enp}/ buckni nst er by default. You can change this by setting the property
buckmi nst er . out put . r oot inaproperty filethat you reference when you execute the action. You

can also specify properties using Eclipse — Preferences - Run/Debug - String substitution.

125

Draft Draft

15

Hello XML World

In this examples, we show how Buckminster is used to assembl e two Eclipse plugin projects, aregular
Eclipse project, and ajar downloaded from a maven repository. These are all handled as components,
and one of them produces anew jar file that is required by one of the other components.
Thisexampleiscalled “Hello XML World” because the code consists of a‘world provider’ that reads
a configuration of ‘worlds’ in XML and code that uses thisto say ‘hello’ to one of the worlds. The
example demonstrates:

 Getting components from different repositories

» Using adownloaded jar in a component

» Using Buckminster pr ebi nd to perform actions before projects are bound to the workspace.

* Integration with ANT, to execute the prebin action, and to build the regular project.

e Using abuckni nst er. cspec to describe a component that is not automatically handled.

» Using acsPex extension to add a prebind action to an automatically generated component.

All of the source code for this examples is available in the Buckminster svN repository and

can be viewed with a browser at this location [http://dev.eclipse.org/viewsvn/index.cgi/trunk/
org.eclipse.buckminster/demo/?root=Tools BUCKMINSTER].

126

http://dev.eclipse.org/viewsvn/index.cgi/trunk/org.eclipse.buckminster/demo/?root=Tools_BUCKMINSTER
http://dev.eclipse.org/viewsvn/index.cgi/trunk/org.eclipse.buckminster/demo/?root=Tools_BUCKMINSTER
http://dev.eclipse.org/viewsvn/index.cgi/trunk/org.eclipse.buckminster/demo/?root=Tools_BUCKMINSTER

Draft Hello XML World Draft

Hereisadiagram of this example:

SVN repo

o org.demo.hello.xml.world
«plugin»

dependency

org.demo.xml.provider
dependency | dependency
se.tada/tada-sax
«j a»

requires

org.demo.worlds
«project»

Prerequisites. If you want to run this examplein your IDE, you must have Buckminster installed as
well assupport for Java, and PDE. Y ou al so need the Buckminster featuresfor Maven and svN installed,
and for svN, you also need an actual svN client installed. Please refer to Appendix A, Installation for
how to install these.

Without Buckminster

Without using Buckminster, the steps to build a functioning project requires the following:

» Thethree projects are checked out from Buckminster’s SVN repository. This can be done manually,
or using ateam project set file.

» The three projects does not build because the jar file with the sax parser needs to be downloaded
from aMaven repository. Thisis easily downloaded, but as the name of the file contains a version
number, itisbestif itisrenamed so that the componentsusing it doesnot haveto havetheir manifests
changed when the version is changed.

» Theproject still doesnot build, asone of the projectsrequireajar filethat isbuilt by one of the other
projects. This can be donewith the Eclipsejar packager, (and adescription isavailablein the project
asillustration of the manual alternative) — it however stores absolute paths, and refersto a specific
location on theinitial developer’s machine. All other users must edit thisfile before they can build.

With Buckminster in use

To set these projects up with Buckminster, the following is needed:

* A RMAP is needed so the resources can be found. The RMAP needs to have entries for the three
projects (they are in Buckminster’'s SVN repo in our example), and the component from a maven
repository.

» We need a CQUERY to be able to materialize the entire set up.

» We need some specia actions to handle the building and inclusion of the sax parser jar, and the
jar file produced by one of the projects.

127

Draft Hello XML World Draft

Once we have this set up, the configuration is very easy to materialize and build for anyone that wants
to work on the software as well as being buildable in headless fashion on a build server.

The RMAP

The RMAP for this demo looks like this:

<?xm version="1.0" encodi ng="UTF-8"?>
<r map
xm ns="http://ww. eclipse. org/ buckm nst er/ Rvap- 1. 0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: mp="http://ww. ecl i pse. or g/ buckm nst er/ MavenPr ovi der-1. 0"
xm ns: bc="http://ww. ecl i pse. org/ buckm nst er/ Cormon-1. 0" >

<searchPat h name="defaul t">
<provi der reader Type="svn" @
conponent Types="ecl i pse. f eatur e, osgi . bundl e, buckni nster" @ source="true" ©>
<uri format="http://dev.eclipse.org/svnroot/tools/org.eclipse.buckm nster
-/ trunk/org. eclipse. buckmi nster/deno/ {0}"> @

<bc: propertyRef key="buckni nster.conponent" /> ©
</uri>
</ provi der >
</ sear chPat h>

<l ocat or searchPat hRef ="defaul t" pattern=""org\.demo\..*" /> O
<redirect href="http://ww. eclipse. org/buckm nster/sanpl es/ r maps/ dogf ood. r mrap"

pattern=".*" @
/>
</ r map>

This RMAP looks up all components that begins with ‘org.demo’ in the Buckminster SvN repository,
and then redirectsto the Buckminster standard RMAP used when building Buckminster (see the section
called “ The ‘dogfood” RMAP"). The demo RMAP shown aboveisavailable at http://www.eclipse.org/
buckminster/samples/rmaps/demo.rmap so you don't have to type it in to run this example.

Here are some details regarding this RMAP:

We want to get projects from Buckminster’s svN, so we use the svn reader.

We want features, bundles, and components with buckminster metadata.

We want source. (We are not asking for mutable source, as you would need to be a committer
on the buckminster project for that to be a meaningful request).

The mapping istrivial, the URI to the Buckminster svN repository simply needs the name of the
component at the end — i.e. the parameter { 0} which it gets from the nested element...
Thebuckni nst er. conponent property is aways a reference to the component being looked
up. Thisisthe value that goesinto the uri in the format string at { 0} .

Thislocator uses a pattern that will direct anything that startswith ‘ org.demo’ to the search path
for the demo components.

If not found in thefirst locator, we redirect the search to the dogfood RMAP (see the section called
“The ‘dogfood” RMAP"), which (among other things) has entries for standard Eclipse content.

The CQUERY

Now that we have a RMAP that will find the components we are interested in, we can issue queries
that materializes them.

O © 6 6 o000

Asthe query is very simple, you can just open the Buckminster query editor and simply enter three
things — the name of the component; or g. deno. hel | 0. xnl . wor | d, thatisan osgi . bundl e, and
the URL to the RMAP (set up in the previous section), or you can copy/pastein the following into afile
with the suffix . cquer y and then open that file in Eclipse:

<?xm version="1.0" encodi ng="UTF- 8" ?>

128

http://www.eclipse.org/buckminster/samples/rmaps/demo.rmap
http://www.eclipse.org/buckminster/samples/rmaps/demo.rmap

Draft

Hello XML World Draft

<cqQ: conmponent Query
xm ns: cq="http://ww. ecl i pse. org/ buckm nster/CQuery-1.0"

resour ceMap="htt p: / / wwv. ecl i pse. or g/ buckni nst er/ sanpl es/ r maps/ deno. r map" @
>

<cq: r oot Request
name="or g. deno. hel | 0. xm . worl d" @

conponent Type="o0sgi . bundl e" ©
/>
</ cq: conponent Query>

© TheRMAPURL from the previous section.

® The name of the top component

® Itisanosgi. bundl e, which we state in case the nameis not unique, and possibly speed up the
lookup as only osgi.bundles needs to be considered.

Now that we have the query in place, we can materialize it to our workspace (see the section
called “Materialization wizard” for more information). The result is that we get three projectsin our
workspace;

e org.deno. hell o.xm .world
e org. deno. xn . provi der
e org.deno.worl ds

Y ou will aso notice that the projects got built, and that there were no errors. If you just checked the
projects out manually (without using Buckminster), and tried to build them, you would get errors,
as things would be missing. The extra work performed by Buckminster originates from some extra
instructions put into the components’ meta data.

Running the example

Since the projects were built without errors after running the query, the sample can also be executed.
Simply run the or g. deno. hel | 0. xnl . wor | d as an Eclipse Application. When the self hosted IDE
has launched, you will find the view under Window — Show View - Other... —» Sample Category —
Sample. When you open that view, it will say “Hello XML Earth World".

How the code is structured

The or g. deno. hel l 0. xm . wor | d is a standard Eclipse plugin with an Eclipse view that dis-
plays text. The viewer uses the classes Wor | dMap, and TheReader which are made available by
the or g. dermo. xm . provi der, so a dependency is declared on this bundle. Apart from this, the
or g. deno. hel | 0. xni . wor | d is quite uninteresting.

The or g. deno. xm . provi der pulls things together. It is a plugin, and it provides TheReader
class which in turns makes use of the tada xML sAX parser jar downloaded from the Maven reposi-
tory at Ibiblio. It also provides the Wor | dvap class which isin ajar built by the non-plugin project
org. deno. wor | ds.

In the following two sections we explain how the or g. deno. wor | ds is built, and how the resulting
jar, together with the tada parser jar are handled.

org.demo.worlds

The or g. deno. wor | ds project is an Eclipse ‘plain java project — so the system does not offer
any help with putting everything together, like it does when using 0sGi. To manage this project as a
component we added abucknmi nst er . cspec file where we have declared the required actions. The
component does not have any dependencies— but if that were the case, we would have declared those

129

Draft Hello XML World Draft

aswell. You can explore this csPEC in the cspec editor if you like, but here we show the xmL for the
CSPEC, to explain how it is constructed.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<cs:cspec xm ns:cs="http://ww. eclipse. org/ buckm nster/CSpec-1.0" nane="org. deno. wor| ds">
<cs:artifacts>
<cs: public name="source" path="src/"/> @
</cs:artifacts>
<cs:actions>
<cs: public nanme="j ava. bi nary. archi ves" actor="ant"> @
<cs:actorProperties>
<cs:property key="buildFile" val ue="nake/build.xm"/> ©
</ cs:actorProperties>
<cs:prerequisites alias="input">
<cs:attribute name="eclipse.build"/> @
</cs: prerequisites>
<cs: products al i as="output” base="${buckni nster.hone}/bin/jars/"> @
<cs:path path="worlds.jar"/>
</ cs: product s>
</ cs: public>
<cs:private nanme="eclipse. build" actor="eclipse.build"> O
<Ccs: prerequisites>
<cs:attribute nane="source"/> @
</ cs: prerequisites>
<cs: products base="${buckni nster. hone}/bin/cl asses/"> @
<cs:path path="."/>
</ cs: product s>
</ cs:private>
</cs:actions>
<cs: groups>
<cs: public nane="j ava. bi naries"> ©
<cs:attribute name="eclipse. build"/>
</ cs: public>
</ cs: groups>
</ cs: cspec>

O We state that this component has an attribute called ‘sour ce’ which is a static reference to
artifacts with arelative path to where the source isinside this component. We need thisreference
later wen we are going to build the source.

@ Wesdtate that the component has an attribute called ‘j ava. bi nary. ar chi ves’ (we picked this
name as it is aso used in automatically generated components for the same purpose) and we
want this to attribute to have the value of al the jarsin this component. Asthe jar file (thereis
only oneinthiscase) is produced by an ANT script, we declare that we want to usean ‘ant ’ actor.

® Hereweprovideact or Properti es tocontrol theant actor. Wesetthebui | dFi | e to‘nmake/
bui I d. xnl *. This ANT script will produce the jar, and it needs to know where the compiled
classes are, and where the resulting jar should be produced. We will (as you will see below)
declaretwo aliases called ‘i nput * and ‘out put ' to providethis. The script itself isvery simple
— itlookslike this:

<?xm version="1.0"7?>
<proj ect name="org.deno. worl| ds">
<target nane="j ava. bi nary. archi ves">
<di rnanme property="output.dir" file="${sp:output}"/>
<buckmi nster.val uefileset id="input.fileset" value="${fs:input}"/>
<nkdir dir="${output.dir}"/>
<jar destfile="${sp:output}">
<fileset refid="input.fileset"/>
</jar>
</target>
</ proj ect >

A project root element is required. The name of the projectsis stated for historical reasons
— in Eclipse 3.4 it was considered an error if not stated. Has no significancein 3.5.

EE Theanttarget (i.e. the ant action) is named the same as the action in the component — this
ishow they are linked together. (It isalso possibleto link thetarget using at ar get s actor
property, but we use the default here).

130

Draft Hello XML World Draft

Wedeclareanant di r nane variablecaled ‘out put . di r ' to havethevalue of the property
‘out put ' passed from Buckminster. The ‘sp: ’ prefix means we want a single path (the
‘out put ' isdeclared to have a single path).

EZ Wedeclareabuckninster.val uefil eset variable caled ‘i nput.fil eset’ (which
adapts a Buckminster path group to an ant fileset), and we set it to the value of the property
‘i nput’ (all the compiled classes).

We make sure the directory where we are going to place the resulting jar file exists by
creating it.

EE Weexecutethe ANT j ar action telling it to produce the jar file named in the buckminster
property ‘out put .

We provide the parameter to thej ar ANT task that tellsit what to include in the jar — this
is done with areference to the earlier created ‘i nput . fi | eset’ (the compiled classes).

For details see the ‘Buckminster ANT tasks' reference guide. Now back to the CsPeC...

O We declare the prerequisites (the input) to the j ava. bi nary. ar chi ves action to be aliased
‘i nput ’ and that thisinput isthevalue of theecl i pse. bui | d attribute (which we are declaring
further down to compile the classes and return them). Asyou saw in the ANT script, we used the
aias ‘i nput ' to access the compiled classes.

O Here we declare the pr oduct s (the result/output of the action — which is also the value of
the the j ava. bi nary. ar chi ves attribute). We use an alias ‘out put’ so the ANT script can
access the value and actually produce the result where we want it). We only have one product,
so it is declared directly in the products element. Its base isrelative to the buckni nst er . hone
property which points to the root of the component — so we get the jar file under ‘bi n/j ars’
inside the project.

O Herewedeclare an action that we call ‘ecl i pse. bui | d’ — it usestheecl i pse. bui | d actor,
which is the same as running a build of the project inside the IDE. Thiswill compile the source
into classfiles.

@ Weusethe'source’ attribute as a prerequisite (input) to the ‘ecl i pse. bui I d’ action, so it
knows what to build.

O Wedeclarethe pr oduct s (output/result) of the action to be located relative to the component’s
root (‘buckmi nst er . hone’) under ‘bi n/ cl asses’.

© To be complete, and compatible with automatically generated components, we also declare an
attributecalled‘j ava. bi nari es’ whichincludesall binary content produced by the component
— in this case, the classes produced by the ecl i pse. bui | d action, and nothing more. (This
attribute is not actually further used in our example).

For details regarding the csPeC syntax please refer to the appropriate section in Chapter 6, Compo-
nents.

Summary. The net result of the buckni nst er. cspec, and make/ bui | d. xm ant script is that
we how can get the resulting wor | ds. j ar as an attribute called j ava. bi nary. ar chi ves in the
component or g. deno. wor | ds — thefact that thistriggers compilation of the source and production
of the jar file is not visible to the user of the component. This is exactly what we wanted. Later we
may restructure how this component is built and we can now do so with confidence.

org.demo.xml.provider

The or g. deno. xnl . provi der project is aplugin. We chose to make it a plugin as it is then easy
to to use from the or g. deno. hel | 0. xm . wor | d component (and other future enhancements that
wants access to worlds). We decided to use XML as the lingua franca between worlds (the messages
sent to worlds are in XML), so we need an XML parser. We decided on using a SAX parser available
in the Maven repository at Ibiblio. This, to show how to use the Maven integration, and how to make
use of adownloaded jar file inside a plugin. We also decided to let the or g. deno. xmi . pr ovi der
package makethewor | ds. j ar file (we built ourselves) available to show how such an integration is
made. This also gives the opportunity to demonstrate the use of a CSPEX — extension.

Astheor g. deno. xm . provi der isaplugin, it getsan automatically generated CSPEC, but thiscspec
doesnot contain any of the extraswewant (i.e. thetadasax parser, andthewor | ds. j ar). Tointegrate

131

Draft

Hello XML World Draft

those, we use a CsSPeX. It is quite straight forward as we only need to add things, i.e. there is no need
to ater any of the automatically generated values. Thisiswhat it lookslike:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<cs: cspecExt ensi on

xm ns: con¥"http://ww. ecl i pse. or g/ buckm nst er/ Conmon- 1. 0"
xm ns: cs="http://ww. ecl i pse. org/ buckm nster/ CSpec-1.0">
<cs: dependenci es> @
<cs: dependency nane="org. deno. worl ds"/>
<cs: dependency nane="se.tada/tada- sax"
ver si onDesi gnat or="1. 0. 0"
versi onType="0SG "/ >
</ cs: dependenci es>
<cs:actions>
<cs: publi ¢ name="buckmi nster. prebi nd" actor="ant"> @
<cs:actorProperties>
<cs: property key="buil dFile" val ue="rmake/prebind.xm" /> ©
</ cs:actorProperties>
<cs: prerequi sites>
<cs:attribute
conponent ="se. t ada/ t ada- sax" al i as="tada-sax.jar" O
name="j ava. bi nary. archi ves"/ >
<cs:attribute

conponent =" or g. deno. wor | ds" @
alias="worlds.jar"
name="j ava. bi nary. ar chi ves"/ >

</ cs: prerequisites>

<cs: products alias="output" base="${buckm nster.hone}">

<cs:path path="jars/" /> O
</ cs: product s>
</ cs: public>
</cs:actions>

</ cs: cspecExt ensi on>

We add two dependencies to the component — the or g. dero. wor | ds (because we are going
topickthe‘wor| ds. j ar’ fromit),andse. t ada/ t ada- sax (aswewant the sax parser jar from
it). We can not add these dependencies in the plugin’s manifest asit only handles dependencies
on other plugins. (We could have done this a different way though — the packages could have
been made required, and we could have included the two jars via an additional component, but
this extra component would look very similar to what we present here).

We declare an action caled buckmninster.prebind to use an ant actor. The
buckmi nst er. prebi nd iscalled automatically by Buckminster (if it exists) as part of binding
this project to the workspace. We want this action to run before the content becomes visible to
the rest of Eclipse as we need the two extra jars in the correct place before automatic building
kicksin (or we would se errorsif the extrajar files are not there).

We configure the ant actor to use the ANT script ‘nake/ pr ebi nd. xm ’

We declare the prerequisites (input) to include the se. t ada/ dat a- sax component’s at-
tribute called j ava. bi nary. ar chi ves (i.e. its jar) — we declare this with an alias of ‘t a-

da- sax. j ar’ sowe can usethisaliasin the ANT script.

We declare the prerequisites (input) to aso include the worlds.jar from the
or g. dermo. wor | d component’s attribute j ava. bi nary. ar chi ves, and we give it a suitable
dlias (‘'wor | ds. j ar’) to be used within the ANT script.

We declare the pr oduct s (the result/output) of the action to be under the component’sj ar s
directory, and we declare thiswith the alias‘ out put ’ so the ANT script can use thisto determine
where the result should go.

The ANT script looks like this:

<?xm version="1.0"?>
<proj ect nanme="project">

<target nane="buckm nster. prebind">

<nkdir dir="%${sp:output}"/>
<copy file="%{sp:tada-sax.jar}" tofile="%{sp:output}/tada-sax.jar"/>
<copy file="${sp:worlds.jar}" tofile="${sp:output}/worlds.jar"/>

</target>

</ proj ect >

132

Draft Hello XML World Draft

This simply copies the two jar files using the aliases for the jar files and output locations.

Summary. We extended the automatically generated csPeC with additional dependenciesto get the

two required jars. We also added actionsto pre-bind these jarsinto the workspace via copy operations
performed by an ANT script.

133

Draft Draft

16

Building RCP Products

In this chapter we show an example how Buckminster is used to build a complete RcP application.
This example demonstrates:

» How to build aRcP app to a p2 update site (with very little authoring required).

» How to use a csPex to extend the build to also run the director to install the generated application
and turnitinto azip file.

» How to organize features and .product in a good way to make building and maintenance easy.
» Useof a“releng” project as a sharing mechanism for RMAP and CQUERY artifacts.

» Useof rulesin the RMAP to provide routing to different types of builds (nightly, milestone, release,
€C.).

» How to perform a platform agnostic build — the resulting repository supports all platforms.

Prerequisites. To run thisexamples, you must have Buckminster installed with support for 10T and
PDE. Since the build is platform agnostic, you must have the Eclipse Delta Pack installed in your IDE.
Y ou also need support for SVN, and asvN client installed to get the source code from the Buckminster
SVN repository.

Conventions. Inthisexamplewe have abbreviated thefirst part of project names— the abbreviated
‘0.e.b’ standsfor‘org. ecli pse. buckminster’and‘ o.e.b.t 'for‘o.e.b.tutorial’.Also
abbreviated are ‘0. ¢’ and 'o. e. e’ foror g. ecl i pse, and or g. ecl i pse. equi nox.

Getting the code

In this example we have used a “release engineering project” to store the Buckminster artifacts used
to set up and build the project. Such a project is useful as it serves as a starting point for developers,
but can also be used as a starting point for fully automatic builds. In this example we also used the
release engineering project to define the actual site we are building, but in a more complex project we
may be building different update sites, and would then have separated that out.

To get the code, checkout the project o.e.b.t. mail app.rel eng into your workspace from
http://dev. eclipse.org/svnroot/tool s/org. eclipse. buckm nster.

Inside the project, there are two files of primary intrest, the devel oper. cquery, and the
ecl i pse. r map. Double click on the devel oper . cquery to open up the CQUERY editor. Note that
itisaquery foro. e. b. t. mai | app. pr oduct . f eat ur e which is the feature describing the product
we are building. Also, note that the query referencesthe ecl i pse. r map found in the releng project

134

Draft Building RCP Products Draft

wejust checked out. Simply click on “Resolve and Materialize” to get all of the required projectsinto
your workspace.

Structure

Hereisadiagram illustrating how the parts fit together:

mailapp.product
CSPEX «file»

o.e.b.t.mailapp.releng
«feature»

ncludes

o.e.b.t.mailapp.product.feature
«feature»

o.e.b.t.mailapp o.e.b.t.rcpp2.feature o.ercp o.e.e.executable
«plugin» «feature» «feature» «feature»
includes includes

0.e.e.p2.user.ui org.apache.commons.logging
«feature» «plugin»

Things are kicked off from o. e. b. t . mai | app. r el eng — which you aready used to get the query
that materializestherest. Hereisabrief description of the parts and their role in the overall structure.

o.e.b.t.mailapp.rel eng

This feature is the “root component” which is used it to get the rest, and it serves as a cen-
tral location for some files we need when building the rest. The component is also used as the
definition of the content of the p2 repository we are building. This is done by the inclusion of
the 0. e. b. t. nai | app. product . f eat ur e in the releng component's f eat ure. xm . Since
Buckminster’s action that builds a p2 repository from afeature does not include the feature itself
in the resultingrepository, this gets us exactly what we want as we have no interest in publish-
ing the releng component itself, only what it refers to. If we wanted to we could also have put
categorization into the releng component, but we felt it was more natural to do so in the product
defining feature.

o.e.b.t.mail app. product.feature
This feature is used to define what is included in the product. The component contains a
mai | app. pr oduct file that defines the product properties (i.e. branding, icons, splashscreen,
etc.), but we let the feature define what to include (other features and bundles) in the product
instead of the mai | app. product file — hence the reference from mai | app. pr oduct to the
feature.

The feature includes the plugins and features that should be included in the product.

o.e.b.t.mail app
This is the plugin that contain the actual product code. It was generated by the standard “create
product wizard” using the mailapp template for a Rcp application. The only difference from the
standard setup isthat we moved the generated . pr oduct fileto aseparate feature which we useto
keep track of the product’ s content (as opposed to keeping thisin the. pr oduct file). Everything
elseis default.

135

Draft Building RCP Products Draft

o.e.b.t.rcpp2.feature
This feature defines what is needed to make a RCP application include a p2 agent — thus making
it self maintained in terms of installing new features into the product, and to handle updates. The
integration is the simplest possible — there are many options available regarding how p2 can be
used in a RcP application but thisis beyond the scope of this book.

0. e.e.p2.user. ui
This p2 feature includes all the things required to use p2 in a RCP applica
tion (except the org. apache. commons. | oggi ng plugin which we included in the
0.e.b.t.rcpp2.feature).

o.e.rcp
Required for RcP applications.

0. e. e. execut abl e
Required to make the RcP application launchable on multiple platforms.

The RMAP

The RMAP in this example is interesting because it shows how to define rules for picking different
components from different repositoriesfor nightly, milestone, and release builds. Although somewhat
lengthy, it is quite simple as the different entries follow a pattern.

<property key="useBuild" val ue="RBU LD'/> @

<sear chPat h name="org. ecl i pse. buckni nster"> @
<provi der
r eader Type="svn"
conponent Types="osgi . bundl e, ecl i pse. f eat ure, buckm nster"
nut abl e="true" source="true">

<uri format="http://dev.eclipse.org/svnroot/tools/org.eclipse.buckm nster
=/ t runk/ { 0} ?nodul eAf t er Tag&anp; nodul eAf t er Branch" >
<bc: propertyRef key="buckm nster.conmponent” />
<luri>
</ provi der >
</ sear chPat h>

<sear chPat h nane="org. ecl i pse. pl atform NBUI LD'> ©
<provi der
reader Type="ecl i pse.inmport"
conponent Types="o0sgi . bundl e, ecl i pse. feature"
nmut abl e="f al se" source="fal se">

<uri format="http://downl oad. ecl i pse. org/ ecli pse/updatesl
=/ 3. 5- N- bui | ds?i nport Type=bi nary"/ >
</ provi der >
</ sear chPat h>

<sear chPath nanme="org. eclipse.platform|BU LD'> @
<provi der
reader Type="ecl i pse. i nport"
conmponent Types="o0sgi . bundl e, ecl i pse. feature"
nut abl e="fal se" source="fal se">

<uri format="http://downl oad. ecl i pse. org/ ecli pse/ updatesl
=/ 3. 5-1-buil ds?i nport Type=bi nary"/ >
</ provi der>
</ sear chPat h>

<sear chPat h nane="org. ecl i pse. pl at form MBUI LD'> ©
<provi der readerType="ecli pse.inport"
conponent Types="o0sgi . bundl e, ecl i pse. feature"
nmut abl e="f al se" source="fal se">

<uri format="http://downl oad. ecl i pse. org/ ecl i pse/ updat es]

-/ 3. 5m | est ones?i nport Type=bi nary"/ >
</ provi der >

136

Draft

Building RCP Products Draft

</ sear chPat h>

<sear chPat h name="org. ecl i pse. pl atform RBUI LD'> @

<provi der

reader Type="ecl i pse. i nport"

conponent Types="o0sgi . bundl e, ecl i pse. feature"

nmut abl e="f al se" source="fal se">

<uri format="http://downl oad. ecl i pse. org/ ecli pse/ updat esl]
-/ 3. 5?i nport Type=bi nary"/>

</ provi der>

</ sear chPat h>

<sear chPath nane="org. eclipse.galileo"> @

<provi der readerType="eclipse.inport"

conponent Types="o0sgi . bundl e, ecl i pse. feature"

nmut abl e="f al se" source="fal se">

<uri format="http://downl oad. ecl i pse. org/rel easesl
-/ gal i | eo?i nport Type=bi nary"/>

</ provi der >

</ sear chPat h>

<searchPath nane="orbit"> @

<provi der

reader Type="ecl i pse.inport"
conponent Types="osgi . bundl e"
nmut abl e="f al se" source="fal se">

<uri format="http://downl oad. ecl i pse. org/tool s/ orbit/downl oads/ dropsO

</ provi der >

</ sear chPat h>

<l ocat or searchPat hRef ="org. ecl i pse. buckni nster" ©

pattern=""org\. eclipse\.buckm nster(\..+)?"/>

<l ocat or sear chPat hRef ="org. ecl i pse. pl atform ${useBui |l d}" fail OnError="false" /> ®
<l ocat or searchPat hRef="org. eclipse.galileo" fail OnError="false" /> ®
<l ocat or searchPathRef="orbit" /> @

(1]

60 000006 O© 0o

®

We define adefault property called useBui | d and set it to RBUI LD. Thisisthe value we use for
arelease-build. (If this property is not set in a CQUERY or CQUERY advisor hode or as a system
property, then we will get arelease-build).

A search path entry for getting Buckmisnter related material from the Buckminster svN reposi-
tory. In this example, we are getting all the tutorial components from this location.

Here we set up a path called or g. ecl i pse. pl at f or m NBUI LD, where NBUI LD stands for
nightly build. Asyou can see from the ur i , this search path uses the 3.5 nightly repoitory.

org. ecl i pse. pl at f or m | BUI LD goesto 3.5 integration build repository.

org. ecl i pse. pl at f or m MBUI LD goes to 3.5 milestone build repository

org. ecl i pse. pl at f or m RBUI LD goesto 3.5 release build repository.

org. ecli pse. gal i | eo goesto the named fina 3.5 Galileo release repository

or bi t search path picksthingsfrom the Eclipse orbit repository. (Notethat the Orbit RMAP entry
needsto be updated from timeto time asthe repository gets updated and given anew timestamp).
The first locator matches anything starting with or g. ecl i pse. buckmi nst er

Thislocation iswhat makes everything work. It usesthe property useBui | d aspart of the search
path name when routingthe search, so depending onitsvalue (one of NBUI LD, | BUI LD, MBUI LD,
or RBUI LD) weget adifferent search path. Wea so usef ai | OnEr r or =f al se to makethesearch
continue if not found in the repository.

If we did not find the component in the repository designated by useBui | d, we continue the
search in the galileo repository. Again, we use f ai | OnEr r or =f al se to continue the search if
the component is not found in the galileo repository.

Finally, we try to find the component in the Eclipse orbit repository.

Thefunctionality in thisRMAP was very important to us as we devel oped this example for EclipseCon
09. Eclipse 3.5 was not yet rel eased, and we needed to be abl e to use various components from various
repositoriesto make thingswork. Now, with 3.5 being rel eased thereis no actual need to pick anything
but the released, but we thought that the RMAP also is a good example on its own.

137

-/ R200905z

Draft Building RCP Products Draft

Using ‘useBuild’

If you want to pick certain components in the resolution from a particular repository you can do so
by setting the useBui | d property (to one of the values shown in the RMAP section above). To set the
value for some components, you add an advisor node in your CQUERY with a pattern that matches the
components, and then you add the useBui | d property with the value you want.

In the example project, the devel oper . cquery has a sample entry for afictous set of components
matched with the patternor g. ecl i pse. buddypr oj . * — theadvisor nodefor this pattern setsuse-
Bui | d toNBUILD to get nightly builds. (Nothing will actually happen asthere are no such components,
and they are never requested — the entry is only there as an illustration).

Building the update site

Building the update site for the product is no different than building any p2 update site with
Buckminster — as shown in Chapter 13, Building a p2 Update Ste. We simply need to in-
voke the action site. p2 on the o.e. b.t. nail app. rel eng feature using the properties file
buckmi nster. properties (in the releng component) to control the build (where to place output,
if packing and signing should take place etc.).

The difference from the example in ‘Building a p2 Updte Site’ are minor:

e We use a different set of categories (obviously) — the categories are defined in
0.e.b.t. mail app. product. feaure.

» Theoutput isfound under ${ user . hone}/ bnt ut ori al .

After you built the p2 repository (invoked site.p2 on the releng component), you will findthe output at:

${user. hone}/bnturorial /O

-0rg. ecl i pse. buckmi nster.tutorial. il app. product.feature_1.0.0-eclipse.featureld
-/ site.p2

Installing the product

As you may remember from the introcution part of this book, there are several ways you can install
a product. In this example we will show you two ways; using the p2 installer to install from the p2
repository, and how to create a ready-to-run zip file.

Installation using the p2 installer

Although the p2 installer was created as an example how to install the Eclipse sbk itself, it isauseful
utility for installing other small applications where you are now willing to invest the time and effort
in creating afancier installer. Since it was created to install the Eclips sbk, we do need to make some
small modifications to the installer’ s configuration before it can install our mailapp.

If you want to run this part yourself, you must start by downloading the p2 installer. You will find
theinstaller by:

» Gotothe equinox download page [http://download.eclipse.org/equinox/], and select therelease you
want (if you have not other requirements, pick the 3.5 release).

» On the page that appears, scroll down to the section called ‘provisioning’ and select a p2 installer
that is suitable for your platform.

» Unzip the installer to alocation of your choice — we will refer to this location as the p2 installer
location below.

138

http://download.eclipse.org/equinox/
http://download.eclipse.org/equinox/

Draft

Building RCP Products Draft

Now that you have the installer, you can use it to install the Eclipse SDK itself from the Eclipse 3.5
release repository. But we are going to modify it so it installs our mailapp instead. To do this you
need to do the following:

» We need to define a set of properties that refers to our mailapp

* We need to tell the p2 installer to use these properties instead of the default (that came with the
download).

Installer properties

Create afilecaled mai | app_i nstal | er. properties and enter the following:

ecl i pse. p2. met adat a=«r epoLocat i on»
eclipse.p2.artifacts=«repoLocati on»

eclipse. p2.flavor=tooling

ecl i pse. p2. profil eName=Mai | appPr oduct

ecl i pse. p2. 1 auncher Name=ecl i pse

eclipse. p2.rootld=org. eclipse. buckm nster.tutorial.milapp. product
eclipse. p2.autoStart=fal se

Y ou should replace «r epoLocat i on» with the actual location of where the p2 repository you build
is. If your home directory is/ User s/ mar y, then use:

file:///Users/mary/bnturorial/O

-org. ecl i pse. buckmi nster.tutorial.nailapp. product.feature_1.0.0-eclipse.featureld
-/ site.p2/

Asyou can probably guess, what we are doing here is simply telling the p2 installer to install the in-
stallable unit (1U) called or g. ecl i pse. buckmi nster. tutorial.mailapp. product, and to get
both meta data and artifacts from the p2 repository we just built. The profileName is the name of the
configuration, you may need it later to be able to install into the same configuration again — but we
are not using it further in this example. We also set the autoStart to false (as there have been issues
with the p2 installers ability to actuall start under some circumstances, but you can alter thisto true,
asit may work — theideaisto be able to launch the application after it has been installed).

We are now done with the propertiesfile.

Using the properties

To use the properties, we must ater how the p2 installer is launched as an additional command line
parameter is required. We do this by editing the p2i nstal l er.ini file. The location of this file
is platform dependent. If you are on a Mac, you need to use the Finder command Show Package
Content on the p21 nst al | er . app, and then navigate to Cont ent / MacGS. On other platforms, the
p2i nstal |l er.ini shouldbeinthe p2installer location directly.

Y ou need to modify the p2i nst al | er. i ni to contain the following setting:

- vmar gs
- Dorg. ecl i pse. equi nox. p2. i nstal | Descri ption=«properties |ocation uri»

The «properties | ocation uri» is naturdly an URl refering to the
mai | app_i nstal | er. properties wecreated earlier. Depending on your platform, you may have
to useavariationonthefil e: // URI, eg. if you placed the properties file in your home directory /
User s/ mary, youmay needtousefile://| ocal host/ Users/ mary...instead of justfile:///
User s/ mary... You will know if you got it right when you launch theinstaller.

Running the installer

Torunthe customized installer, simply invokeit. Y ou are prompted for the location where you want to
intall the application. Y ou are also prompted if you want to make a stand alone or a shared installation.

139

Draft

Building RCP Products Draft

Pick “stand-alone” asthe sharing will setup sharing between everything installed with the p2 installer,
and you probably do not want this when running this example).

Once you have installed, you should now have the invokable mailapp in the location you specified.

Creating an installable zip

The standard way of creaing aninstallable zip fileisto run the p2 director app to do aninstallation, and
then zip up the result. Y ou can do so with the embedded director app available in every Eclipse sk,
or you can use the stand alone directory available from Buckminster (as described in the the section
called “Installing the Headless Product”).

It is also possible to do the same using Buckminster to orchestrate the actions. We have included a
CSPEX intheo. e. b.t. mai | app. product . f eat ur e that is capable of doing both the install, and
creating the final zip. The csPEX adds two actions; cr eat e. pr oduct , and cr eat e. pr oduct . zi p.

/ém Note

Tousecreate. product ,andcr eat e. product . zi p, you must supply aset of prop-
ertiesfor the platform you want to create the install for — i.e. thet ar get . * properties.
The properties we used for the site.p2 build itself can not be used as they specify all
valuesas ‘*’ (any). This can not be used for ainstall — the install is always for a par-
ticular platform.

Youmust adsofirst runthesi t e. p2 action to create the repository or the repository will
only contain content for the platform you are running on and it will not be possible to
generate zips for other platforms.

To create the requird property file, simply copy the buckmisnter.properites file in the releng compo-
nent, and modify the three last lines by either removing them (which gives you an install for what you
are currently running), or set them explicetly.

The CSPEX

The CSPEX in o.e.b.t.mail app. product feature adds two actions cr eat e. product, and
creat e. product. zi p. Itisincluded to enable creating aready to run product in zip form. It doesthis
by invoking ANT scripts. One of thetasks— to createthezip fileisalready availablein Buckminster so
the action an simply refer to thiswith a suitable set of parameters, but running the director to perform
theinstallation is not available as a standard task so thisis supplied inthebui | d/ pr oduct . ant file.

There is nothing special in how these ant tasks are invoked from Buckminster — look at the CSPEX,
and consult theinformation in the Chapter 6, Componentsif thereis something you do not understand.
Then look at the build/product.ant file and see that there is a create.product task there that getsinvoked
from the csPex action with the same name. The rest of the product.ant file is basically a very long
list of parametersto the director app.

140

Draft Draft

17

POJO Projects

In this chapter we show examples how Buckminster can be used with Plain Old Java Objects (POJO) project —
i.e. projectsthat are in Java, but not in the shape of bundles, plugins, features, fragments, or Eclipse products.

141

Draft Draft

1

Non Java Projects

In this chapter we show examples how Buckminster can be used with projects that are written in other languages
than Java.

142

Draft Draft

19

RMAP Examples

This chapter contains RMAP examples. You find al Buckminster examples RMAPS at hittp://
www.eclipse.org/buckminster/samples/rmaps [http://www.eclipse.org/buckminster/samples/rmaps/].

The ‘dogfood’ RMAP

The so called ‘dogfood’ RMAP is the resource map that is used when building Buckminster itself. It is
available at http://www.eclipse.org/buckminster/sampl es/rmaps/dogfood.rmap.

Warning

O Sincethisfileisan integral part of the Buckminster release engineering, it changes from
time to time without warning. It is kept up to date for Buckminster, demo and samples,
but changes being made may not suit your needs.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<l-- See copyright in original file -->

<r map
xm ns="http://ww. eclipse. or g/ buckm nst er/ Rvap- 1. 0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: mp="http://ww. ecl i pse. or g/ buckm nst er/ MavenPr ovi der - 1. 0"
xm ns: prp="http://ww. ecl i pse. or g/ buckm nst er/ PDEMapPr ovi der - 1. 0"
xm ns: bc="http://ww. ecl i pse. or g/ buckm nst er/ Conmon- 1. 0" >

<sear chPat h nane="org. ecl i pse. buckm nster"> @
<provi der readerType="svn"
conponent Types="o0sgi . bundl e, ecl i pse. feat ure, buckm nster"
mut abl e="true"
source="true">

<uri format="http://dev.eclipse.org/svnroot/tools/org.eclipse.buckm nster/O
=t runk/ {0} ?nodul eAf t er Tag&nodul eAf t er Branch" >
<bc: propertyRef key="buckni nster.conponent" />
<luri>
</ provi der >
</ sear chPat h>

<sear chPat h name="org. ecl i pse. ecf"> @
<provi der reader Type="ecli pse.inport"
conmponent Types="o0sgi . bundl e, ecl i pse. feature"
nut abl e="fal se" source="fal se">
<uri format="http://downl oad. eclipse.org/rt/ecf/2.00
-/ updat eSi t e?i nport Type=bi nary"/>
</ provi der>
<provi der xsi:type="pnp: PDEMapProvi der" reader Type="cvs"
conponent Types="o0sgi . bundl e, ecl i pse. feature" nutabl e="fal se" source="true">

<uri format=":pserver:anonynous@lev. eclipse.org:/cvsroot/rt,org.eclipse.ecfl

143

http://www.eclipse.org/buckminster/samples/rmaps/
http://www.eclipse.org/buckminster/samples/rmaps/
http://www.eclipse.org/buckminster/samples/rmaps/
http://www.eclipse.org/buckminster/samples/rmaps/dogfood.rmap

Draft RMAP Examples Draft

-/ rel eng/ org. eclipse. ecf.rel eng. maps"/>
</ provi der >
</ sear chPat h>

<sear chPat h name="org. ecl i pse. spaces"> ©
<provi der reader Type="svn" conponent Types="osgi . bundl e, ecl i pse. f eat ur e, buckm nster"
nut abl e="true"
source="true">
<uri

format="http://dev. eclipse.org/svnroot/technol ogy/ org. eclipse. spaces(]
=/ trunk/ {0} ?nodul eAf t er Tag&rodul eAf t er Branch" >
<bc: propertyRef key="buckmni nster.conponent” />
<luri>
</ provi der>
</ sear chPat h>

<searchPath nanme="org. eclipse.platform'> @
<provi der reader Type="eclipse.inport" conponent Types="o0sgi . bundl e, ecli pse. feature"
nmut abl e="f al se" source="fal se">
<uri format="http://downl oad. ecl i pse. org/ ecl i pse/ updat es/ 3. 5?i nport Type=bi nary"/ >
</ provi der >
</ sear chPat h>

<searchPath nane="galileo"> @
<provi der reader Type="ecli pse.inport" conponent Types="o0sgi . bundl e, ecl i pse. f eature"
mut abl e="f al se" source="fal se">
<uri format="http://downl oad. ecl i pse.org/rel eases/ galil eo?i nport Type=bi nary"/>
</ provi der >
</ sear chPat h>

<sear chPat h nane="buckni nster.test"> @
<provi der reader Type="cvs" conponent Types="osgi . bundl e, ecl i pse. feature, buckm nster"
nmut abl e="true"
source="true">

<uri format=":pserver:anonynous@ev. eclipse.org:/cvsroot
-/ t echnol ogy, org. ecl i pse. buckmni nster/test/{0}">
<bc:repl ace pattern="~buckminster\.test\.(.+)" replacenent="%$1" quotePattern="fal se">
<bc: propertyRef key="buckni nster.conponent" />

</ bc: repl ace>

</uri>

</ provi der >
</ sear chPat h>

<sear chPat h nane="org. ecl i pse. dash"> @
<provi der reader Type="cvs" conponent Types="o0sgi . bundl e, ecl i pse. feature, buckm nster"
nut abl e="true"
source="true">
<uri format=":pserver:anonynous@lev. ecl i pse. org:/cvsroot/technol ogy, org. ecli pse. dash/ {0}">
<bc: repl ace pattern="~buckmninster\.test\.(.+)" replacenent="%$1" quotePattern="fal se">
<bc: propertyRef key="buckmni nster.conponent" />
</ bc:repl ace>
<luri>
</ provi der>
</ sear chPat h>

<sear chPat h nanme="subcl i pse"> @
<provi der reader Type="eclipse.inport" conponent Types="o0sgi . bundl e, ecli pse. feature"
nmut abl e="f al se"
source="true">
<uri format="http://subclipse.tigris.org/update_1.6.x?i nport Type=bi nary" />
</ provi der >
</ sear chPat h>

<searchPat h nane="svnkit"> ©
<provi der reader Type="ecli pse.inport" conponent Types="o0sgi . bundl e, ecli pse. feature"
mut abl e="f al se"
source="true">
<uri format="http://eclipse.svnkit.conl1l. 3.x?inportType=binary" />
</ provi der >
</ sear chPat h>

144

Draft

RMAP Examples Draft

<sear chPat h name="pol arion"> ®
<provi der reader Type="eclipse.inport" conponent Types="osgi . bundl e, ecl i pse. f eat ure"
nut abl e="f al se"
source="true">

<uri format="http://ww. pol arion. org/ proj ects/subversive/ downl oadl]
-/ ecl i pse/ 2. 0/ updat e- si t e?i nport Type=bi nary" />
</ provi der>
</ sear chPat h>

<sear chPath nane="org. ecl i pse.team svn"> ®
<provi der readerType="eclipse.inport"
conponent Types="o0sgi . bundl e, ecl i pse. feature"
nmut abl e="f al se"
source="true">

<uri format="http://downl oad. ecl i pse. or g/ t echnol ogy/ subversi ve/ 0. 70
-/ updat e- si t e?i nport Type=bi nary" />
</ provi der >
</ sear chPat h>

<searchPath nane="orbit"> ®
<provi der readerType="ecli pse.inport"
conponent Types="osgi . bundl e" nut abl e="f al se" source="fal se">

<uri format="http://downl oad. ecli pse. org/tool s/ orbit/downl oads[]
-/ dr ops/ R20090529135407/ updat eSi t e?i nport Type=bi nary"/ >
</ provi der >
</ sear chPat h>

<sear chPat h name="maven"> ®
<provi der xsi:type="np: MavenProvi der" reader Type="naven2" conponent Types="maven"
nmut abl e="f al se"
source="fal se">
<uri format="http://repol. maven. or g/ naven2" />
</ provi der>
</ sear chPat h>

<l ocat or searchPat hRef ="or g. ecl i pse. buckm nster"
pattern=""org\. eclipse\.buckm nster(\..+)?" />
<l ocat or searchPat hRef ="org. ecl i pse. buckmni nster" pattern=""org\.slf4j\.extendabl e$" />
<l ocat or searchPat hRef ="or g. ecl i pse. buckm nster"
pattern=""org\. eclipse\.equi nox\.p2\.director\. product$" />
<l ocat or searchPat hRef ="or g. ecl i pse. buckm nster"
pattern=""org\. eclipse\.equinox\.p2\.director\.feature$" />
<l ocat or searchPat hRef ="org. ecl i pse. ecf" pattern=""org\.eclipse\.ecf(\..+)?" />
<l ocat or searchPat hRef ="org. ecl i pse. ecf" pattern=""org\.jivesoftware\.smck$" />
<l ocat or searchPat hRef ="org. ecl i pse. ecf" pattern=""org\.eclipse\.bittorrent$" />
<l ocat or searchPat hRef ="or g. ecl i pse. spaces" pattern=""org\. eclipse\.spaces(\..+)?" />
<l ocat or searchPat hRef ="or g. ecl i pse. dash" pattern=""org\.eclipse\.dash(\..+)?" />
<l ocat or sear chPat hRef ="buckm nster.test" pattern="~buckm nster\.test(\..+)?" />
<l ocat or searchPat hRef ="svnkit" pattern=""org\.tmatesoft\.svnkit(\..+)?" />
<l ocat or searchPat hRef ="subcl i pse" pattern=""org\.tigris\.subversion(\..+)?" />
<l ocat or sear chPat hRef ="pol ari on" pattern=""org\.polarion\.tean(\..+)?" />
<l ocat or searchPat hRef ="pol ari on" pattern=""org\.pol arion\.eclipse\.team\..+)?" />
<l ocat or searchPat hRef ="or g. ecl i pse. t eam svn"
pattern=""org\.eclipse\.team.svn(\..+)?%$" />
<l ocat or searchPat hRef="orbit" fail OnError="fal se"/>
<l ocat or searchPat hRef ="gal il eo" fail OnError="fal se"/>
<l ocat or searchPat hRef =" maven"/>

</ r map>

This entry references Buckminster's svN.

Thisentry getsbinary ECF componentsfrom an ECF update site, and if not availablethere, it looks
up ECF source viaareleng source map found in ECF's CVS repository.

This entry references the spaces project’s SVN.

This entry goesto the the Eclipse 3-5 stream. It is now obsolete as the content is included in the
Galileo composite repository. The entry is not used anywhere.

This entry looks up binary components from the Galileo release.

®© 6060 00

145

Draft

RMAP Examples Draft

()

06600

buckmi nster.test — goes to technology cvs where the Buckminster project keeps some
components that are used to test the cvs integration. Only used for testing.

project dash — included in this RMAP because it contains the site-assembler used to assemble
the update site for the Ganymede release (also called Ganymatic). Thisis the predecessor to the
Galileo-builder used to assemble the Galileo update site.

This entry picks Subclipse svN integration from Tigris.

Thisentry picksthe *SVN Kit' protocol for use with Subclipse from ecl i pse. svnkit. com
Thisentry pick Subversive svN integration from Polarion.

Thisentry picksthe Eclipse Team svN support from the subversive technology project at Eclipse.
This entry picks bundles from Eclipse orbit repository.

This entry picks things from the Maven repository at Ibiblio.

146

Draft Draft

Part IV. Reference

This part consists of all the gory details.

Draft Draft

Component Types

This reference guide contains detailed information about the component types supported by Buck-
minster in its standard configuration. For each type all automatically generated attributes/actions are
documented.

Conventions used
The following conventions are used in this reference guide:
Common attributes Attributes common to all types are listed in this category.

Inherited attributes Attributes common to several types have been broken out into
separate reference entries.

Abstract type A component type that can not be used on its own. Its purpose
isonly to describe attributesthat are shared by other component
types.

dottified Refersto the transformation of a path using lash */’ as separa-

tor to a string using period/dot ‘.’ as separator.

source only, binary only Attributes marked with source only are only available when the
component is generated from source. Attributes marked with
(binary only) are only available when the component is gener-
ated from binary data.

«replaceable» A replaceable part of aname is written within guillemots « »

aggregation Denotesaphysical aggregation ondisk of agroup (i.e. theresult
of copying agroup to acommon location).

Common Attributes

All components have the attribute buckni nst er . conponent . sel f, which refersto the entire com-
ponent.

The value of the buckni nst er. conponent . sel f can be in one of two forms depending on if the
component is adirectory or afile:

« If the component is a directory, then the base of the path group is equa to the location of the
component and the array of pathsis empty.

« If the component is a file, then the base appoints the directory that contains this file and the path
array has one path which isthe file relative to that base.

All components that can be materialized into a workspace can declare an action called
buckmi nst er. prebi nd. This action will be called as part of the workspace materialization before
the component is bound to the workspace. Note that this action is only invoked by the workspace
materializer.

148

Draft Draft

buckminster

buckminster — component type for components that have buckminster meta data.

Synopsis

Common Attributes

buckni nst er. conponent . sel f

Attributes

Attributes

A buckminster based component has the attributes defined in the file buckmi nst er . cspec found
in the component’ s root.

Dependencies

A buckminster based component hasthe dependenciesdefinedinthefilebuckni nst er . cspec found
in the component’ s root.

Description

The buckminster component typeisfully covered in Chapter 6, Components.

149

Draft Draft

eclipse.feature

eclipse.feature — component type for Eclipse features.

Synopsis

Common Attributes

buckm nst er. conponent. sel f

Inherited from PDE component type

public

buckmi nster. cl ean

bui | d. properties (source only)
bundle.jars

mani f est

product . configuration. exports

private

product . configurations
«product name»
jar.contents (source only)
raw. mani f est

Public Attributes

feature. exports
feature.jars
feature.references
site.feature. exports
site.p2

site.p2.zip

si te. packed
site.signed
source. bundl e.jars
source.feature.jars
source. feature. references

Private Attributes

copy. features
copy. pl ugi ns
copy. subf eat ures
feature.jar

site. repacked
source. feature.jar

Attributes

Public Attributes

feature. exports
A group consisting of the actionscopy. f eat ur es and copy. pl ugi ns

feature.jars
A group consisting of the attributesf eat ure. j ar and f eat ure. r ef er ences

feature.references
A group that aggregatesthef eat ur e. r ef er ences of all included features (but not self).

site.feature. exports
A group consisting of the actions copy. pl ugi ns and copy. subf eat ur es. This is different
fromthef eat ur e. export s inthat the feature itself is not included. That’s because the feature
that defines the siteis not included in the site.

150

Draft

eclipse.feature Draft

site. p2
An action that creates the final p2 site. It uses the internal actor p2Si t eGener at or which
in turn uses the p2 publisher. The input to this action comes from the attributes mani -
fest, product. configuration. exports, site.feature. exports, site. packed,and
si t e. si gned. Only one of the three si t e. «xxx» inputs will be used. Which one depends on
the settings of the propertiessi t e. pack200 and si t e. si gni ng such that:

» if botharef al se,thensite.feature. exportsisused
 if site. pack200 isset, thensite. packed isused regardless of setting of si t e. si gni ng
e ifsite.signingissetandsite. pack200 isnot setthensite. si gned isused

See Description Section below for more details how to control the sit e. p2 action regarding
signing, packing, and category definition.

site.p2.zip
An action that zips the result of the si t e. p2 action into a zip with a file name that indicates
itsversion.

site. packed
An action that runs pack200 on al artifacts that it finds on input. The input is either
site.feature. exports orsite. signed. Thelatter ischosenif the property si t e. si gni ng
iS set.

site.signed
An action that performs jar signing on al jars from its input. The input is
site.feature.exports or site.repacked. The latter is chosen if the property
site. pack200 isset.

source. bundl e.jars
A grouping of the bundl e. and. f r agment s. sour ce attribute of all bundle dependencies.

source.feature.jars
A group that containsthe sour ce. f eat ure. j ar and source. feat ure. references i.e dl
source for the feature, including self.

source. feature. references
A group that aggregatesthe sour ce. f eat ur e. j ar s attribute of al included features.

Private Attributes

copy. features
An aggregation (physical, on disk) of feature. jars andsource. feature.jars.

copy. pl ugi ns
An aggregation (physical, on disk) of bundl e. j ars and sour ce. bundl e. j ars.

copy. subf eat ures
An aggregation (physical, on disk) of feature.jar, feature.references,
source. feature.jar, andsource. feature.references.

feature.jar
An action that buildsaf eat ure. j ar based onitsinputj ar. cont ent s and mani f est .

site. repacked
An action that reconditions its input by running apack200 followed by unpack200. The input
issite.feature. exports.

source. feature.jar
An action that builds a source feature jar based on its input jar.contents and
sour ce. mani f est.

151

Draft

eclipse.feature Draft

Dependencies

In case the CSPEC is created from af eat ur e. xm , the feature’ s dependencies are generated from the
included features and plugins. The feature requirements (things that are not included but needed in
order to install the feature) are not subject to interpretation, and no dependencies are generated for
these.

When the cspeC is created from a p2 1u, all required capabilities referencing capabilities in the
org. ecl i pse. equi nox. p2.i u or osgi . bundl e namespaces will cause a corresponding CSPEC
dependency to be generated. All other required capabilities are ignored.

Description

site.p2

The ecl i pse. f eat ur e component type is automatically generated for all Eclipse features. It can
generate a CsPeC from source or binary data. When generating the cspec, the various meta data files
in the source, or available in the binary representation are used to create the attributes.

If the csPEC is generated from ap2 1u, then the 1U is the single source of information.

If not generated from a p2 1U, the content of the f eat ure. xm and bui | d. properti es files are
used. Thebui | d. properti es isthe source for what isincluded in the jar (both source and binary)
and the site category definitions. The rest of the information is picked from the feature.xml

Thesi t e. p2 action builds a p2 update site, and it can be controlled using properties.

Categorization. The sitep2 action is (in addition to handling categories in the standard
category. xm file) aso capable of creating categories by interpreting entries in the feature's
bui | d. properti es file. A category, itslabel, content, and description are defined by entering:

category. i d. «cat egory-i d»=«cat egory- | abel »
cat egory. descri pti on. «cat egory-i d»=«short description»
cat egory. menbers. «cat egory-i d»=«feature-id»[, «feature-id»..]

The «cat egor y-i d» should reflect your organization to separate it from other defined categories.
The «f eat ur e-i d» isthe identity of afeature to include in the category. (A feature can be part of
many categories).

Default category. It ispossible to use a default category which will be applied to all features that
are not part of any other specified category. The default category is defined by entering:

cat egory. def aul t =«cat egory-i d»

Trandation. All category strings are subject to translation viathef eat ur e. properti es (i.e. the
same way other feature strings are translated). As an example:

/1 in build. properties
cat egory. descri pti on. nycat egor y=%wCat egor yDesc

thetrandationisplaced inf eat ur e. properti es:
MyCat egor yDesc=This is the core functionality of my cool feature.

Content from featurexml. The content from f eat ur e. xm isused asfollows:

Label/Name
Defines the name of the repository.

152

Draft

eclipse.feature Draft

Included Features
The featureslisted in Include Features become root 1Us (i.e. top level installable things).

Discover Stes
Sites listed under Discovery Sites are added as site references in the created repository.

Mirrors Ste
Isused as the Mirrors Site of the created repository.

/@D Note
The feature itself is not included in the site.

Properties controlling the build. There are several properties controlling the build and site gen-
eration. These are;

buckmi nst er. out put. r oot
Absolute file system path where output should be generated.

buckm nster.tenp.root
Absolute file system path where temporary output should be placed when building.

eclipse.conmitter. nane
Thelogin-name of an eclipse.org committer. Isonly used with the special eclipse.org signing, and
isonly available to eclipse committers that have the right to run signing at eclipse.

eclipse.conmitter. password
The password for theecl i pse. conmi t t er . nane. Isonly used with the special eclipse signing.

eclipse.committer. keyfile
If this property is set to the full path of a private key file, the special eclipse signing will use key
authentication and theecl i pse. conmi tt er. passwor d isnot heeded.

eclipse.committer. keyfil e. passphrase
Optional. Only needed if the keyfile (specified withecl i pse. comi tter. keyfi | e) wascreated
in such away that a passphraseis needed in order to accessit.

ecl i pse. stagi ng. area
Required when using eclipse signing. Each project has a staging area for builds at eclipse.org.
This area is used when performing the signing. As an example, the Buckmisnter project uses
/ home/ dat a/ ht t pd/ downl oad- st agi ng. pri v/t ool s/ buckmi nst er. (This property was
earlier called just st agi ng. ar ea. Use of thisold property is still supported, but its use is depre-
cated in favor of ecl i pse. st agi ng. ar ea asit only affects signing at eclipse.org).

| ocal . keystore. path
An absolute file system path that refers to your personal certificate. Only used when performing
local signing. Example: / home/ mary/ certificat es/ personal .certificate

| ocal . keystore. alias
An dias used by the local keystore. Example ‘nary’.

| ocal . keyst ore. password
Password for the local keystore.

si te. pack200
A boolean value controlling if pack200 should be performed. If combined with signing normal -
ization is also performed.

site.signing
A boolean value controlling if signing should be performed.

153

Draft eclipse.feature Draft

si gni ng. type
The type of signing to use. Can be either ‘ecl i pse. renot e’ (requires Eclipse committer cre-
dentialsaswell as signing privileges) or | ocal (requireslocal certificate). See more information
below.

chi . incl ude. source
Controlsgeneration of source features and bundles. When set to true, source bundles are generated
and included in the update site.

Warning

O Source features and bundles are generated and included in the update site unless you
set this property to false. For open source projects thisis typically what is wanted,
but it may not be suitable for your project.

Remote eclipse signing. If eclipse.remote signing is used, the build will package all relevant jars
inazip fileand send it to ecl i pse. or g using scp. It will request signed by adding the transfered
material to the queue for the Eclipse signer and then await the result. Once the signing is complete, it
will be picked up and the build will continue. Although sometimes a bit slow (more then 20 minutes
israre), the process is fully automatic and does not require any manual intervention.

Local signing. Local signing can be used by anyone interested in signing the jars that are included
inthe generated site. To usethis, you must create apersonal certificate. Thisisdonewith thekeyt ool
executable. You will find it in the bin catalog of your JDK. It isused as follows:

keyt ool -genkeypair -keystore «path to keystore file» -alias «your alias»

Y ou will be asked for some information about name, location, and password. Enter some sane values.
Finally you will be asked to confirm the information and you are then asked if you want the same
password as for the keystore — simply hit return, you do not want an additional password.

154

Draft Draft

jar
jar — component type for a Plain Old Java Object (POJO) jar file.

Synopsis

Common Attributes

buckni nst er. conponent . sel f
Inherited Attributesfrom POJO
public

java. bi nary. archi ves
java. bi nary. f ol der
java. bi nari es

Attributes

Attributes

Public Attributes

j ava. bi nary. archi ves
Isagroup that containsthe buckni nst er . conponent . sel f attribute.

java. bi nary. f ol der
The attribute j ava. bi nari es will point to thisinstead of thej ava. bi nary. ar chi ves when
the jar is in source form. The j ava. bi nary. f ol der will typically appoint the bi n directory
(the output of the Java compiler).

j ava. bi nari es
Isagroup that containsthej ava. bi nary. ar chi ves attribute.

Dependencies

The jar component type does not support dependencies.

Description

The jar typeisused for jar based components that lack additional meta data.

/ém Note

If you have a jar component, and want additional meta data, you should turn it into a
Buckminster component by adding abuckni nst er . cspec toit. When doing this, you
probably also want to add the attributes that are common to all POJo components — they
are not added automatically.

155

Draft Draft

maven, maven2

maven, maven2 — component types for Maven-1 and Maven-2 based jar files.

Synopsis

Common Attributes

buckni nst er. conponent . sel f

Inherited Attributes from POJO
public

java. bi nary. archi ves
java. bi nary. f ol der
java. bi nari es

Attributes

Attributes

Public Attributes

j ava. bi nary. archi ves
Isagroup that containsthe buckni nst er . conponent . sel f attribute.

java. bi nary. f ol der
The attribute j ava. bi nari es will point to thisinstead of thej ava. bi nary. ar chi ves when

the jar is in source form. The j ava. bi nary. f ol der will typically appoint the bi n directory
(the output of the Java compiler).

j ava. bi nari es
Isagroup that containsthej ava. bi nary. ar chi ves attribute.

Dependencies
Dependencies in the Maven pom file(s) are transformed into dependencies in the resulting CSPEC.
Description

The maven(1), and maven2 types are used for jar based components that have maven (version 1 or
2) meta data embedded in the jar file.

Buckminster supports the resol ution/materialization aspects of maven binary repositories. (In theory,
Buckminster should be able to generate a correct cspeC from source as well since the Maven PoM is
present there, but this is untested).

156

Draft

Draft

osgi.bundle

osgi.bundle — component type for Eclipse plugins and 0sGi bundles.

Synopsis

Common Attributes

buckni nst er. conponent . sel f

Inherited from PDE component type

public

buckmi nster. cl ean

bui |l d. properties (source only)
bundle.jars

mani f est

product . configuration. exports

private

product . confi gurations
«product name»
jar.contents (source only)
raw. mani f est

Public Attributes

bundl e. and. fragnent s

bundl e. and. f ragnent s. sour ce
bundl e. j ar

eclipse. build. source (source only)
java. binaries

source. bundl e.jar (source only)

Private Attributes

sour ce. mani fest (source only)

bi n.includes (source only)
bundl e. cl asspath (binary only)

create. «jar name» (source only)
eclipse.build.requirenents (source only)

eclipse.build, eclipse.build.output.«dottified output directory» (source only)

Attributes

Public Attributes

bundl e. and. f ragnment s
A group consisting of thebundl e. j ar andt ar get . fragnent s.

bundl e. and. fragnment s. sour ce

A group consisting of thesour ce. bundl e. j ar andt arget . fragnment s. sour ce.

bundl e. j ar

Represents a jar containing an osGi-bundle. For bundles in binary form, thisis typically just an
artifact with a path referencing the bundle. For bundles in source form, this points to an action
that builds the jar using the predefined cr eat e. bundl e. j ar ANT-task with the two attributes

jar.contents andmani f est asinput.

ecl i pse. bui | d. sour ce (source only)

An artifact deduced from the . cl asspat h-file that denotes where the Java source for the
ecl i pse. bui | d action isto be found. In case there is more then one source folder, the artifacts

will be named ecl i pse. bui | d. source_0, eclipse. buil d. source_1 €tc.

157

Draft osgi.bundle Draft

5 Note

Theecl i pse. bui | d. sour ce attribute(s) is declared to be public, but should re-
ally be private.

java. binari es
For a binary bundle, this is a group containing the bundl e. cl asspat h. For a source bundle,
thisisagroup that includestheecl i pse. bui | d action and thej ava. bi nari es attribute of all
bundles listed as dependencies.

sour ce. bundl e. j ar (sourceonly)
An action that builds the source bundle using the predefined cr eat e. bundl e. j ar ANT-task
with thetwo attributessr c. i ncl udes and sour ce. mani f est asinput.

Private Attributes

sour ce. mani f est (sourceonly)
An action that produces a manifest for a source bundle based on its input attributes mani f est
and bui | d. properti es.

bi n. i ncl udes (source only)
An artifact with multiple paths. Each path appoints a file or a directory denoted in the
bi n. i ncl udes property of thebui | d. properti es file

bundl e. cl asspat h (binary only)
Appointsthe jar file that represents the bundle.

create. «j ar name» (source only)
This action only applies to nested bundles. It describes how one of the nested jars of the bundle
isbuild.

ecl i pse. bui | d. requi rement s (source only)
Thisisagroup of dl j ava. bi nari es from al dependent components. Used as prerequisite in
theecl i pse. bui | d action.

eclipse.build,eclipse.build. output.«dottified output directory» (sourceonly)
The actions of the internal Eclipse Builder are represented in the cspec by theecl i pse. bui | d
action. This action uses the Eclipse Builder to build the project. The action has two prerequisite
attributes— ecl i pse. bui | d. requi renent s and ecl i pse. bui | d. sour ce.

The. cl asspat h file of the project is consulted to find the output folder(s) used by the Eclipse
Java Compiler. Each such folder will result in a product of the action ecl i pse. bui | d.

Asan example, if the. cl asspat h file contains this entry:
<cl asspat hentry ki nd="out put” pat h="bin/cl asses"/>

thenecl i pse. bui | d. out put . bi n. cl asses will bethe name of one product produced by the
ecl i pse. bui | d action.

Dependencies

Dependencies are supported. In cases where the CSPEC is generated from a p2 1u, al required capa-
bilities appointing an osgi . bundl e will be transformed to a csPec dependency. All other required
capabilities are ignored.

When the csPeC is not based on a p2 1u, the META- | NF/ MANI FEST. MF file is consulted and each
bundle listed in the the 0SGi property Requi r e- Bundl e istransformed into a CSPEC dependency.

158

Draft osgi.bundle Draft

Description

Theosgi . bundl e component type is automatically generated for all osGi bundles, and Eclipse plu-
gins. It can generate acsPeC from source or binary data. When generating the CsPeC, the various meta
datafilesin the source, or available in the binary representation are used to create the attributes.

The META- I NF/ MANI FEST. M- file is the source of the generated dependencies. The . cl ass-
pat h gives the ecl i pse. bui | d. requi renent s and the outputs of the ecl i pse. bui | d. The
bui | d. properti es filetellsBuckminster which jarsto build in case of nested components and what
to include in the built binary and source jars.

159

Draft

Draft

PDE (abstract)

PDE (abstract) — abstract component having attributes shared by all PDE based component types.

Synopsis

Public Attributes

buckmi nster. cl ean

bui | d. properties (source only)
bundle.jars

mani f est

product. configuration. exports

Private Attributes

product . confi gurations
«product name»
jar.contents (source only)

raw. mani f est

Attributes

Public Attributes

buckm nster.cl ean
Cleans out any result from a previous build. Might be a null operation since some artifacts just
provide themselves‘asis’, and there is never anything to clean.

bui | d. properti es (source only)
An artifact that represents the bui | d. properti es file of the feature or plug-in. It is optional
since the file from which it is generated is optional .

bundl e.jars
This is an aggregation of the transitive scope of all bundl e. j ar s. For abundle, thisisagroup
that also containsthe bundl e. and. f r agnent s attribute (which meansthat the result is actually
alisting of al bundles and fragments).

mani f est
An action that updates the version qualifiers of amani f est . nf or f eat ure. xm fileaccording
to the version qualifiers that are in effect for the build (see the ‘buckminster.versionQualifier
ANT-task’ for information how the Buckminster version qualifier mechanism works). The input
tothemani f est action arethebui | d. properti es andr aw. mani f est attributes.

product. configuration. exports
This is an aggregation of the transitive scope of al product. confi gurati on. exports. It
might also contain areferenceto apr oduct . confi gur ati ons attribute.

Private Attributes

product . configurations
References private «product name» artifacts.

«product name»
Oneattributeisgenerated per identified Eclipse product. (A component can have multiple. pr od-
uct definitions, and they areidentified by a‘ product name' stored in the . pr oduct file).

These artifacts contain one single path each. Each path represents a. pr oduct file found in the
source.

160

Draft PDE (abstract) Draft

Warning

O The name is currently not prefixed by Buckminster, and a product name may thus
conflict with another cspecC attribute. As a consequence — do not name attributes
the same as your Eclipse based products!

jar.contents (sourceonly)
Describes the artifacts (minus the mani f est . nf) that should go into the jar that represents the
component. For afeature, thisis generated as an artifact with multiple paths. Each path appoints
afile or adirectory denoted inthebi n. i ncl udes property of thebui | d. properti es file(i.e.
similar to abi n. i ncl udes in abundl€). For abundle, it gets more complicated. There are two
types of bundles:

e Simple bundle. Basicaly a norma java jar file with a special osGi manifest. For
this type, the jar.contents is a group consisting of the bin.includes and the
eclipse. bui | d. out put. «dottified output directory» attributes.

* Nested bundle. A java jar file with a special 0sGi manifest that contains a class path that
in turn points to embedded nested jar files. All . cl ass files reside in the nested jars. Here,
the j ar. contents is a group consisting of the bin. i ncl udes attribute and then one
create. «j ar name» attribute for each of the nested jar files.

raw. mani f est
An artifact representing the raw manifest file (the mani f est . nf orf eat ur e. xn file) that con-
tains versions that has not yet been qualified.

Dependencies

Dependency generation for PDE based components is different for the subtypes. See the respective
subtype for more information.

Description

ThePDE typeisabstract and should never bedirectly usedin any Buckminster artifacts. Itsonly purpose
is to describe the attributes that are common to all PDE component types.

To work correctly, the meta data must use “Bundle-ManifestVersion: 2", and be free of errors.

161

Draft Draft

POJO (abstract)

POJO (abstract) — abstract component having attributes shared by all Plain Old Java (POJO) based
component types.

Synopsis

Public Attributes

java. bi nary. archi ves
java. bi nary. f ol der
java. bi nari es

Private Attributes

Attributes

Public Attributes

j ava. bi nary. archi ves
Denotes the component’ s export of jar files.

j ava. bi nary. f ol der
Denotes the component’s export of folders containing java binary artifacts (class files or re-
sources).

j ava. binari es
A group containing either thej ava. bi nary. ar chi ves or j ava. bi nary. f ol der. Typically
used when assembling class paths used as input for a compiler. Can be thought of as a format
agnostic (i.e. directory or jar) form of referencing compiled java code.

Dependencies

The POJo component type is abstract and does not specify any dependencies. Specialized types may
add support for dependencies.

Description

The POJO type is abstract and should never be directly used in any Buckminster artifacts. Its only
purpose is to describe the attributes that are common to al POJO component types.

/ém Note

If you have a POJ0 component, and want additional meta data, you should turn it into
a Buckminster component by adding a buckni nst er. cspec. When doing this, you
probably also want to add the attributes that are common to all POJo components— they
are not added automatically.

162

Draft Draft

Actors

This reference guide contains detailed information about the actors supported by Buckminster in its
standard configuration. Actors are used in CSPEC actions. See Chapter 6, Components for more infor-
mation where actors are used.

Conventions used

The following conventions are used in this reference guide:

Actor properties A group of propertiesin an action called “actor properties’.

General Properties A group of propertiesin an action called “general properties’.

Prerequisites dlias Alias assigned to prerequisitesin an action. Used by actions to ref-
erencefiles.

Buckminster f Feature When displayed under the actor name then the f feature must be
installed for the actor to be available.

Action product An action’s output is called product. The product is specified as a
path group.

«replaceable» A replaceable part of aname iswritten within guillemots « »

163

Draft Draft

ant actor

ant actor — an actor capable of executing ANT-SsCripts.

Synopsis

Actor Properties

targets
[buildFile | buildFileld]

General Properties

Declared properties are passed to the ANT-script

Action Prerequisites & Action Products

All aiased action prerequisites and action product(s) are passed to the ANT-script

Actor Properties

targets
A comma separated list of ANT targets to call. By default, a target with the same name as the
action attributeis called.

5 Note

The order in which the targets are called is determined by the ant runtime and may
differ from the order in which they are declared in case the target has inter-depen-
dencies.

bui |l dFi |l e
Thebuildfileto useasinput. The value should be an absol ute file system path. Oneof bui | dFi | e
or bui | dFi | el d should be used.

bui | dFi |l el d
The 1D of abuild file that is registered by an extension point. The Buckminster PDE bundle reg-
istersthe build filebuckm nst er . pdet asks.

General Properties

Any general properties set in the action invoking the ant actor are available in the ant-script as prop-
erties. See the section called “ Access to properties’.

Description

Theant actor iscapable of invoking targetsin an ANT-script. Such ascript isreferred to asabuild-file,
and a reference to the build-file to use must be passed either by using the actor property bui | dFi | e
which is an absolute file system path to an ANT build file, or via the actor property bui | dFi | el d,
which is the identity of a pre-registered build-file. The Buckminster PDE Feature adds the identity
buckmi nst er . pdet asks, which is used by the automatically generated csPecs for PDE based com-
ponent types. (See the ‘ Component Types' reference guide for information about the PDE component
types and the available actions). Although the buckmni nst er . pdet asks can be used from actions
you construct, it is not considered to have a stable API, so use the automatically generated actions if
you can.

164

Draft ant actor Draft

Advanced — Reusable Build Scripts Extensions

If you are an advanced users it may be good to know that the Buckminster extension point
org. ecl i pse. buckmi nster. ant. bui | dScri pts can be used to register additional build
identifiers in order to create reusable ANT-targets. Explaining how this is done is not within
scope for this reference guide.

Ant Runner
Buckminster uses the standard Eclipse Ant Runner to run ANT-scripts. This has several advantages:

» The process can be canceled from a normal progress monitor.

No additiona JvM is started which is faster and saves resources.

The default j avac compiler will be the one provided by Eclipse DT.

All ANT-tasks provided by the or g. ecl i pse. ant . core. ant Tasks extension point becomes
available (There are many. Search the Eclipse Help for ‘ Ant task’ to see an index).

 Properties provided by the or g. ecl i pse. ant. core. ant Properti es extension point is auto-
matically available (see ‘ Ant Properties’ in Eclipse Help). By default, this adds at |east three prop-

erties:

ecl i pse. home The Eclipseinstallation directory (or, in aheadl ess scenario,
the Buckminster installation directory since Buckminster is
Eclipse in this context).

ecl i pse. runni ng Will always be set to t r ue when executing an ANT-action.

buckni nst er . pdet asks Thelocation of the build script provided by the Buckminster
PDE Feature. Useful if youwant to referenceitstargetsfrom
another script.

» Types provided by the or g. ecl i pse. ant. core. ant Types extension point is automatically
available. The platform does not currently provide any new types but Buckminster does (as ex-
plained later).

Access to properties

An action has two kinds of properties. The actor properties that controls the actor, and the general
properties. Theant actor configuresitself using the actor properties. They tell the actor whereto find
the build script and what targets to execute. The actor properties are not available from within the
build script. The general properties however, are provided as normal user defined properties, just asif
you execute ANT from the command line and pass the properties using - Dexxx»=«yyy» Settings. You
reach them in your ANT-script by using standard ${ «nanme»} syntax to expand the property «nane»
toitsvaue.

Access to prerequisites and product locations

Y ou should aready be familiar with the concept that all attributes in Buckminster can be thought of
as one or severa path groups where each path group has a base path and alist of zero or more paths.
Y ou also know that when used as a prerequisite in an action, the prerequisite can be given aname (the
prerequisite aias). The same s true about the action’ s product(s).

Buckminster will pass prerequisites and products as properties to ANT using the prefix ‘f s: ' before
the alias. The value of such a property is formatted as follows:

?«base»[; «pat h»[; «path» «...»]][?«base»[; «path»[; «path» «. ..»]J] «...»]

165

Draft ant actor Draft

Asaconvenience, for the common case where the property only represents one single path, (i.e. there
isonly one single path group and this path group has zero or one path), a second property is provided
for the alias with the prefix ‘sp: ’ containing the single path asits value.

Usage in ANT-script
The properties passed by Buckminster can be used in ANT-scripts by using ANT-types designed for

this particular purpose. See “filesetgroup support” in the “Buckminster ANT tasks” reference guide
for how thisis done.

See Also

j dt. ant actor

166

Draft Draft

copyTargetAction actor

copyTar get Act i on actor — an internal actor that copies fragments.
Buckminster PDE Feature

Synopsis

Actor Properties

ignored

General Properties

ignored

Action Prerequisites & Action Products

The output/product must be provided and must appoint a single directory.

Description

Anactor that finds all fragmentsfor the bundle associated with the csPec invoking the actor, and copies
them to the output specified by the containing action. Fragments ending with ‘. conpati bility’,
‘.test’,or‘. dummy’ are excluded from the copy.

/ém Note

This actor isintended for internal use in the PDE build process.

167

Draft Draft

eclipse.build actor

ecl i pse. bui I d actor — an actor that builds by invoking the Eclipse Build System.

Synopsis

Actor Properties
ki nd

General Properties

ignored

Action Prerequisites & Action Products

ignored

Actor Properties

ki nd
Thetypeof buildtoinvokecanbesettoecl i pse. i ncrement al orecli pse. f ul | . Thedefault
if kind is not specifiedisecl i pse. i ncrenental .

Deprecated kinds. The following values for ki nd are deprecated: -eel-i-pse-—aut-o- (which

isthesameasecl i pse. i ncrenent al), -eeli-pse-—clean- (replaced by theecl i pse. cl ean
actor), and -eel-i-pse-bui-t-d- (which isthe same thing asecl i pse. ful I).

Description

Requests a build from the Eclipse Build System. Essentially the same as doing a ‘ Project — Build
Project’ in the Eclipse IDE. This actor looks at the actor property ki nd which can be set to one of
eclipse.incremental oreclipse.full.Thedefaultiseclipse.increnental.

See Also

ecl i pse. cl ean actor

168

Draft Draft

eclipse.clean actor

ecl i pse. cl ean actor — an actor performing the same as the Eclipse IDE “clean”.

Synopsis

Actor Properties

ignored

General Properties

ignored

Action Prerequisites & Action Products

ignored

Description

Requests a clean from the Eclipse Build system. Essentially the same as doing a‘Project — Clean...’
in the Eclipse IDE for the project associated with the cspec invoking this actor.

If you want to clean the entire workspace, you can do so with the command ‘ Project - Clean...” com-
mand (and select ‘ Clean all projects’ in the Eclipse IDE user interface, or if you are running headless
by using the command buckmi nst er cl ean on the workspace you want to clean.

169

Draft

Draft

executor actor

execut or actor — an actor that executes a system command using ‘ exec’

Synopsis

Actor Properties

env
newenvi r onment
[exec | shell]
execDir

fail OnError

General Properties

ignored

Action Prerequisites & Action Products

ignored

Actor Properties

env
A semicolon separated string of environment variable settings. The variables are subject to prop-
erty expansion.

newenvi r onment
A boolean value that if set, will make env the only environment that is provided i.e. the current
environment is not inherited.

exec
The command to execute. One of shel | or exec must be specified, but not both.

shel |
A shell command to execute. Will be prepended by ¢ cnd. exe / C on Windowsor ‘sh -c¢’ on
other platforms. One of shel | or exec must be specified, but not both.

execDir
The directory to use as current for the execution. Defaults to the component’s location and if
relative, becomes relative to the component’ s location.

fail OnError
If set (which isthe default), the actor will fail unlessthe exec or shel I command returns a zero
exit status.

Description

This actor executes an external command (through Java Runt i me. get Runti me() . exec()). The
execution is controlled by the actor properties.

This makes it possible to run system commands and scripts.

/ér Note
You can currently only pass information to the executed command/script via the env
string.

Warning
O There is no special handling of escapes, specia characters and quotes. You will need
to experiment to get the correct values into the env string, as well as the command line

170

Draft execut or actor Draft

arguments to suit the operating system you are running on. Do not just blindly issue
dangerous commands without first making absolutely sure you are passing argumentsto
the command/script the way you expect.

171

Draft Draft

fetcher actor

f et cher actor — an actor that fetches additional artifacts from an URL

Synopsis

Actor Properties

url

dir
options
I ogin
pass

General Properties

ignored

Action Prerequisites & Action Products

ignored

Actor Properties

url
The URL to fetch.

dir
The directory where the fetched result should be stored. Defaults to the component’ s location. If
relative, becomes relative to the component’ s location.

opti ons
Semicolon separated list of options controlling how to deal with the fetched archive. Can contain
unconpr ess, f| at t en, and multiplei ncl ude. Example:

unconpress; fl atten; i ncl ude=*. cpp; i ncl ude=*. c;

unconpress
Uncompresses a fetched archive. Supports archives in the following formats. . zi p,
.tar.gz,.tgz,.tbz2and.tar. bz2.

flatten
Flattens an uncompressed archive (i.e. al files are uncompressed into the samelocation). Has
no effect if unconpr ess isnot also stated.

i ncl ude=[-] «pattern»
Allows specification of which filesto include or exclude when uncompressing. Ani ncl ude
has no effect if unconpr ess isnot aso stated. The «pat t er n» isasimplified regular ex-
pression describing which filesto include. If preceded by a“- ' the files matched by the pat-
tern are excluded. Several include options can be used in the same options argument.

i ncl ude=bi naries/*;include=-*.htm

The simplified regular expression handles* to mean zero or more characters, and ? to mean
one or more characters. Thereisno need to quote ‘. * (it normally mens ‘any character’ in a
regexp). The pattern is also rewritten so that path separators (‘/' or ‘\' are changed into */").

éb Note

This has the effect that ssmple patterns using path separators, * and ? works
well, but it is not possible to use the pattern as afull regular expression. If the
name you aretrying to match with a pattern that needsto include charactersthat

172

Draft f et cher actor Draft

are special inaregular expression, they can not be quoted if you are running on
windowsasa‘\' istreated as a path separator.

I ogin
Thelogin to use (optional). Subject to property expansion.

pass
The password to use (optional). Subject to property expansion.

Warning

O The password is stored in plain text. Proper care must be taken to protect a CSPEC
that contains a password string. It is recommended to pass the login/password using
system properties. When entering the login/password directly in the csPec, you also
need to protect any BoM files that you save as they contain copies of the CSPECs.
If you use properties however, only provider related properties are expanded when

the BOM is created (i.e. expansion of login/password properties are not saved in the
BOM).

Description

An actor capable of fetching things during a build.

Warning

O Use of the f et cher actor should not be your first choice since it overlaps with provi-
sioning, and there is no support for dependency management. In some cases however,
the build itself concludes what to fetch in mysterious ways, and the fetcher becomes the
only option.

Thef et cher istypically used to fetch an archive, but can be used to fetch any singlefile.

When fetching an archive, it can be both uncompressed, and flattened as controlled by the opt i ons
actor property.

173

Draft

Draft

jarprocessor actor

j arprocessor actor — an actor capable of performing packing operation on ajar file
Buckminster PDE Feature

Synopsis

Actor Properties

ignored

General Properties

conmmand

Action Prerequisites Aliases

jar.fol der

Action Product Requirements

The action must have a single path product with a path to a directory for output.

Actor Properties

,éb Note

Vaues should be passed using General Properties.

General Properties

command Should be set to r epack, pack, or unpack.

Component Attributes

proj ect. cl asspath
A path group containing the class path from a JoT based project.

Description

This actor isamuch improved version of the p2 jarprocessor. It does not rely on external processing
and creates a minimum amount of temporary files on disk during processing (the data is streamed
between the different stages). The processor is aso intelligent in that it automatically excludes jars
that do not include Java binaries (. cl ass files) from pack200 processing and it does not gzi p the
container of gzipped files. One important improvement over the p2 predecessor is that the j ar pr o-

cessor actor does not silently ignore errors.

The actor usesthe property command which can be set to one of r epack, pack, or unpack. The actor
also expect to find aprerequisite with the aliasj ar . f ol der and that the action product appoints one

single path of adirectory where it can put its result.

174

Draft j ar processor actor Draft

About Pack200

Pack200 is not alossless compression. Packing and unpacking will produce ajar that is seman-
tically the same asthe original, but class-file structureswill be rearranged; the resulting jar will
not beidentical to the original. However, thisreordering isidempotent so a second pack-unpack
will not further change the jar.

Pack200 reduces the size of aJAR file by:

1. Merging and sorting the constant-pool data in the class files and co-locating them in the
archive

2. Removing redundant class attributes.

3. Storing internal data structures.

4. Using delta and variable length encoding.

5. Choosing optimum coding types for secondary compression.

Signing a jar hashes the contents and stores the hash codes in the manifest. Since packing and
unpacking ajar will modify the contents, the jar must be normalized prior to signing. Normal-
izing the jar will also be referred to as repacking or conditioning the jar.

From http://wiki.eclipse.org/Pack200

See Also

http://wiki.eclipse.org/Pack200

175

http://wiki.eclipse.org/Pack200
http://wiki.eclipse.org/Pack200

Draft Draft

jdt.ant actor

j dt . ant actor — an actor capable of executing ANT-scripts with support for JDT project classpath.
Buckminster PDE Feature

Synopsis

Actor Properties

targets
buil dFil e
bui | dFi l el d

General Properties

Declared properties are passed to ANT-script

Action Prerequisites & Action Products

project.classpath

Actor Properties

Seeant actor.

General Properties

Seeant actor.

Component Attributes

In addition to the component attributes made available to the ant actor , thej dt . ant actor also
makes the following component attribute available to the ANT-script.

proj ect. cl asspath
A path group containing the class path from a DT based project.

Description

See ant actor for a description. The j dt . ant actor just adds access to the pr oj ect . cl asspat h
component attribute.

See Also

ant actor

176

Draft Draft

null actor

nul | actor — an actor that (for testing purposes) does nothing.

Synopsis

Actor Properties

ignored

General Properties

ignored

Action Prerequisites & Action Products

ignored

Description

Thenul | actor does nothing. It can be used when testing and some actor should be temporarily dis-
abledin XML. Thereal actor can be replaced withanul | actor to trigger all the prerequisites without
invoking any real actor.

See Also

si mul ati on actor

177

Draft Draft

p2SiteGenerator actor

p2Si t eGener at or actor — an actor generating a p2 (update) site
Buckminster PDE Feature

Synopsis

Actor Properties

ignored

General Properties

ignored

Action Prerequisites Aliases

site
site. definer
product . configs

Action Product Requirements

The action must have a single path product with a path to a directory for output.

Description

This actor will produce a p2 update site with co-located meta-data and artifacts. This actor expects
the the following aliased prerequisites:

site A pre built directory that contains afeatures/ and pluging/ sub-
directory which in turn containsthe feature and bundlejar files.

site.definer A referenceto af eat ure. xm file, or a«xxx». product file
that defines the site.

product . confi gs (optional) A prerequisite that lists all additional product configurationsto
include on the site.

This actor also requires that the action product appoints one single path of a directory where it can
put its result.

See Also

Chapter 2, p2.

178

Draft Draft

simulation actor

si mul at i on actor — an actor (for testing purposes), that does nothing except report progress.

Synopsis

Actor Properties

ticks

General Properties

ignored

Action Prerequisites & Action Products

ignored

Actor Properties

ticks
A delay value in milliseconds between 0 and 60000. If not specified, the default is 3000.

Description
An actor that imposes adelay by ticking on aprogress monitor and logs when its finished. For testing

purposes. This actor looks at the actor property ti cks which is a millisecond value that has to be
between 0 and 60000. The default is 3000.

See Also

nul | actor

179

Draft Draft

Buckminster ANT tasks

This reference guide describes the Buckminster features available when writing ANT scripts.

180

Draft

Draft

filesetgroup support

filesetgroup support — Adds fileset-group support to ANT, and handles Buckminster path groups.

Synopsis

buckm nster.fil esetgroup
buckni nst er. val uefil eset
buckm nst er. val uepat h

buckm nster. apply
buckmi nst er. copy
buckmni nster. del ete
buckm nter.jar
buckm nster.zip

Description

The properties passed by Buckminster can be used in ANT-scripts by using ANT-types designed for
this particular purpose. The Buckminster ANT-types are:

buckm nster.fil esetgroup

buckm nster. val uefil eset

buckmi nst er. val uepat h

As the name suggests, thisis a group of ANT filesets. (Prior to
Ant 1.7, it was not possible to define such groupsin ANT). This
type can beinitialized from af s: «xxx» property value.

An ANT fileset that can beinitialized from af s: «xxx» proper-
ty. Only thefirst path group in the property will be considered
in case it contains several.

An ANT-path (which actually is several paths separated by a
path separator (i.e. more similar to a classpath then just apath).
When initialized from af s: «xxx» property it will contain all
paths (expanded) that the property contained.

Thebuckni nst er. val uefi | eset and buckni nst er. val uepat h can be used as dot-in replace-
ments wherever ANT expects a fileset or a path respectively. The buckmi nster. fil eset group
however, cannot be used this way since ANT does not know what it is. ANT has several tasks that can
take alist of filesets as input and Buckminster provides extended versions of these tasks that also ac-
ceptsbuckmi nster. fil eset gr oups. These tasks are:

buckm nst er. apply
buckm nst er. copy
buckm nster. del ete
buckm nster.jar

buckm nster. zip

Extendsthe ANT appl y task.
Extends the ANT copy task.
Extends the ANT del et e task.
Extendsthe ANT appl y task.

Extendsthe ANT zi p task.

This current construction handling fileset-group is subject to future improvement since the handling
of filesetsin ANT has undergone amajor overhaul in ANT 1.7 and now have resources that can be used

to group filesets.

Examples

This ANT-script example assumes that the action product (output) is aliased act i on. out put and
the prerequisites (input) aliased act i on. r equi r enent s. It will copy everything found in the input
(relative to the path groups’ bases) into the action output.

181

Draft filesetgroup support Draft

<t arget nanme="copy.group">
<nkdir dir="${sp:action.output}"/>
<buckm nster.copy todir="${sp:action.output}" overwite="true">
<buckminster.filesetgroup @ val ue="${fs:action.requirements}" @ />
</ buckmi nst er. copy>
</target>

© Thebuckninster.fil esetgroup isused to adapt the input to an ANT filesetgroup.
® Theaction. requirements istheinput (apath group) which needs adaption to be used as
an ANT filesetgroup.

182

Draft Draft

buckminster.importResource

buckminster.importResource— like antsimport command but for aresource provided with an optional
classpath

Synopsis

<buckmi nster. i nport Resource
r esour ce=«r esour ce-ref »

[cl asspat h=«ant pat h»]

[optional =«f 1 ag»]

/>

Description

Works similar to ANT’ s import command but instead of providing a filename, aresource is provided

together with an optional classpath (defaults to the system classpath). The resource is resolved using
the Java Class Loader.

resour ce=«resource-ref»
A string denoting the resource.

cl asspat h=«ant pat h»
An ANT path.

opt i onal =«f | ag»
A boolean indicating that a missing resource is OK

opti onal =«f | ag»
If set, the output is less verbose.

183

Draft Draft

buckminster.lastTimestamp

buckminster.lastTimestamp — obtain the last timestamp from arepository location.
Synopsis

<buckmi nster. | astTi mest anp

propert y=«nanme»

reader Type=«nane»

reposi torylLocati on=«uri »

[ver si onSel ect or =«<br anch- - or -t ag»]
[dat eFor mat =«f nt st ri ng»]

[ti mezone=«t z- nane»]

/>

Description

Uses a specific buckminster reader type to obtain the last timestamp from a repository location. The
timestamp is stored in a property.

property=«nanme»
The name of the property that receives the timestamp.

reader Type=«nane»
The name of the Buckminster reader type.

reposi torylLocati on=«uri »
The reader type specific URI that appoints the remote source.

ver si onSel ect or =«br anch-or -t ag»
A branch or tag. Default is main (i.e. HEAD/trunk, etc.). Branches are entered by simply stating
their name, and tags are entered with aleading slash ‘/ * character. The specia keyword ‘nwi n’ is
used to refer to the repositories notion of main branch (e.g. ‘trunk’ for svN, ‘head’ for cvs, etc.).

dat eFor mat =«f nt - stri ng»
The Si npl eDat eFor mat format to use. Defaultsto 1so standard “yyyy- MM dd' T' HH: nm ss™.

ti mezone=«t z- name»
The timezone to use. Defaultsto “UTC".

184

Draft Draft

buckminster.lastRevision

buckminster.lastRevision — obtain the last revision from arepository location.
Synopsis

<buckmi nster. | ast Revi si on

property=«nane»

reader Type=«nane»

{ reposi toryLocati on=«uri» |wor ki ngCopy=«f ntstring»}
[ver si onSel ect or =«<br anch- - or -t ag»]

[ti mezone=«t z- nane»]

/>

Description

Uses a specific buckminster reader type to obtain the last revision from a repository location. The
revision is stored in a property.

property=«nanme»
The name of the property that receives the timestamp.

reader Type=«nane»
The name of the Buckminster reader type.

reposi torylLocati on=«uri »
Thereader type specific URI that appointsthe remote source. Only oneof r eposi t or yLocat i on
and wor ki ngCopy can be used.

wor ki ngCopy=«fil e»
A file denoting alocal working copy of the source. Only one of wor ki ngCopy and r eposi t o-
ryLocat i on can be used.

ver si onSel ect or =«br anch- or - t ag»
A branch or tag. Default is main (i.e. HEAD/trunk, etc.).

185

Draft

Draft

buckminster.substitute

buckminster.substitute — performs regular expression substitution on a property.
Synopsis

<buckmi nster.substitute
property=«nane»

patt er n=«r egexp»

[quot ePat t er n=«f | ag»]

[repl acenent =«r epl acenment - stri ng»]
[val ue=«val »]

/>

Description

Performs regular expression substitution on a property.

property=«nanme»
The name of the property that receives the result.

patt er n=«r egexp»
The regular expression pattern.

quot ePat t er n=«f | ag»
A boolean denoting that the pattern should be quoted. Optional and defaultsto f al se.

repl acenment =«r epl acenent -stri ng»
A replacement string for the expression.

val ue=«val »

Theinput to the substitution. (Typically areference to a property e.g. $somePr opert y).

186

Draft Draft

buckminster.versionQualifier

buckminster.versionQualifier — substitutes the ‘ qualifier’ part of the fourth segment of an OSGi ver-
sion.

Synopsis

<buckm nster.versionQualifier
conmponent Name=«namnme»
conponent Type=«nane»
property=«nanme»

[propertiesFile=«file»]

[qualifier=«val ue»]

[versi on=«version-string»]
/>

Description

Substitutes the ‘qualifier’ part of the fourth segment of an 0sGi version according to environment
properties. There are currently three types of qualifier replacement strategies; | ast Revi si on (re-
placing the qualifier with the last revision), | ast Modi fi ed (replacing the qualifier with a times-
tamp of the latest changed resource), and bui | dTi mest anp (replacing the qualifier with a specified
timestamp (or the current time)). The | ast Revi si on uses a qualifier generator that works like the
buckmi nster. | ast Revi si on task (it executes the same code underneath). It will always use the
working copy. Thel ast Modi fi ed workslikethe buckmi nst er. | ast Ti mest anp task.

Properties

Thetask performs substitution asdirected by properties. One set of propertiescontrol strategy selection
given a component name, and one set controls the revision and timestamp formats.

Strategy selection is done by specifying properties on the format:

qual i fier.replacenent. «pattern» =
{ generator: | ast Modi fi ed|generator:| astRevsision|generator: buildTi nestanp}

The«pat t er n» specifies with which componentsthe specified version qualifier strategy applies. The
pattern is not aregular expression, instead it has a simplified syntax where ? means any character and
* means zero or more characters.

Controlling the version qualifier formats are done with the properties:

gener at or. | ast Revi si on. f or mat =«nunber For nmat »
Should be aJavaMessageFor mat for anumber such as“r { 0, nunber, 00000} ”.

generator.| ast Modi fi ed. f or mat =«dat eTi meFor nat »
Should be aJava Si npl eDat eFor mat suchas“' v' yyyyMvid- HHm{ .

gener at or. bui | dTi mest anp. f or mat =«dat eTi meFor mat »
Should be aJava Si npl eDat eFor mat suchas“' v' yyyyMvidd- HHm{ .

buckm nster. build.tinestanp
Used by thebui | dTi mest anp generator. It should beatimestampin 150-8601 format, i.e. “yyyy-
MM-dd'T'HH:mm:ss.SSSZ” and reflect atimestamp in UTC. If thebui | dTi mest anp generator
is used and this property is not set, the time of the perform command invokation is used as the
timestamp.

187

Draft buckminster.versionQualifier Draft

Task Attributes

The attributes are used as follows:

conponent Nane=«name» The name of the designated component.
conponent Type=«name» The name of the component type of the designated component.
propertiesFile=«file» The propertiesfile to use. Will be superimposed on top of sys-

tem propertiesif provided.

proper t y=«nanme» The name of the property that will receive the result.

qual i fi er=«val ue» Explicit qualifier to use for the replacement (normally not
used).

ver si on=«ver si on-string» The version in omni version format.

versionType=«version— Deprecated, and has no effect. Must be empty or set to OSG .

type»-

188

Draft Draft

buckminster.signatureCleaner

buckminster.signatureCleaner — removes signing from jar files so that the file can be re-packed
Synopsis
<buckmi nst er. si gnat ured eaner >

[«file-set-element»]
</ buckm nster. si gnat ureC eaner >

Description

Removes signing from jar files so that the file can be re-packed and re-signed. This task has no at-
tributes. Instead it uses a nested fileset as input.

189

Draft Draft

buckminster.perform

buckminster.perform — (advanced) call on Buckminster from within ANT
Synopsis

<buckmi nst er. perform
attri but e=«nane»
conponent =«name»

[i nWor kspace=«f | ag»]
[qui et =«f 1 ag»]

/>

Description

Warning

O Thisis an advanced action that if used the wrong way will cause confusing results, and
can potentially deadlock. Do not use this action unless you know exactly how Buckmin-
ster and ANT works together, and you know exactly why you want this mechanism in-
stead of some other solution.

This special operation allows nested calls to Buckminster from within ANT. Thisis normally discour-
aged since it becomes unclear who is responsible for the orchestration, Buckminster or ANT, but may
be needed in very advanced situations. Proper care needs to be taken to not create deadlocks.

attri but e=«nane»
The cspec attribute to perform (typically an action)

conponent =«name»
The component containing the attribute

i NWr kspace=«f | ag»
Advanced usage. Used for avoiding deadl ocks when running workspace jobs.

qui et =«f | ag»
If set, the output is less verbose.

190

Draft Draft

Filters

Thisreference guide describes the filter mechanism used by Buckminster and Eclipse. It aso contains
areference for the system properties most commonly used in Buckminster filter expressions.

How the filters work

Buckminster uses filters to control inclusion of components (in resolutions), dependencies (in com-
ponents), and component attributes (in attribute prerequisites).

A filter isspecified in anitemand isused to determineif theitem should beincluded or not in a“ search
result”. The terminology is in reverse from what you may think — i.e. the filter is specified on the
item that is perceived to be “filtered out”. Further confusion arises as the filter is used to specify the
inclusion of the item (i.e. the item is included if the filter evaluates to true). An empty filter always
evaluates to true.

As an example, a component may specify afilter like (t ar get . os=macosx) which means that it
will only accept inclusion in a search result where the context hasavaluefor t ar get . os that isequal
to ‘macosx’.

Filter variables

Thefilter operates on properties that are made available to the filter logic. In an Eclipse environment
the filter logic is given access to the system properties. Buckminster mimics the variables defined by
0SGi, but since Buckminster is system agnostic, it uses variables called “target” instead of “osgi” (e.g.
OSGi filters use osgi . os, and Buckminster filters uset ar get . os). When Buckminster reads PDE
artifacts the filter names are translated from the osgi form to thet ar get form.

\

-~

Tip

~

? It is possible to use any system property should you have some very special needs.

Warning

O The filtering mechanism simply attempts to obtain the value for the named variable
and then use it to filter. This means that if you mistype a property name, you will
not get an error e.g. if you mistyped (target. os=nmacosx) and instead entered
(tagret.os=macosx) then the filter will always return false as there probably is no
t agr et . os system property with avalue of ‘macosx’.

In some places in the Eclipse ul, the system property names have been abbreviated (the prefix is
dropped). In some cases a user interface may also hide the fact that the entire filter expression must
be enclosed in parentheses. This makes the ul somewhat less cluttered, but has unfortunately tricked
usersinto entering filters without parentheses and using the abbreviated system property namesin the
underlying LDAP filter strings.

5 Note
Y ou should always use the full system property name; i.e. t ar get . os, t arget. arch
in LDAP filter strings, and always enclose the filter expression in parentheses.

Wildcards

Buckminster handles wildcard asinput. If you define a property to have the value ‘* ' any comparison
against this value in a filter expression will yield true. As an example, if you set t ar get . os=* and
afilter specifies(t ar get . os=macosx) theresult istrue).

191

Draft

Filters Draft

Warning
o Note that filters that use reverselogic (! (t ar get . os=macosx)) will return false and

not be included. Such filters are however typically not used. You will get a similar ef-
fect if wildcards are used in the filter — (t ar get . os=nmac*), will also return false on

wildcard input.

Properties, types and matching (implementation)

When the filter value is compared, the comparison does not automatically default to string
comparison unless the available property is astring. Instead, a check is made if the class of the
property has a public constructor that takes a single string argument.

Consider the following:

(mex. rati 0=0. 50)

and a property that is set like this:
props. put ("max.ratio", "0.5");

Here, the comparison will be between two stringsand it will yield false(" 0. 50" !'= "0.5").
If however, the property is set like this:

props. put ("max.rati 0", new Doubl e(0.5));

then, the filter mechanism will detect that the class of the provided value has a constructor that
takes a string argument.

Consequently, thefilter will coerceits own value prior to the comparison i.e. something equiv-
alent to this:

i f (new Doubl e("0.50"). equal s(props.get("max.ratio")))

and that comparison will yield true.

Eclipse (and Buckminster) uses this by replacing all occurrences of the ‘*’ string with a
MatchAll value in the property set prior to evaluating a filter. The MatchAll has a string con-
structor and it will answer true to all calls to equal. This means that if you specify that your
target.os is‘*’ in your CQUERY or in properties provided during a call to per f or m then
a subsequent evaluation of afilter liket ar get . 0s=x86 (or any other value) will yield true.
The coercion mechanism does not apply when the declared filter value contains ‘*’ characters
(ak.a asasubstring filter). A substring filter will yield false when compared to anything but a
string. No coercion takes place. A side effect of thisis that any substring filter will yield false
when compared to the “*’ input since the MatchAll is not a string.

LDAP Filters

The syntax of afilter string is the string representation of LDAP search filters as defined in RFC 1960:
A String Representation of LDAP Search Filters (available at http://www.ietf.org/rfc/rfc1960.txt). 1t
should be noted that RFC 2254: A String Representation of LDAP Search Filters (available at http://
www.ietf.org/rfc/rfc2254.txt) supersedes RFC 1960 but only adds extensible matching and is not ap-

plicable for the implementation of filter used in the 0sGi Framework ApI.

Here is an the syntax described in (avariant of) BNF:

filter ::="(" filtercomp ")’
filterconp ::=and | or | not | item
and ::="'& filterlist

or ::="|" filterlist

not ::="1" filter

192

Draft Filters Draft
filterlist ::=filter | filter filterlist
item::= sinple | present | substring
sinple ::= attr filtertype val ue
filtertype ::= equal | approx | greater | less
equal ::="'='
approx ::="'~=
greater ::='>=
less ;1= "'<=
present ::= attr '=*'
substring ::= attr '='" initial any final
initial ::= NULL | value
any ::="'*'" starval
starval ::= NULL | value '*' starval
final ::= NULL | val ue

Theat t r isthename of thevalue—i.e. itisastring representing an attribute, or key, in the properties
objects of the services registered in the 0sGi Framework. Attribute names are not case sensitive; that
is, cnand CN both refer to the same attribute. Theat t r should contain no spaces though white space
is alowed between the initial parenthesis ‘(" and the start of the key, and between the end of the key
and the equal sign ‘=". The val ue is a string representing the value, or part of one, of akey in the
properties objects of theregistered services. If aval ue must contain one of the characters**” or ‘(" or
") ', these characters should be escaped by preceding them with the backslash *\ * character. Spacesare
significant in val ue. Space characters are defined by j ava. | ang. Char act er . i sWhi t eSpace() .
Note that although both the subst ri ng and pr esent productions can produce the ‘at t r =*’ con-
struct; this construct is used only to denote a presence filter (i.e. that the attr is set to some value).

Consult the javadoc for theor g. osgi . f ramewor k. Fi | t er Interface for more information.

5 Note
Thereisno ‘not equal’ operator. To express a != X, you have to write (! (a=x))

193

Draft Draft

target.arch

target.arch — filter on cpu architecture.

Synopsis

x86
PA RI SC
ppc
sparc
x86_64

i ab4

i a64_32
W n32

Description

Thet ar get . ar ch property isused to specify the cpu architecture.

The values listed in the Synopsis are the values for cpu architecture defined and used in Eclipse. If
you are using Eclipse/Buckminster to build for other architectures you can use other values.

194

Draft Draft

target.os

target.os — filter on operating system.

Synopsis

W n32
i nux
ai x
solaris
hpux
gnx
Macosx
epoc32
os/ 400
os/ 390
z/ os
unknown

Description

Thet ar get . os property is used to specify the operating system.

The values listed in the Synopsis are the values known to Eclipse. It should be quite clear what these
values stand for. If you are building software for other operating systems you can use other values.

195

Draft

Draft

target.nl

target.nl — filter on natural language.

Synopsis

Thevaluefor t ar get . nl property is expressed as an 1SO 639 Language Code. It is sometimes fol-
lowed by (an underscore separated) SO 3166 Country Code to denote the language specific to a par-
ticular county - e.g. en_US, en_UK.

The number of codes are too many to include in this documentation, and they are available from
multiple online sourcesfor instance http://www.ics.uci.edu/publ/ietf/http/rel ated/iso639.txt, and http://
www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html.

Description

Thet ar get . nl property is used to specify the natural language.

When matching on language code you may want to use awildcard asit is quite common to see com-
bination of en_XX wherethereisno specia form of English for the country ‘XX’ (e.g. in this author’s
case the locale is en_SE). At the same time, if there is both en_US, and en_ UK material available
you probably do not want both — so more complex logic is needed to state “Use en_ US or en_UK
if specified, otherwise if some unknown en* is used, use en_US’. To accomplish this the filters for
the resources could look like this:

/1 for the en_US resource
/1
(| (target.nl=en_US) (&target.nl=en*)(!(target.nl=en_UK))))

/1l for the en_UK resource
/1
(target. nl =en_UK)

196

http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt
http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html
http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html

Draft Draft

target.ws

target.ws — filter on windowing system.
Synopsis

wpf
nmot i f
gtk
phot on
car bon
cocoa
s60
unknown

Description

Thet ar get . ws property is used to specify the Windowing system. The values shown under Synopsis
aredefined in Eclipse. If you are building for some other windowing system, you can invent your own
value for use with your software.

Two values need a special mention; wpf stands for Windows Presentation Foundation, which is more
known by the name Vista, and s60 stands for the Nokia S60 device.

197

Draft Draft

Headless Commands

This reference guide contains detailed information about the headless Buckminster commands. All of
the commands are given as option to the command buckni nst er.

Conventions used
The following conventions are used in this reference guide:

«replaceable» All values that should be replaced with some value are shown
withing guillemots « »

line breaks Command synopsisfor command may be broken up on several
lines. When typing commands enter all option on the sameline.

command names in page titles The command names are always entered without space, but
spaces have been inserted in the page titles for increased read-
ability. See the Synopsis of each command for how the com-
mand should be entered. Some commands have short form
aliases that can be used instead of the longer name — the alias
is shown in the title, but the synopsis aways shows the full/
long form.

Common options

There are options common to all commands — see the entry for “buckminster command”.

198

Draft Draft

buckminster

buckminster — invokes the headless buckminster.
Synopsis

buckmi nster [{-?]|--help}]

[-data «workspace»]

[{-L]|--10glevel }«level»]

[-consol eLog]

[--displaystacktrace]

{{-S|--scriptfile} «filename»| «commandname» [«options»]}

Description

The headless buckminster application is used to run Buckminster commands. The command flags
listed for buckni nst er are available for all commands.

Workspace

AsBuckminster at its core uses the Eclipse framework, this exhibitsitself in acouple of ways. One of
these ways is that an ingrained concept is to work with a ‘workspace’, just like the Eclipse IDE does.
As it happens, the location of this workspace must be set very early in the life cycle of an Eclipse
application, and thisis thus the interface to it. The flag is‘-data’ and should point to a directory (au-
tomatically created if not existing). By default, a workspace called wor kspace will be used (created
when first referenced) in the user’ s home directory.

Logging

Buckminster internally has alogging system. Thisisclearly visible when in the IDE (from the prefer-
ences pages). From the command line there are anumber of flags to control logging behavior. A basic
ideais that Buckminster goes to some lengths to trap writes to system out/err as well as the Eclipse
internal log, and to do so in asynchronous fashion with specific log writes. A full log from arunwhich
mysteriously failswill help agreat deal in isolating the problem in an ‘ after-the-fact’ fashion.

Preferences

The following preferences affect the behavior of the headless Buckminster. If you have the need to
set additional preferences (there are many preferences in Eclipse) you will need to use a workspace
where these preferences have been set, and then use this workspace as a template workspace (which
is done with an option to the headless commands that creates a workspace).

org. eclipse. buckm nster.core. buckm nsterProjectPath
The location of the . buckmi nst er project. This project is the default location for non-osgi bi-
nary artifacts when using the workspace materializer — i.e if you use thej ar , maven/maven2,
components, the downloaded material will end up inthe. buckni nst er project.

org. ecl i pse. buckmi nster. core. maxParal | el Materi al i zati ons
The maximum number of parallel jobs used for materialisation.

org. ecl i pse. buckm nster. core. maxPar al | el Resol uti ons
The number of threads to run in parallel for RMAP resolution.

org. ecli pse. buckni nst er. downl oad. connecti onRet r yCount
The number of times an 10 request is retried in case of an exception (other than Fi | eNot Found).

org. ecl i pse. buckni nst er. downl oad. connecti onRet r yDel ay
The number of seconds to wait between retriesin case of 10 exceptions. Default 1.

199

Draft buckminster Draft

org. ecli pse. buckmi nster.jdt.conplianceLevel
Sets the java compiler compliance level. The default is ‘1.4’ but is normally overridden by
the Eclipse b7 component based on the active JRE (one of the “Installed JRE'S’). So from
Buckminster's perspective, the default is whatever the Eclipse JDT decides.

org. ecli pse. buckm nster. pde.target Arch
Sets the cpu architecture on the currently active target platform.

org. ecl i pse. buckm nster. pde.targetDefinition
Sets the active Target Platform Definition. A target platform must have a name (see ‘Eclipse -

Preferences — Plug-in Development — Target Platform’ in theIDE). The value of this preference
must be equal to the name of one of the available target platforms.

org. eclipse. buckm nster. pde.target NL
Sets the “natural language” (i.e. t ar get . nl Josgi . nl) property in the currently active target
platform. Buckminster uses this value as the default for t ar get . nl . See the ‘Filters reference
guide’

org. ecl i pse. buckm nster. pde.target CS
Sets the operating system on the currently active target platform.

org. ecl i pse. buckm nster. pde.target Pl at f or nPat h
Set the active Target Platform to adefinition that appoints a directory. (In order to maintain back-
ward compatibility, in Eclipse 3.5, this preference creates a Target Definition with one Directory
entry, named the same as the directory). See sidebar.

A note about Target Platform

A Target Definition defines a set of locations. Each location can be one of: Directory — a
directory in the local file system. Installation — an installation (such as an Eclipse SDK) in
the local file system. Features — one or more features from an installation. Software Site —
downloads plug-insfrom a p2 repository. Management of Target Definitions are new in Eclipse
3.5. Prior to this, atarget platform was just a directory in the local file system.

The preferred way of handling target platformsin 3.5 isto create one with the IDE. This target
definition is then saved to afile. The Buckminster command i nportt ar get definitionis
then used in the headless Buckminster to use this definition.

Options

-?,--help
Shows help for the command.

-data «wor kspace»
This sets the workspace on which the Buckminster command operates. The argument
«wor kspace» isafile path to either an existing workspace, or is aname to aworkspace that will
be created. If «wor kspace» is not stated, the default is to use a workspace called wor kspace
located in the users home directory.

-consol eLog
Enables the osGi console logger and is very useful for debugging.

-L «l ogl evel », --1o0gl evel «l oglevel »
Sets the logging level for the command. The «I ogl evel » can be set to one of DEBUG, | NFOQ,
WARNI NG, or ERROR.

- -di spl ayst acktrace
This option can be given if the user desires afull stack trace printout in case of actua code prob-
lems — normally it just prints a less daunting problem report if that happens. Regular ‘user er-
rors (e.g. bad usage of flags or similar are still reported in amore human friendly manner).

200

Draft buckminster Draft

-S «filename», --scriptfile «filename»
Informs Buckminster that commands should be read from a file. The file should contain one
command per line, and not include the initial buckmi nst er used on the command line.

«conmmandnanme» [«opti ons»]
The «commandnane» is the name of a Buckminster command to be executed — see the other
entriesin this reference guide. The «opt i ons» are the options valid for the «comandnane».

201

Draft Draft

listcommands (Iscmds)

listcommands (Iscmds) — lists the commands installed in the currently running instance.
Synopsis

listcommands [{-?]|--help}]
[--style «name»]

Description

Lists all the commands in the currently running instance. This reference guide shows the commands
that are typicaly installed, but other configuration of Buckminster may have a different set of com-
mands available.

Options

-?,--help
Shows help for this command.

--styl e «name»
Select the style of the printout; where «<nane» is one of nor mal (all names are shown), shor t
(only the full/basic name of acommand isshown), or | ong (averboselisting detailing all aliases).
The default isnor mal . (Thereis no short form for this option).

202

Draft

Draft

build (make)

build (make) — runs workspace build.

Synopsis
build[{-?]|--help}]

[{-c]|--clean}]
[{-t]--thorough}]

Description

Runs aworkspace build. If - ¢ is specified, a clean is performed before the build. If - t is specified a

full build is performed if an incremental build fails.

Options

-?,--help
Shows help for this command.

-c, --clean
Performs a clean before the build.

-t , --thorough

Performs a second full build instead of just adding incremental builds when the initial build is

not successful.

203

Draft Draft

clean

clean — cleans the workspace
Synopsis
clean[{-?|--help}]

Description

This command calls on the internal eclipse builder to do a workspace clean. It is the same clean that
takesplacewhenyoudoa“bui | d - -cl ean” (although hereit is not followed by aworkspace build).

Options

-?,--help
Shows help for cl ean

204

Draft Draft

get preference (getpref)

get preference (getpref) — display the value of a preference.
Synopsis

getpreference[{-?|--help}]
[{-d]|--default } «defaul t val ue»]
[--onlyval ue]

«nane»

Description

Display the value of a preference, and optionally use a default value if the selected preference does
not have avalue.

Options

-?,--help
Shows help for this command.

-d «default value», --default «default val ue»
If preference has no value, the value «def aul t val ue» becomes the result.

--onl yval ue
Displays only the value.

«nanme»
The name of the preference for which the value should be displayed.

205

Draft Draft

Import (resolve)

import (resolve) — runs aworkspace import
Synopsis

import [{-?]|--help}]

[{-B]|--bonfile} «filenane»]
[-C]|--continueonerror]
[{-DJ|--define} «key» [=«val ue»]]
[{-P]|--properties}«url or path»]
[{-t]--tenplate} «tenpl ate workspace»]
«url or path»

Description

Populates the workspace from a CQUERY, MSPEC, or BOM file. The - N allow this command to stop
after construction of aBoMm, and the - B writes the resulting Bom to afile.

Options

-?,--help
Shows help for this command.

-B «filenane», --bonfile «filenanme»
Storesthe resulting BoM filein «f i | enane»

-C, --continueonerror
Continue even if not all components can be imported.

-D «key»[=«val ue»] , --define «key»[=«val ue»]
Defines a property as a key=value pair. The value may include ANT-style expansion constructs
that will be expanded using both System properties and other properties that has been set.

-N, --noi nport
Stop after the BoM file has been created i.e. do not populate the workspace.

-P «URL or path», --properties «URL or path»
The URL or file system path of a properties file. The values in the file may include ANT-style
expansion constructs that will be expanded using both system properties and other properties that
has been set.

--t «tenplate workspace», --tenpl ate «tenpl ate wor kspace»
Initialize the workspace from a template workspace prior to import.

«url or path»
An url/path to a CQUERY, MSPEC, or BOM file.

206

Draft Draft

list preferences (Isprefs)

list preferences (Isprefs) — lists information about preferences
Synopsis
listpreferences [{-?|--help}][«nanepattern»]

Description

List information about preferences. If no «namepat t er n» has been stated, all preferences are listed.
Options

-?,--help
Shows help for the command.

«nanepatt er n»
A regular expression pattern to select the preferencesto list. If not provided, lists all preferences.

207

Draft Draft

perform

perform — performs one or several component actions
Synopsis

perform[{-?]|--help}]
[{-DJ|--define} «key» [=«val ue»]]
[{-F|--forced}]
[{-P]|--properties}«url or path»]
[{-Ql--quiet}]

[{-W]|--maxwar ni ngs } «n»]
«conponent »#«acti on» ...

Description

Performs one or several component actions.
Options

-?,--help
Shows help for the command.

-D «key»[=«val ue»] , --define «key»[=«val ue»]
Defines a property as a key=value pair. The value may include ANT-style expansion constructs
that will be expanded using both system properties and other properties that has been set.

-F, --forced
Force al actionsto be performed regardless of timestamps.

-P «URL or path», --properties «URL or path»
The URL or file system path of a properties file. The values in the file may include ANT-style
expansion constructsthat will be expanded using both System properties and other properties that
has been set.

-Q, --quiet
Don't print errors and warnings. Just exit with a non zero exit code on failure.

-W«n» , --maxwar ni ngs «n»
Give the number of warnings acceptable. If the number of warnings are higher, treat as error and
exit with 1. Default is infinite warnings.

«nanepattern»
A regular expression pattern to select the preferencesto list. If not provided, listsall preferences.

«component »#«act i on»
The action to perform identified by the «conponent » name, and «act i on» hame. Can be given
multiple timesin order to perform many actions in the most optimized way.

208

Draft Draft

set preference (setpref)

set preference (setpref) — Sets one or severa preferences.
Synopsis
setpreference [{-?]|--hel p}]«name»=«val ue» ...

Description

Sets one or several preferences.
Options

-?,--help
Shows help for the command.

«nane»
The name of the preference to set.

«val ue»
The wanted value of the preference.

209

Draft

Draft

unset preference (unsetpref)

unset preference (unsetpref) — unsets one or several preferences.
Synopsis

unset preference [{ -?|--hel p}] «name» ...

Description

Unsets one or several preferences.
Options

-?,--help
Shows help for the command.

«nane»
The name of the preference to unset.

210

Draft Draft

Import target definition (importtarget)
import target definition (importtarget) — imports target definitions
Synopsis
inporttargetdefinition[{-?]--help}]

[{-A]--active}]
«url or path»

Description

Imports atarget definition into the workspace, and optionally makes it active.
Options

-?,--help
Shows help for the command.

-A, --active
Load the target definition (and make it the active definition) after it has been imported.

«url or path»
Thelocation of the target definition.

211

Draft Draft

list target definitions (Istargets)

list target definitions (Istargets) — lists target definitions known in the workspace.

Synopsis

listtargetdefinitions[{-?]|--help}]
Description

Lists target definitions known in the workspace.
Options

-2, --help

Shows help for the command.

212

Draft Draft

export preferences (exportprefs)

export preferences (exportprefs) — exports preferences settings.
Synopsis

exportpreferences[{-?|--help}]
[{-F|--filename} «fil ename»]
[{-S|--scope} «scope»]

[«r oot Key» [#«subKey» [, «<subKey» ...]] ...]

Description

Exports preferences settings to afile or standard out.
Options

-?,--help
Shows help for the command.

-F «filename», --filename «fil ename»
The file to write preferences settings to.

-S «scope», --scope «scope»
Determines which set of preferences to export. Valid values for «scope» are confi gur ati on
(preferences set in the IDE) and i nst ance (preferences set in the workspace).

«r oot Key»[#«subKey»[, «<subKey» .. .]
Export only matching preferences. The match can be for aroot only or aroot qualified with one
or several sub keys.

213

Draft Draft

iImport preferences (importprefs)

import preferences (importprefs) — Imports preferences settings.
Synopsis

i mportpreferences[{-?|--help}]
[{-F|--filename} «fil ename»]
[{-S|--scope} «scope»]

[«r oot Key» [#«subKey» [, «<subKey» ...]] ...]

Description

Imports preferences settings from afile or standard input.
Options

-?,--help
Shows help for the command.

-F «filename», --filename «fil ename»
Thefileto read preferences from.

-S «scope», --scope «scope»
Determines which set of preferences to import. Valid values for «<scope» areconfi gur ati on
(preferences set in the Eclipse IDE) and i nst ance (preferences set in the workspace).

«r oot Key»[# «subKey»[, «subKey» ...]]...
Import only matching preferences. The match can be for aroot only or aroot qualified with one
or several sub keys.

214

Draft

Draft

Install

install — installs afeature.
Synopsis
install [{-?]--help}]«site»«feature»][«version»]

Description

Installs afeature into the running headless Buckminster.
Options

-?,--help
Shows help for the command.

«Si te»
URL or path to site.

«f eat ur e»
Theid of the feature to install.

«versi on»
Theversion to install.

215

Draft

Draft

list site

list site— lists features available at a site.
Synopsis
listsite[{-?]|--help}]«url or path»

Description

Liststhe features found in alocal or remote repository.

Options

-?,--help
Shows help for the command.

«url or path»
The location of the repository.

216

Draft Draft

uninstall

uninstall — uninstalls afeature.
Synopsis

uninstal | [{-?]--help}]«feature»[«version»]
Description

Uninstalls a feature.
Options

-?,--help
Shows help for the command.

«f eat ure»
Theid of the feature to uninstall.

«version»
Theversionto uninstall. If not stated, and there are several versionsinstalled, an error isgenerated.

217

Draft

Draft

Buckminster xML Schemas

This Reference Guide contains information about the Buckminster XML schemas, and the use of XML
name spaces.

The schemas are also made available in an XML catalog at http://www.eclipse.org/buckmin-
ster/schemas/buckminster.xmicatal og, here is the current content of this catalog:

<?xm version="1.0" encodi ng="UTF- 8" ?>

<cat al og
<uri

xm ns="urn: oasi s: names:tc:entity: xm ns: xnl: catal og">
name="http://ww. ecl i pse. or g/ buckm nst er/ Coormon- 1. 0"
uri="http://ww. eclipse. org/buckni nster/schemas/ coomon- 1. 0. xsd" />

<uri name="http://ww. ecli pse. org/buckm nster/CQuery-1.0"
uri="http://ww. eclipse. org/buckni nster/schemas/cquery-1.0.xsd" />
<uri name="http://ww. eclipse. org/buckni nster/CSpec-1. 0"
uri="http://ww.eclipse.org/buckmn nster/schemas/cspec-1.0.xsd" />
<uri name="http://ww. ecli pse. org/ buckmn nster/Rvap-1. 0"
uri="http://ww. eclipse. org/buckni nster/schenmas/rmap-1.0.xsd" />
<uri name="http://ww. ecli pse. org/buckni nster/MavenProvi der-1. 0"
uri="http://ww. eclipse. org/buckni nster/schenmas/ maven- provi der-1. 0. xsd" />
<uri name="http://ww. ecli pse. org/ buckm nst er/ PDEMapPr ovi der-1. 0"
uri="http://ww.eclipse. org/buckni nster/schenmas/ map- provider-1.0.xsd" />
<uri name="http://opmn.org/spec2"
uri="http://ww. eclipse. org/buckni nster/schemas/opm -2. 0. xsd" />
<uri name="http://ww. wW3. or g/ XM_/ 1998/ nanespace"
uri="http://ww. eclipse. org/buckni nster/schemas/ xnl - 1998. xsd" />
<uri nanme="http://ww. w3. org/ 1999/ xht m "
uri="http://ww. eclipse. org/buckni nster/schemas/ xht m - 1999. xsd" />
<uri name="http://ww. w3. org/ 2001/ XM_Schena"
uri="http://ww. eclipse. org/buckm nster/schemas/ XM_Schena- 2001. xsd" />
</ cat al og>

218

http://www.eclipse.org/buckminster/schemas/buckminster.xmlcatalog
http://www.eclipse.org/buckminster/schemas/buckminster.xmlcatalog

Draft

Draft

bc (Common-1.0)

bc (Common-1.0) — Buckminster common XML schema.

Synopsis

Namespace Declaration

xm ns: be="http://ww.

ecl i pse. or g/ buckmi nst er/ Conmon- 1. 0"

Namespace

http://wwmv. ecl i pse. org/ buckm nst er/ Comon- 1. 0

Prefix

bc

Schema Location

http://www.eclipse.org/buckminster/schemas/common-1.0.xsd

Description

Contains the Resource Map (RMAP) XML Schema definition.

219

http://www.eclipse.org/buckminster/schemas/common-1.0.xsd

Draft Draft

cs (CSpec-1.0)

¢s (CSpec-1.0) — Buckminster Component Specification (CSPEC), and Component Specification Ex-
tension (CSPEX) XML schemas.

Synopsis

Namespace Declaration

xm ns: cs="http://ww. ecl i pse. or g/ buckni nst er/ CSpec- 1. 0"

Namespace http://wwmv. ecl i pse. or g/ buckm nst er/ CSpec-1.0
Prefix cs

Schema Location http://www.eclipse.org/buckminster/schemas/cspec-1.0.xsd
Description

Containsthe Buckminster Component Specification (CsPec), and Component Specification Extension
(csPex) xML Schemadefinition.

220

http://www.eclipse.org/buckminster/schemas/cspec-1.0.xsd

Draft

Draft

cq (CQuery-1.0)

cq (CQuery-1.0) — Buckminster Component Query (CQUERY) XML schema.

Synopsis

Namespace Declaration

xm ns:cq="http://ww. ecl i pse. org/ buckm nst er/ CQuery-1. 0"

Namespace

http://wwmv. ecl i pse. org/ buckm nster/ CQuery-1.0

Prefix

cq

Schema Location

http://www.eclipse.org/buckminster/schemas/cquery-1.0.xsd

Description

Contains the Buckminster Component Query (CQUERY) XML Schema definition.

221

http://www.eclipse.org/buckminster/schemas/cquery-1.0.xsd

Draft Draft

md (MetaData-1.0)

md (MetaData-1.0) — Buckminster xML schemafor Bill of Materials (Bom), and Materialization Spec
(MSPEC).

Synopsis

Namespace Declaration

xm ns: md="http://ww. ecl i pse. or g/ buckni nst er/ Met abDat a- 1. 0"

Namespace http://wwmv. ecl i pse. org/ buckm nster/MetaData-1.0
Prefix nd

Schema Location http://www.eclipse.org/buckminster/schemas/metadata-1.0.xsd
Description

Contains the Buckminster Bill of Materials (BoM), and Materialization Specification (MSPEC) XML
Schema definitions.

222

http://www.eclipse.org/buckminster/schemas/metadata-1.0.xsd

Draft Draft

mp (MavenProvider-1.0)

mp (MavenProvider-1.0) — Buckminster xML schema for the Maven Provider extension to the Re-
source Map (RMAP).

Synopsis

Namespace Declaration

xm ns: mp="http://ww. eclipse. org/ buckm nster/ MavenProvi der - 1. 0"

Namespace http://wwmv. ecl i pse. org/ buckm nster/ MavenProvi der-1.0
Prefix

Schema Location http://www.eclipse.org/buckminster/schemas/maven-provider-1.0.xsd
Description

Contains the Buckminster Maven Provider extension to the Resource Map (RMAP). It adds the ability
to provide Maven specific information for the maven reader typeinar m pr ovi der element.

223

http://www.eclipse.org/buckminster/schemas/maven-provider-1.0.xsd

Draft Draft

opml (OPML-2)

opml (OPML-2) — The Outline Processor Markup Language Namespace

Synopsis

Namespace Declaration

xm ns: opm ="http://ww. opm . org/ spec2"

Namespace http://wwm. opnm . or g/ spec2
Prefix rm

Schema Information http://www.opml.org/spec2
Description

The OPML-.2 (draft) specification is used to describe bookmarks, and RSS feed links.

224

http://www.opml.org/spec2

Draft Draft

pmp (PDEMapProvider-1.0)

pmp (PDEMapProvider-1.0) — RMAP Provider Extension XML schema for PDE extension.

Synopsis

Namespace Declaration

xm ns:rmE"http://ww. ecl i pse. org/ buckm nst er/ PDEMapPr ovi der- 1. 0"

Namespace http://wwmv. ecl i pse. org/ buckm nst er/ PDEMapProvi der-1. 0
Prefix pnp

Schema Location http://www.eclipse.org/buckminster/schemas/map-provider-1.0.xsd
Description

Contains an extension for PDEMapPr ovi der to the Pr ovi der element in the RMap-1.0 Schema.

225

http://www.eclipse.org/buckminster/schemas/map-provider-1.0.xsd

Draft

Draft

rm (RMap-1.0)

rm (RMap-1.0) — Buckminster RMAPXML schema.

Synopsis

Namespace Declaration

xmns:rmE"http: // ww.

ecl i pse. or g/ buckni nst er/ Rvap- 1. 0"

Namespace

http://wwmv. ecl i pse. org/ buckm nster/Rvap-1.0

Prefix

rm

Schema Location

http://www.eclipse.org/buckminster/schemas/rmap-1.0.xsd

Description

Contains the Resource Map (RMAP) XML Schema definition.

226

http://www.eclipse.org/buckminster/schemas/rmap-1.0.xsd

Draft Draft

xh (xhtml)

xh (xhtml) — The XHTML schemaisincluded to allow XHTML in documentation elements.

Synopsis

Namespace Declaration
xm ns: xh="http://ww. w3. org/ 1999/ xht m "

Namespace http://ww. w3. or g/ 1999/ xht mi
Prefix xh

Schema Information http://www.w3.0rg/1999/xhtml/
Description

Contains the XxHTML namespace. The namespace isimported in the Buckminster schemas where doc-
umentation elements are defined. Thismeansthat it is possible to directly use the XHTML tags with-
out prefixing them with xh: .

227

http://www.w3.org/1999/xhtml/

Draft Draft

Xl (XMLSchema-instance)

xi (XML Schema-instance) — Common definitions used in XML schemas such as type information.

Synopsis

Namespace Declaration
xm ns: xi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance"

Namespace http://ww. w3. or g/ 2001/ XM_Schemne- i nst ance
Prefix Xi

Schema Location -

Description

Defined in the W3C XML Schema specification (Part 1 & 2)

See XML Schema Part 1. Structures Second Edition [http://www.w3.0org/TR/2004/REC-
xmlschema-1-20041028/], and XML Schema Part 2: Datatypes Second Edition [http://www.w3.org/
TR/2004/REC-xmlschema-2-20041028/].

Defines, among other things, the common type specifications used in the Buckminster XML schemas
such asxi : string.

228

http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/

Draft Draft

Part V. Appendixes

Draft Draft
Table of Contents

F N [0 7 = o o PP 231

Installing for ECliPSE SDK ...vuiiiiiiiiii e e e e 231

Installing the Headless PrOAUCEcc.uiiiiiieiii e e e e 232

10000107 oi (o] £ ISP P PPN 234

SUDVEISION (SVN) wrueeeieeiti ettt ee e e ee s e e te e e s e e et e e et e e et e e e et e e et e eetnaeeaneeaneeeen 234

PEITOICE (PA) wvnieeiieie et 234

Configuring Eclipse for XML EQitingcovunieiiiiiiiieii e ee e e 234

B. EXtending BUCKMINSIESuiiiiii e e e e e e e e e eanaeees 235

(@00 {1 g1 o o PRSPPI 235

VA= £ T T8 1/ 235

RMAP EXEENSIONS ...iiittieeiiii e e ettt e e ettt e e e e et s e e e et e e e eebt e e e e ett e e e eettaeeeeteaeeeeneaaaee 235

EXtending REBAEN TYPE ...uvvviieii et e e eaas 235

Extending ComponeNnt TYPE ...ccvuueiiii e e e e e e e aanas 235

Extending Version CONVEIENoiiuiiiiiieiiie e e e e e e e et e eeaeeees 235

CQUERY EXTENSIONS ...t et et e e e e et e et e st s e et s e e s s ensanannns 236

CUSEOM FESOIVEN ..ttt ettt e e et e e et e e e e eaa s 236

C. OMNI VErSION DELAIS ...oovuiiiiiii ettt e e 237

F g1 (8ot [o PSPPI 237

27010 £ o 237

100101100111 1 o 238

V2= £ Lo o ISP 238

(@01 410 =T "o o T 238

Raw and Origina VErsion StNQuovevnieiiiieeiiee e ee e e e e e eanes 239

OMNi VEISION RANGE ...vuiiiiieii e e e e e e e e et e e e e e e et e e et eeaaeeannaees 239

Other range fOrMELSvve e e e e e aens 240

Format SPECITICAIIONiieicei e e e e 240

Format Pattern EXPlanalioncoeeuiiiiieii e e e e e e e e e e 242

Examples of Version FOrMALSuiieiiiiii e e e e e e e e e e 244

LI To] 1T TS o] o A 246

More examples USING ‘FOrMaL’ovvuiieii i e e e e eens 247

(D) T .. SO, . . 248

RESOUITES ...ttt ettt e e e e et e e e eaa s 250

D. BOOKMArKS @N0 OPML ...coviiiiiiiiieeeii ettt e et e e e 251

BOOKIMEAIKS ...t 251

y U 11070 T T o] = 252

230

Draft Draft

Appendix A. Installation

This Appendix describes how to install Buckminster for Eclipse versions 3.4 and 3.5. Note that this
book describesthe current version of Buckminster, soif you for some reason are using the 3.4 version,
the described features, references, and examples will not always work on 3.4.

N Tip

~ -
Itispossibleto develop for Eclipse 3.4 asatarget evenif you are using 3.5 and the latest
Buckminster.

Buckminster comes in two different packagings — for use in the Eclipse SDK (the IDE), and for
headless use.

Warning
O Do NOT install the headless features into your Eclipse SDK! (There is absolutely no
reason to do this, and it will cause instabilities).

éb Note

Thelatest download instructions are alwaysfound at http://www.eclipse.or g/buckmin-
ster/downloads.html. The information in this appendix describes the instructions for
the versions current in July of 2009.

Installing for Eclipse SDK

1. Check if Buckminster is already available for install. Buckminster is part of the Eclipse re-
lease trains and if you are using a packaged Eclipse downloaded from eclipse.org then chances are

that you can install directly from the repository for the release train. Check under Help — Install
New Software... for the Buckminster category. If you can’t find the Buckminster category, you need
to add a repository location. (Y ou may also want to do this to get the latest updates as the release
train sites are updated only infrequently).

2. Addrepository location (if needed). Installing into the Eclipse sbk isdone by adding the repos-
itory you want to install from. Thisis done in Eclipse 3.5 by adding the repository location either

under ‘Help - Install New Software...” or under ‘Eclipse — Preferences... — Install/Update —
Available Software Stes' and then selecting the wanted features under ‘Help — Install New Soft-

ware... .

Please consult the Buckminster download page for an up to date list of available repositories, and
alternatives such as downloading afull copy of arepository to facilitate alater local install.

For convenience, here are the current locations — please note that these links are for use with
Eclipse p2 installer, and not for use in aweb browser:

» The Buckminster update site for Eclipse 3.4x. http://downl oad. ecl i pse. org/
t ool s/ buckmi nst er/updat es- 3. 4.

» Buckminster update site for Eclipse 3.5 (the 'latest fixes'). http://download.eclipse.org/
tools/buckminster/updates-3.5.

» Select features. There are several features available. They are categorized into core and op-
tional. Please note that you are expected to make a choice of what optional categories you need.
Do not select al of them.

231

http://www.eclipse.org/buckminster/downloads.html
http://www.eclipse.org/buckminster/downloads.html

Draft Installation Draft

Warning
O Buckminster’'s support for Subversive and Subclipse are mutually exclusive. Do
NOT install both.

3. Verify. Buckminster isnot highly visibleinthe Eclipse ul, so you may wonder if your installation
was successful. You can naturally try to run one of the examples, but a quick check isto look for

the menu entry File . Open a Component Query...

Installing the Headless Product

The Headless Product application is based on the Eclipse Runtime. This product is intended to be
used when Buckminster’ s functionality iswanted, but without using a graphical user interface— e.g.
from the command line, in automated scripting, etc. The headless application contains only the bare
minimum to get a working headless command line utility. To make it useful, you must install the
features you need into it, and the result can then be shared as necessary.

The packaging and installation is different between Eclipse 3.4 and 3.5. For instructions for Eclipse
3.4 (and earlier), please consult the Buckminster download page.

/f@m Note

The following instructions are for Eclipse 3.5 only.

1. Download thedirector. The (headless) director isacommand line packaging of the p2 director
— aninstaller that is a general purpose installer for software available in p2 repositories. Consult
the Buckminster download page for the current address.

2. Unpack the zip. Unpack the zip file to a location where you want the director. Note that the
director application is also used in many headless use cases — it is not just for installing the head-
less Buckminster, so select alocation that isreachable from your current PATH, or update the PATH
to include the location. (Y ou don't have to set the path if you are just installing the headl ess Buck-
minster as you can do this from the directory where you unzipped the director).

3. Perform theinstall. You perform the installation by running the director with the following
command (type everything as a single line of input):

director -r «repo-Ilocation»

-d «install-fol der»

-p Bucknmi nster

-i org.eclipse. buckni nster.cndline. product

Where the command line option have the following meaning:

-r «repo-|ocation»
Replace «repo-1|ocation» with the URL to the headless Buckminster repository.
Thelocationiscurrently ht t p: / / downl oad. ecl i pse. or g/ t ool s/ buckni nst er/ head-
| ess- 3. 5/, but you should check on the Buckminster download page for the latest infor-
mation. Alternatively, download the entire archived repository as instructed on the download
page, and the use the local URI to the location where you unpacked the repository.

-d «install-fol der»
Replace install-folder with the folder/directory where you want the headless Buckminster in-
stalled.

-p Buckmi nster
Type-p Buckmi nster literally, thisisthe name of the p2 profile.

232

Draft

Installation Draft

-i org.eclipse. buckni nster.cndline. product
Type-i and the entire identity literally, this is a reference to the installable unit you are in-
stalling.

. Install additional features (at least oneisrequired). Theinstalation in the previous step in-

stalled the basic Buckminster bootstrap and command line shell, the only useful thing it can perform
istoinstall additional features. Y ou will probably want support for Java and PDE development, and
some connectors to source repositories. Y ou can use the director as shown in the previous step to
install these features or use the just installed Buckminster (which has a simpler syntax):

buckmi nster install «repository-url»«feature-id»[«version»]

Where «r eposi t ory- ur | » isthe same as in the previous step, and «f eat ur e- i d» is one of the
features listed below. Optionally, a specific version can be installed. Here are the features you can
install:

org. ecl i pse. buckm nster.core. headl ess. feature
The Corefunctionality — thisfeatureisrequired if you want to do anything with Buckminster
except installing additional features.

org. ecl i pse. buckm nster. naven. feature
Maven support. (In case you noticed, there is no specia headless needed for maven, thisisthe
same feature that is used with the user interface).

org. ecl i pse. buckm nster.cvs. headl ess. feature
Headless cv's support.

org. ecl i pse. buckm nst er. pde. headl ess. feature
Headless PDE and JDT support. Required if you are working with Java based components.

If youusethedirectortoinstall, use‘-i «f eat ure-i d». feature. group’ asthep2 Iu identities
for featureshave a‘f eat ur e. gr oup’ suffix appended to the feature identity.

. Install svN support (if required). If you require support for Subversion (SvN), you must in-

stall this in a separate step as the required plugins have a license that is not compatible with
Eclipse EPL, and they can therefore not be distributed directly from the eclipse.org reposi-
tories. Instead, Cloudsmith Inc. has made them available in a repository located at http://
downl oad. cl oudsmi t h. conf buckmi nster/external .

You install either support for subversive or subclipse by issuing the following command (type
everything asasingle line of input):

director -r http://downl oad. cl oudsmi t h. com buckni nst er/ ext er nal
-d «install-fol der»

-p Buckmi nster

-i «svn-adapter-id»

Where the command line option have the following meaning:

-r http://downl oad. ..
Use the literal location htt p: // downl oad. ecl i pse. or g/ t ool s/ buckmi nst er/ head-
| ess- 3. 5/, but you should check on the Buckminster download page for the latest informa-
tion.

-d «install-fol der»
Replace «i nst al | - f ol der » with the folder/directory where you have installed the headless
Buckminster.

-p Bucknmi nster
Type-p Buckni nster literaly, thisisthe name of the p2 profile.

233

Draft Installation Draft

-i «svn-adapter-id»
Type -i and then the identity of either the subclipse or the subversive integration
feature. You should use org. ecli pse. buckmi nster. subclipse for subclipse, and
org. ecl i pse. buckmi nst er. subver si ve for subversive.

N Tip

~ -

Y ou can prepare afile with the Buckminster install commands you want to perform, and
tell theinitial Buckminster to execute thisfile. This saves you work if you areinstalling
the headless Buckminster on different machines. See“ buckminster command” for more
information about using a script.

Connectors

Buckminster can be extended to support many different types of connectors. Here are notes regarding
installation for those that require more than just installing the connector.

Subversion (SVN)

There are different waysto connect to a sSvN — the Buckminster connector distributed from Eclipseis
not enough. Unfortunately, the various svN clients all contain code with licenses that are not allowed
for redistribution from eclipse.org. Cloudsmith Inc. provides these bundles from a special repository,
and you can also get these bundles directly from the the respective publishers.

Depending on which combination of Eclipse plugins and protocols you select, and which platform
you are running on, the instructions are quite different. On Windows it is particularly complicated to
set up access over svn+ssh with use of certificates as windows does not have any support for this out
of the box (whereas Un*x systems do).

There are currently two connectors for sSvN — and you have to make a choice between Subversion
and Subclipse.

Warning
O Do NOT install support for both Subversive and Subclipse in the same environment!

Perforce (P4)

The Perforce (P4) connector is available directly in the repositories at eclipse.org. It can be installed
without having perforce installed, but will not function unless perforceis aso installed on the system.
Y ou need to consult perforce documentation regarding the installation of perforce on your system.

é_r Note

If you have experience with P4 and have information that you think should be included
in this book, please help improve this section.

Configuring Eclipse for XML Editing

Some of the Buckminster artifacts do not have specific graphical editors, and you edit thexmL directly.
To make this easier, you can configure Eclipse to include an XxmL editor and make it understand the
Buckminster xML schemas. This way, you will get validation, content assist, and code completion
while editing. See information in Buckminster xmL Schemas regarding where to find the schemas.

234

Draft Draft

Appendix B. Extending Buckminster

This appendix contains information how to extend Buckminster. THIS APPENDIX IS VERY MUCH
W.I.P... THE IDEA ISNOT TO SHOW HOW TO WRITE THE EXTENSIONS, BUT RATHER SHOW

ALL THE POSSBLE EXTENSONS

Core extension

Version type

A version type isanamed Omni Version format, as described in Appendix C, Omni Version Details.
The named version formats are called a version type in Buckminster.
New formats can easily be included by extending org.eclipse.buckminster.core.
% Extensions
All Extensions laz — Extension Element Details

Define extensions for this plug-in in the following section.

vne filter text id*: Triplet

[#-<= arg.edipse.buckminster.core.gualifierGenerators format®: [n[:n=0;[.n=0;]][d?5=M;]
ﬂ= org.edipse.buckminster.core.readerTypes
E|=.‘n= org.edipse.buckminster. core.versionTypes Remove
Lo |X] OSGi (versionType)
----- |X] string (versionType)
----- |X| Timestamp {versionType) n
W

F-4= org.edipse.buckminster, core. queryResolvers

ﬂ= org.edipse.buckminster, core. componentTypes

=.‘n= org.edipse.buckminster. core.cspecBuilders

ﬂ= org.edipse.buckminster, core.actors LI

oW

RMAP extensions

This section describes extensions that relate to mapping components.

Extending Reader Type

A reader type is the connector to a particular repository technology. The extension point is called
org. eclipse. buckni nster. core. reader Types.

TBD.

Extending Component Type

A component type translates between meta data in some native/external form to the form used in
Buckminster.

TBD.

Extending Version Converter

A version converter translates bi-directionally from internal versions to repository names (such as a
branch or tag name). The mechanism can be extended to cater for more advanced mappings, or if a

235

[}]

Set the properties of "versionType”. Reguired fields are denoted by ™"

Draft Extending Buckminster Draft

new types of repository connector is being added, there may be other mechanisms than branch/tag
to consider.

TBD.

CQUERY Extensions

This section describes extension to the CQUERY and resol ution process.

Custom resolver

Custom resolvers are added through the or g. ecl i pse. buckmi nst er. core. quer yResol vers
extension point. Buckminster provides reference implementations for two resolvers: ‘local’ and

‘rmap’.

236

Draft

Draft

Appendix C. Omni Version Details

Introduction

This appendix describes the Omni Version implementation handling instances of version and version
ranges. The omni version implementation resides in equinox p2, and isalso used in Buckminster. The
omni version was created because of the need to have a version format capable of describing versions
using another versioning scheme than 0sGi (which was the only versioning scheme supported by p2
prior to Eclipse 3.5 and omni version).

Buckminster has always been capable of handling different versioning schemes, but did so (prior to
Eclipse 3.5) using the Eclipse extension mechanism which in practice meant that it was only mean-
ingful to make extensions in the Buckminster code base itself. This because it would not be possible
for someone to parse aversion if the implementation of the versioning scheme was not present.

With the omni version contribution to p2 — which fully describes aformat, a canonical version com-
parable against versions with different formats, aswell as containing the original version string, Buck-
minster can now use p2 for provisioning also for non 0sGi based components.

Background

There are other versioning schemes in wide use that are not compatible with 0sGi version and version
ranges. The problem is both syntactic and semantic.

Many open source projectsdo their versioning in afashion similar to 0sGi but with onevery significant
difference. For two versionsthat are otherwise equal, alack of qualifier signifiesahigher version then
when aqualifier is present — i.e.

The 1.0.0 is the fina release. The qualifier happens to be in alphabetical order here but that’s not
alwaystrue.

MozillaToolkit versioning has many rules and each segment has4 (optiona) slots; nuneri ¢, st ri ng,
nuneri c, and st ri ng where each slot has a default value set to 0 or max string respectively for the
numeric and string slots if a particular slot is missing).

1.2a3b. // yes, atrailing . is allowed and neans .0
1.a2

Mozilla aso allows bumping the version (using an older Mozilla scheme)

1. 0+

Thismeans 1. 1pr e in Mozilla

Example of syntax issue

Here are some examples of versions used in Red Had Fedora distributions.

KDE Admin version 7:4.0.3-3.fc9
Conpat |ibstdc version 33-3.2.3-63
Aut oneke 1. 4p6-15.fc7

And here are some Mozillatoolkit versions:

1.0+

237

Draft Omni Version Details Draft

1.-1 // negative integer version nunbers are allowed, the '-' is not a deliniter
1. 2a3b. a

These are not syntactically compatible with 0SGi versions.

Implementation

The current implementation in p2 uses the omni versions throughout. This means that p2 can create
aplan including units that have non 0sGi versioning scheme.

One implementation

Equinox p2 has one implementation of Ver si on and one of Ver si onRange that are capable of cap-
turing the semantics of various version formats. The advantages over previous proposed implementa-
tions (like the implementation in Buckminster prior to Eclipse 3.5) are that there is no need to dynam-
ically plugin new implementations, and new formats can be more easily be introduced.

One canonical format

The omni version and omni version range are “universal” — all instances of version should be com-
parable against each other with afully defined (non ambiguous) ordering. The APl is (astoday) based
on asingle string fully describing a version or version range.

The canonical string format is called “raw” and it is explained in more detail below. To ensure back-
ward compatibility, as well as providing ease of usein an 0sGi environment, version strings that are
not prefixed with the omni version keyword r aw have the same format and semantics as the current
0sGi version format.

Ad an example the following two version strings are both valid input, and express exactly the same
version:

1.0.0.r1234
raw. 1. 0.0.'r1234

Version

The omni version implementation uses an vector to store version-segments in order of descend-
ing significance. A segment is an instance of I nt eger, String, Conpar abl e[], Maxl nt eger,
MaxSt ri ng, or M n.

Comparison

Comparison is done by iterating over segments from 0 to n.

* If segmentsare of different typetherule Max! nt eger >1 nt eger >Conpar abl e[] >MaxStri ng
> St ri ng isused — the comparison isdone and the version with the greater segment typeisreported
as greater.

* If segments are of equal type — they are compared — if one is greater the comparison is done and
the version with the greater segment is reported as greater.

 All versions are by default padded with - M (absolute min segment) to “infinity”. A version may
have an explicit pad element which is used instead of the default.

A shorter version is compared to alonger by comparing the extra segments in the longer version
against the shorter version’s pad segment.

* If al segments are equal up to end of the longest segment array, the pad segments are compared,
and the version with the greater pad segment is reported as greater.

238

Draft

Omni Version Details Draft

* If pad segments are also equal the two versions are reported as equal.

» Asaconsequence of not including delimitersin the canonical format; two versionsare equal if they
only differ on delimiters.

Asan example— hereisacomparison of versions (expressed in the raw format introduced further on
inthetext — ‘p’ meansthat a pad element follows, and ‘- M the absolute min segment):

1p-M < 1.0.0 < 1.0.0p0 == 1p0 < 1.1 < 1.1.1 < 1pl == 1.1pl < 1pM

Raw and Original Version String

Omni

The original version can be kept when the raw version format is used, but it is not an absolute require-
ment as simple raw based forms such as raw:1.2.3.4.5 could certainly be used directly by humans.
Someone (who for some reason does not want to use 0sSGi or some other known version scheme),
could elect to use the raw format as their native format.

A version string with raw and original is written on the form:

"raw ':' rawformat-string '/' format(...):original-format-string

Thep2 Engine completely ignoresthe original part — only theraw part isused, and the original format
isonly used for human consumption.

Example using a Mozillaversion string (as it has the most complex format encountered to date)l.
raw. <1.mO0.np.<20.'a'.3."'b' >p<0. m 0. >

[f or mat ((<n=0; ?s=m ?n=0; ?s=m ?>(. <n=0; ?s=m ?n=0; ?s=m ?>) *) =p<0. m 0. n»;)
:1.20a3b. a

An original version string can be included with unknown format:

raw. <1.m 0. np.<20.'a'.3.'b' >p<0. m 0. n»/ : 1. 20a3b. a

See below for full explanation of the raw format.

Version Range

The version range holds two version instances (lower and upper bound). A version range string uses
the delimiters[], () and, . If these characters are used in the lower or upper bound version strings,
these occurrences must be escaped with \ and occurrences of \ must also be escaped.

Theversionrangeiseither an 0sGi version range (if raw prefix isnot used), or araw range. The format
of theraw rangeis:

"raw "' ('[" | "(") rawformat-string ',' rawformat-string (']'" | ')')
The raw-range can be followed by the original range:
raw-range '/' 'format' '(' format-string ')’
('"["] "(") original-format-string '
original -format-string (']'" | '")')
An original version range can be included with unknown format:
raw. [<1.m 0. np.<20. m 0. nPp<0. m 0. nrp,

<1.mO0.np.<20.'a"'.3."'b"' >p<0. m 0. nP]
/:[1.20, 1. 20a3b. a]

Thep2 Engine completely ignoresthe original part — only theraw part isused, and the original format
isonly used for human consumption.

See below for full explanation of the raw format.

Yine breaks are inserted for readability

239

Draft Omni Version Details Draft

Other range formats

Note that some version schemes have range concepts where the notion of inclusive or exclusive does
not exist, and instead use symbolic markers such as “next larger”, “next smaller”, or use wild-cards
to define ranges. In these cases, the trandator of the original version string must use discrete versions
and the inclusive/exclusive notation to define the same range.

Some range specifications allows the specification of union, or exclusion of certain versions. This
is not currently supported by p2. If introduced it could be expressed as a series of ranges where
a” before a range negates it. Example [0, 1] [3, 10] ~[3. 1, 3. 7) which would be equivaent to
[0,10]7(1,3)"[3.1,3.7)

Format Specification

There are two basic formats default 0sGi string format, and raw canonical string format. There are
also two corresponding range formats OSGi-version-range, and raw-version-range.

The raw format is a string representation of the internally used format — it consists of the keyword
“raw", followed by alist of entries separated by period. An entry can be numerical, quoted alphanu-
merical, or a sub canonical list on the same format. A canonical version (and sub canonical version
arrays) can be padded to infinity with a special padding element. Special entries express the notion
of ‘“max integer’ and ‘max string’.

The 0sGi string format is the well known format in current use.

Theraw format in BNF:

digit: [0-9];

letter: [a-zA-Z];

nurmeric: digit+

al pha: letter+

al pha-nuneric: [0-9a-zA-Z]+
delimter: [~0-9a-zA-Z]
character:

characters . +;

/1 A sequence of charactes quoted with " or ', where ' can
/Il be used in a " quoted string and vice versa
quoted-string: ("[~"]1**)[(" [~]*"):

/'l a sequence of any characters but
/[l with'," "]', ")" and '\' escaped with "\’
range-safe-string: TBD;
sg: ['];
dg: ["];
ver si on:
| osgi-version

| rawversion

0sgi -version

| nureric

| numeric '.' numeric

| numeric '.' nunmeric '.' nuneric

| numeric '.' numeric '.' numeric '.' .+

raw version
| "raw ':' raw segnents optional-original-version

optional -origi nal -version

| "/' original-version

ver si on-range
| osgi-version-range

240

Draft Omni Version Details Draft
| raw- version-range
rse (L)
ret (10 1))
0sgi - versi on-range:
| rs osgi-version ',' osgi-version re

raw ver si on-range:
| "raw ':' rs rawsegnments ',' raw segnents re
optional -origi nal -range

optional -ori gi nal -range:

| */" original-range

raw segnents:
| raw el ements optional - pad- el enent

raw el ement s:
| raw el ements
| raw el ement

raw el ement

raw el enent :
| nureric
| quoted-strings // strings are concatenated
| '"<'" raw el enents optional - pad-el erent ' >'
/1 subvector of elenents
| 'm /1 synbolic 'maxs' == max string
| "M /1 synbolic 'absolute max'
/] i.e. max > MAX_INT > naxs
| "-M /] synbolic 'absolute mn'
/Il i.e. -M< enpty string < array < int

optional - pad- el enent :
I

| pad-el ement

quot ed- stri ngs:
| quoted-strings quoted-string
| quoted-string

pad- el enent :
| '"p' raw el enent

ori gi nal -version:
| optional-format-definition ':' .*

ori gi nal -range:
| optional-fornat-definition ':"' rs range-safe-string

,' range-safe-string re

optional -format-definition:

| fornat-definition

format-definition:
| "format' ' (' pattern ')’

/1 Definition of parsing patterns
/1
pattern:

| pattern pattern-el enent

| pattern-el enent

pattern-el enent:
| pel em optional - processi ng-rul es optional -pattern-range
| '"[' pattern ']' processing-rules

opti onal - processi ng-rul es:
| optional- processing-rules '=" processing-rule ';’'

241

Draft

Omni Version Details

Draft

| "= processing-rule’

optional - pattern-range:
| repeat-range

pel em
['rt p td | 'p | @ | 'sT | 'S] 'n" | "N
| "(' pattern ')’
| '"<' pattern '>'
| delimter
repeat - r ange:
|t e
| "{" exact '}’
| "{" at-least '," "}’
| '{" at-least ',' at-nost '}’

exact: at-least: at-nost: nuneric;
processi ng-rul e:

raw el ement
pad- el ement

|

['" char-list "]'

[" '~ char-list ']’
"{' exact '}' /1 for character count
"{' at-least ',' '}’

{* at-least ',' at-nost '}’

char-list: TBD; // Sequence of any character but
Il with '~ "]" and '"\' escaped with
delimter:
| ['#$%&/ =", .;:-_1 I/ Any non-al pha-num t hat
/1 has no special neaning
| quoted-string
| "\' . /] any escaped character

Examples:

* 0OSGi1.0.0.r1234 isexpressedasraw. 1. 0. 0. ' r 1234
e apacheftriplet style 1. 2. 3isexpressedasraw. 1. 2. 3. m
* Mozillastyle 1a. 2a3c. can be expressed as

raw.<l1.'a'.0.np.<2.'a'.3.'c'>p<0. m 0. n»

ny

Mozilla'sformat is complex — see external links at the end of this appendix, for more information.

Format Pattern Explanation

Here are explanations for the rules in format(pattern).

rule description

r raw — matches one raw-element as specified by the r aw format. The r rule
does not match a pad element — use p for this.

'characters' quoted delimiter — matches one or several characters — the matched result is
not included in the resulting canonical vector (i.e. it is not a segment). A\\ is
needed to include asingle\ . The sequence of chars acts as one delimiter.

non- al phanum literal delimiter — matches any non alpha-numerical character (including

char act er space) — the matched result is not included in the canonical vector (i.e. it isnot

242

Draft

Omni Version Details Draft

rule

description

asegment). A non alphanumerical character acts asadelimiter. Special charac-
ters must be escaped when wanted as delimiters.

auto — a sequence of digits creates anumeric segment, a sequence of al phabet-
ical characters creates a string segment. Segments are delimited by any charac-
ter not having the same character class asthe first character in the sequence, or
by the following delimiter. A numerical sequence ignores leading zeros.

delimiter — matches any non apha-numeric character. The matched result is
not included in the resulting canonical vector (i.e. it is not a segment).

letter-string — a string group matching only apha characters (i.e. “letters’).
Useprocessing rules=[]; or =[*] to definethe set of allowed characters. Itis
possible to allow inclusion of delimiter chars, but not inclusion of digits.

string — a string group matching any group of characters. Use processing rules
=[]; or =[~] to define the set of allowed characters. Care must be taken to
specify exclusion of adelimiter if elements are to follow the S.

anumeric (integer) group with value >= 0. Leading zeros are ignored.

apossibly negative value numeric (integer) group. Leading zeros are ignored.

parses an explicit pad-element in the input string as defined by the raw format.
To define an implicit pad as part of the pattern use the processing instruction
=p...;. A pad element can only be last in the overal version string, or last
inasub array.

smart quoted string — matches a quoted a phanumeric string where the quote
is determined by the first character of the string segment. The quote must be
a non aphanumeric character, and the string must be delimited by the same
character except brackets and parenthesises (i.e. () ,{},[],<>) which are han-
dled as pairs, thus g matches <andr ea- dor i a> and produces a single string
segment with the text andr ea- dor i a. A non-quoted sequence of characters
are not matched by g.

0

indicates a group

< >

array — indicates a group, where the resulting elements of the group is placed
in an array, and the array is one resulting element in the enclosing result

?

zero to one occurrence of the preceding rule

*

zero to many occurrences of the preceding rule

+

one to many occurrences of the preceding rule

{n}

exactly n occurrences of the preceding rule

{n.}

at least n occurrences of the preceding rule

{n, m}

at least n occurrences of the preceding rule, but not more than m times

[]

short hand notation for an optional group. Isequivalent to () ?

=processing;

an additional processing ruleisapplied to the preceding rule. The pr ocessi ng
part can be:

* araw-element - use this raw-element (as defined by the raw format) as the
default valueif input is missing. The default value does not have to be of the
same type (e.g. s=123; ? produces an integer segment of value 123 if the
optiona s is not matched.

e I —if input is present do not turn it into a segment (i.e. ignore what was
matched)

e [list of chars] —when appliedtoad definesthe set of delimiters. The
characters], ~, and\ must be escaped with\ to be used in the list of chars.

243

Draft

Omni Version Details Draft

rule description

and Exampled=[+- /] ; Oneor severa ranges of characterssuch asa- z can
also be used. Exampled=[a- zA- Z0-9_-1;

e [Mist of chars] — when applied to ad defines the set of delimiters
to be al non alpha numeric except the listed characters. The characters] , ,
and\ must be escaped with \ to be used in thelist of chars. One or severa
ranges of characters such asa- z can also be used. Example d=[~$] ;

e praw el ement — defines* padding to infinity with specified raw-element”
when applied to an array, or a group enclosing the entire format. Example
format ((n.s)=pM) The pad processing rule is only applied to a parsed
array, not to a default value for an array. If padding is wanted in the default
array value, it can be expressed explicitly in the default value.

* {n} {n,} {n,n} character ranges — with the same meaning as the rules
with the same syntax, but limits the range in characters matched in the pre-
cedings, S, n, N, g, or a rules. For q the quotes does not count.

\ escape removes the special meaning of acharacter and must be used if aspecial
character iswanted asadelimiter. A\ \ isneededtoincludeasingle\ . Escaping
anon special character is superfluous but allowed.

Additional rules:

* if arule produces anull segment, it is not placed in the result vector

eg.format (ndddn): 10-/-12 - raw 10. 12

» Processing (i.e. default values) applied to agroup has higher precedence than individual processing

inside the group if the entire group was not successfully matched.

e Parsing is greedy — format(n(.n)*(.s)*) will interpret 1.2.3.hello as

raw. 1.2.3.'hello' (as opposed to being reluctant which would produce
raw. 1.'2'.'3"." hello")

» When combining N with ={. . .}; and the input has a negative number, the ‘-’ character is not

included in the count — f or mat (N{ 3} N{ 2}) : - 1234 resultsinraw: - 123. 4

* When combining n or N with ={. ..} and input has leading zeros — these are included in the

character count.

» Anempty version stringsis always considered to be an error.

» A format that produces no segments is always considered to be an error.
Note about white space in the raw format:
 white space is accepted inside quoted strings—i.e. 1. " a string' isallowed, butnot1. 2
 white space is accepted between version range delimiters and version strings
ie[1.0, 2.0] isalowed.

Note about timestamps Versions based on a timestamp should use s or n and ensure comparability
by using afixed number of characters when choosing s format.

Examples of Version Formats

Here are examples of various version formats expressed as using the format pattern notation.

244

Draft

Omni Version Details

Draft

type name

pattern

comment

oSy

n[.n=0;[.n=0;[.S=[a-zA-Z0-9_-];]]]

Example: the following are equivalent:

 format(n[.n=0;[.n=0;[.S=[a-ZA-
Z0-9 _-1;]1D):1.0.0.r1234

e raw:1.0.0.r1234'
e 0sgi:1.0.0.r1234

* 1.0.0.r1234

triplet

n[.n=0;[.n=0;[.S=m;]]]

A variation on 0sGi, with the same syn-
tax, but where the alack of qualifier >
any qualifier, and thequalifier may con-
tain any character. Thefollowing areall
equivalent;

 format(n[.n=0;[.n=0;
[.S=m;]]1]):1.0.0

¢ raw:1.0.0.M

* triplet:1.0.0

jsr277

n(.n=0;){ 0,3} [-S=m;]

As defined by JsrR 277 — but is pro-
visional and subject to change as it is
expected that compatibility with OsGi
will be solved (they are now incompat-
ible because of the fourth numeric field
with default value 0). The jsr277 for-
mat is similar to triplet, but with 4 nu-
meric segmentsand a‘-’ separating the
qualifier to allow input of “1-qualifier”
tomean “1.0.0.0-qualifier”. Asintriplet
the a lack of qualifier > any qualifier.
Thefollowing are al equivalent:

o format(n(.n=0;){ 1,3} [-S=m;]):1.0.0
e raw:1.0.0.0.M

e jsr277:1.0.0

tripletSnapshot

n[.n=0;[.n=0;[-n=M;.S=m;]]]

Format used when maven transforms
versions like 1.2.3-SNAPSHOT in-
to 1.2.3-<buildnumber>.<timestamp>
ensuring that it is compatible
with triplet format if missing
<buildnumber>.<timestamp> at theend
(format produces max, max-string if
they are missing).

Example: the following are equivalent:

 format(n[.n=0;[.n=0;[-
n=M;.S=m;]]]):1.2.3-45.20081213:12

* raw:1.2.3.45.'20081213:1233'

245

P33

Draft

Omni Version Details Draft

type name pattern comment
* tripletSnap-
shot:1.2.3-45.20081213:1233
rpm <[n:]a(d?a)*>[-n[dS=!;]] RPM format matches

[EPOCH:]VERSION-STRING]-
PACKAGE-VERSION], where epoch
is optional and numeric, version-string
isauto matched to arbitrary depth >=1,
followed by a package-version, which
consists of a build number separated
by any separator from trailing platform
specification, or the string ‘sr¢’ to indi-
cate that the package is a source pack-
age. This format allows the platform
and src part to be included in the ver-
sionstring, but if presentitisnot usedin
the comparisons. The platform type vs
source is expected to be encoded else-
where in such an |U. Everything ex-
cept thebuild-numberisplacedinanar-
ray as build number isonly compared if
thereisatie.

An example of equivalent expressions:

« format(<[n:]a(d?a)*>[-
n[dS=!;]]):33:1.2.3a-23/i386

e raw:<33.1.2.3.'d>.23

mozilla (<n=0;?s=m;?n=0;?s=m;?>(.<n=0;? |Mozillaversionsare somewhat compli-
s=m;?n=0;?7s=m;?>)*)=p<0.m.0.m>; |cated, it consistsof 1 or more parts sep-
arated by period. Each part consists of
4 optiond ‘fragments' (numeric, string,
numeric,string), where numeric frag-
ments are 0 if missing, and string frag-
ments are MAX-STRING if missing.
The versions use padding so that 1 ==
1.0==1.0.0==1.0.0.0 etc.

string S asingle string

auto a(d?a)* serveslikea“catch all”.

Tooling Support

The omni version implementation is not designed to be extended. An earlier ideawasthat it should be
possible to define named aliases for common formats and that these formats should be parseable by
the omni version parser. The reasons for introducing alias was to make it possible for users to enter
something liket ri pl et : 1. 0. 0 instead of entering the more complicated format. This did however
raise alot of questions: Who can define an alias, what if the definition of the aliasis changed, where
arethe dlias definitions found. Isit possible to work at al with aversion that isusing only an aias—
what if | want to modify arange and do not have access to the alias?

Instead, the alias handling isatooling concern. Tooling should keep aregistry of known formats. When
aversion is to be presented, the format string is “reverse looked up” in the registry — and the aias
name can be presented instead of the actual format. This way, the version is aways self describing.
Thereisstill the need to get “well known formats’ and make them available in order to make it easier
to use non OSGi versions in publishing tools — but there is no absolute requirement to support this

246

Draft Omni Version Details Draft

in all publishing tools (some may even operate in a domain where version format is implied by the
domain) — and thereis no “breakage” because an aliasis missing.

Tooling support can be as simple asjust having preferences where formats are associated with names
— the user can enter new formats and aliases. Some import mechanism is probably also nice to have.
Further ideas could be that aliases can be published as 1u’sand installed (i.e install a preference).

Existing Tooling should naturally use the new omni version implementation to parse strings — thus
enabling a user to enter aversion in raw or format() form. An implementation can choose to present
the full version string (i.e. Ver si on. t oSt ri ng()), or only the original version.

More examples using ‘format’

A version range with format equivalent to OSGi

format(n[.n=0;[.n=0;[.S=[a-zA-Z0-9_-]1;]1])
:[1.0.0.r12345, 2.0.0]

At least one string, and max 5 strings

format (S=[~.][.S=[~.]:[.S=[~.][.S=[~.][.s=[".1]11])
:vival di.opus. spring. bar5

format (S=[~.](.S=[".1){0, 4}):vivaldi.opus.spring.bar5
=> 'vivaldi'."'opus'."'spring' ."'bar5

At least one alpha or numerical with auto format and delimiter

format (a(d?a)*):vival di:opus23-spring. bar5
=> 'vivaldi'."'opus'.23."'spring' ."bar'.5

Thetexts ‘opus and ‘bar’ should not be included:

format (s[.' opus'n[." ' bar'n]]):vivaldi.opus23. bar8
=> "vivaldi'.23.8

Thefirst string segment should be ignored — it is a marketing name:
format(s=!;.n(.n)*):vivaldi.1.5.3

Classic scCIRCs style:

format(n(.n)*):1.1.1.1.1.1.1.4.5.6.7.8

Max depth 8 of numerical segments (limited classic SCCS/RCS type versions):

format(n(.n){0,7}):1.1.1.1.1.1.1. 4

Numeric to optional depth 8, wheremissing input is set to 0, followed by optional string where ‘ empty
> any’

format (n(d?n=0;){0,7}[a=M]):1.1.1.4: beta
=>1.1.1.4.0.0.0.0."'beta

format (n(d?n=0;){0,7}[a=M]):1.1.1.4
=>1.1.1.4.0.0.0.0. M

Single string range

format (S):[andrea doria,titanic]

Range examples

Examples:

e raw [1.2.3."'r1234',2.0.0]

247

Draft

Omni Version Details Draft

FAQ

e [1.2.3.r1234,2.0.0]
* format (a+):[nmonkey. fred. at e. 5. bananas, nonkey. fred. at e. 10. or anges]

¢ [1.0.0,2.0.0] equa toosgi:[1.0.0,2.0.0]

format (S):[andrea doria,titanic]

e rpm[7:4.0.3-3.fc9, 8:1] - an example KDE Adminversion7: 4. 0. 3-3.fc9t08: 1

triplet:[1.0.0.RC1,1.0.0]

I sinternationalization supported? Alphanumerical segments use vanilla string comparison asinter-
nationalization (lexical ordering/collation) would produce different results for different users.

Areusersjust using Eclipse and 0sGi bundles affected? No, users that only deal within the 0sGi
domain can continue to use version strings like before, there is no need to specify version formats.

How does a user of something know which version type to use? This seems very complicated...
To use some non-0sGi component with p2, that component must have been made available in a p2
repository. When it was made available, the publisher must have made it available with a specified
version format. The publisher must understand the component' s version semantics. A consumer that
only wants to install the component does not really need to understand the format, and the original
version string is probably sufficient. In scenarios where the consumer needs to know more — what
to present is domain specific — some tool could show all non 0SGi version strings as “non-0sGi” or
“formatted” with drill down into the actual pattern (or if there is an alias registry available, it could
reverse lookup the format).

Will open (0sGi) ranges produce lots of false positives? Very unlikely. One decision to minimize
the risk was to specify that integer segments are considered to be later than array and string segments.
(We also felt that version segments specified with integers are more precise). Note that to be included
in the range, the required capability would still need to be in a matching name space, and have a
matching name. To introduce a false positive, the publisher of the false positive would need to @)
publish something already known to others (namespace and name) b) misinterpret how its versioning
scheme works, and publishing it with a format of n.n.n.n (or n.n.n.s.<something>), c) having first
learned how to actually specify such a format and how to publish it to a p2 repository and d) then
persuaded users to use the repository.

What happens when a capability is available with several versioning schemes? A typical case
would be somejava packagethat isversioned at the source using tripl et notation, and the same package
is also made available using 0sGi notation (which btw. is a mistake).

As an example, the following capabilities are found:

» org.demo.shipstriplet:2.0.0

 org.demo.shipstriplet:2.0.0.RC1

* org.demo.ships 0sgi:2.0.0

* org.demo.ships 0sgi:2.0.0.RC1

(Reminder: in triplet notation 2.0.0.RC1 is older than 2.0.0).

The raw versions will then look like this:

* 2.0.0.m

248

Draft

Omni Version Details Draft

e 2.0.0.' RCI"
© 2.0.0
e 2.0.0."'RCY

And the newest is 2.0.0.m (which is correct for both 0sGi, and triplet). When specifying arange, the
outcome may depend on if the range is specified with osgi or triplet notation.

e 0s0i:[1.0.0,2.0.0] == raw:[1.0.0, 2.0.0] => matches the 0sgi:2.0.0 version only

e triplet:[1.0.0,2.0.0] == raw:[1.0.0.m,2.0.0.m] => matches all the versions, and picks 2.0.0.m as it
isthe latest.

i.e. result is correct (assuming the bits are identical as different artifacts would be picked)

Now look at the lower boundary, and assume that the following versions are the (only) available:
» org.demo.shipstriplet: 1.0.0 == raw: 1.0.0.m

» org.demo.shipstriplet: 1.0.0.RC1 == raw:1.0.0.'RC1'

* org.demo.shipsosgi: 1.0.0 == raw:1.0.0

* org.demo.ships 0sgi:1.0.0.RC1 == raw:1.0.0.'RC1'

When specifying ranges:

e 0sgi:[1.0.0,2.0.0] == raw:[1.0.0, 2.0.0] => matches all the version, and picks 1.0.0.maxs as thisis
the newest

e triplet:;[1.0.0,2.0.0] == raw:[1.0.0.m,2.0.0.m] results in 1.0.0.m as it is the only available version
that matches.

i.e. the result is correct and here the exact same version is picked.

The “worst osai/triplet crime” that can be committed is publishing an unqualified triplet version as
an osGi version (if the same version is not also available as atriplet) as this would make that version
older than what it is even when queried using a triplet range.

What if the publisher of acomponent changesver sioning scheme— what happenstoranges? The
order among theversionswill be correct aslong asthe versionsare published using the correct notation.
The only implication is that users must understand that a query for triplet:1.2.3 means raw:1.2.3.m
— eg. 0sgi:[1.0.0,2.0.0] != triplet:[1.0.0,2.0.0] (0sGi upper range of 2.0.0 would not match triplet
published 2.0.0, and triplet lower range of 1.0.0 would not match 0sGi published 1.0.0).

Why not use regexp instead of the special pattern format? This was first considered, and would
certainly work if the pattern notation was augmented with processing instructions, or if the regexp is
specified as a substitution that produces the raw format. Such specifications would typically be much
longer and more difficult for humans to read than the proposed format, except possibly for regexp
experts :). Another immediate problem is that regexp breaks the current APl requirement. It is not
included in execution environment CDC- 1. 1/ Foundat i on- 1. 1 required by p2.

Pattern parsing looks like it could have performance implications — what ar e the expectations
here?A mechanism similar to regular expressionsis used — when aformat isfirst seenit is compiled
to an internal structure. The compiled structureis cached and reused for all subseguent occurrences of
the same format. Once parsed, all comparisons are made using the raw vector, which is comparable
in speed to the current implementation (in many casesit is faster).

Also note that the Engine does not have to parse and apply the format to the original string unless code
explicitly asksfor it, and thisis not the normal case during provisioning.

249

Draft

Omni Version Details Draft

Why not just let the publisher deal with transforming the version into canonical form? The
proposal alows this — the publisher is not required to make the format available. We think this is
reasonable in domains where humans are not involved in the authoring (or the consumption).

There are several reasons why it is a good idea to include the origina version string as well as the
format:

« the original version strings needs to be kept as users would probably not understand the canonical
representation in many cases.

* if the transformation pattern is not available a user would not be able to create a request without
hand coding the canonical form

» making the transformation logic used by one publisher available to others would mean that all
publishers must have extensions that allow plugging in such logic, and the plugins must be made
available

Would it be possible to use the 0sGi implementation of version as the canonical form? The long
answer is. To be general, the encoding would need to be made in the qualifier string part of the OSGi
version. An upper length for segments must be imposed, numerical sections must be left padded with
“0" tothat length, and string segments must be right padded with space (el se string segment parts may
overlap integer segments parts). The selected segment length would need to be big enough to allow
the longest anticipated string segment. A fixed length string representation of MAX must be invented.
A different implementation would still be needed to be able to keep the original version strings. The
short answer is: no (and thisis the reason for implementing the omni version in the first place).

Why not use an escapein string segmentsto be able to have strings with a mix of quotes? There
are several reasons:

* thiswould mean that the version string would need to be preprocessed as it would not have \ em-
bedded from the start

« al version strings that use \ as a delimiter would need to be pre-processed to escape the \

* to date, we [...the authors of this proposal] have not seen a version format that requires a mix of
quotes

* Intheunlikely event that such strings are present it is possible to concatenate several stringsin the
raw format.

 parsing performance is affected

Which format should | use? If you have the opportunity to select a versioning scheme — stick with
OSGi.

Resources

» mozillatoolkit version format [https://developer.mozilla.org/En/Toolkit_version_format]
* rpm version comparison [http://linux.duke.edu/~mstenner/docs/rpm-version-cmp]

* sun spec version format [http://java.sun.com/j2se/1.5.0/docs/gui de/depl oyment/depl oyment-guide/
version-format.html]

250

https://developer.mozilla.org/En/Toolkit_version_format
https://developer.mozilla.org/En/Toolkit_version_format
http://linux.duke.edu/~mstenner/docs/rpm-version-cmp
http://linux.duke.edu/~mstenner/docs/rpm-version-cmp
http://java.sun.com/j2se/1.5.0/docs/guide/deployment/deployment-guide/version-format.html
http://java.sun.com/j2se/1.5.0/docs/guide/deployment/deployment-guide/version-format.html
http://java.sun.com/j2se/1.5.0/docs/guide/deployment/deployment-guide/version-format.html

Draft Draft

Appendix D. Bookmarks and OPML

Bookmarks

A note about bookmarks

Buckminster supports including bookmarks containing information about web pages and RSS
feeds in the component meta data since Eclipse 3.4. The mechanism is based on placing a spe-
cial buckmi nst er . opni fileinside acomponent. Although still supported, our current recom-
mendation is to only use this mechanism in components devised for building and publishing
purposes.

Background. Thereisusually alot of additional “project” information around a component, and
some early attempts were made to create a well defined model. We soon realized that “additional
interesting information” was difficult to capture with full semantics — what first looked as a simple
exercise, «Let’s see, there is usually a wiki, and a bug issue tracking system, and a home page, and
release information, and news, and..., and... » — the list just got longer and longer, then got turned
around to «Suppose we did create a model with full semantics — what is Buckminster actually sup-
posed to do with it? It is after all intended for human consumption.»

We still wanted to make it possible to share content that relates to a component, such as a links to
wiki, Bugzilla, and documentation, to Rss feeds like afeed with information about new versions, open
and closed issues in Bugzilla, examples feed, a “checkin feed”, or a feed with the latest available
plugins, etc., but we wanted amore relaxed model, and dropped the semantic requirement, leaving the
semantics of the information to the human users.

We selected the oPMmL 2.0 XML definition for Outline Processing — essentially describing a bookmark
structure of links and feeds — because of its simplicity and that it is directly supported in some RSS
readers.

This means that a component type extension automatically can generate meta data from components
that have extra information for a community of users, and make this available in the form of opPmL.
Buckminster recognizes that any component can have an opmL file embedded in the component (by
default it is called buckmi nst er. opm and placed in the root of the component).

o Warning — Do not use bookmarks in regular components

After having created this solution and started using it, we have found issues with its
use, and now recommend that bookmarks should not be used inside regular components.
The reasons for this are that it is hard to maintain; if there is a need to update the book-
marks for a published component, you need to go back to the source and create a new
version, and bookmarks are typically authored late, and are typically not authored by
the same peopl e that devel oped the components. Some organizations al so have problems
with external links as strict security policies may prevent users within an organization
to visit unauthorized sites — the embedding of feeds and bookmarks becomes a prob-
lem as these have to be filtered out. There is absolutely no harm however in including
bookmarks in components used specifically for building (a component where you keep
RMAPS, CQUERYS €tc.) as an information sharing mechanism.

Future. The Buckminster project’sintention isto create a more flexible mechanism where anyone
can associate bookmarks with components but using a less intrusive mechanism.

How bookmarks are presented. Buckminster includes two views that makes use of the oPML
feature; the Component Explorerthat shows all components known to Buckminster, and a Component
Outline that follows the current selection showing the related component information. Both views

251

Draft Bookmarks and OPM L Draft

present the oPmML bookmark information and provides navigation to the links and feeds. Thereisaso
aBuckminster extension point that allows Buckminster to be integrated with a RSS reader.

Hereisascreenshot of the Component Outline, (which al so shows an integration between Buckminster
and the RSS Owl Reader).

o= Outline [(-) Compenent Outl £3 > — O =0

Q,éh = | fle.

¥ i this.is.great : osgi.bundle
v @ Component Specification (CSpec)
¥ (= Dependencies
@ org.eclipse.ui : osgi.bundle
@ org.eclipse.core.runtime :
¥ [= Component Information
b [= A Subfolder
Wired News

& E) -
Nsz;r Open Feed in RSS Owl

Yaht View feed in external browser...
@ View content in internal browser...
@ View content in external browser...

Export Component Info as OPML File
F

o
Y
k4

=
| -

Authoring oPML

Warning
O Before adding bookmarks to a regular component, please see the previous section re-
garding recommendations.

It is easy to include Rss feeds and links in your components — all you have to do is to place a
buckmi nst er. opm fileintheroot of your component.

The opmL fileitself has avery simple XML syntax. Y ou start of with the standard declaration that the
fileisan xMmL file, and then declaring that you are using OPML 2.0.

<?xm version="1.0" encodi ng="1S0O 8859-1"?>
<opml version="2.0">

Thisis followed by a head declaration where some information about the content of the opmL file
iskept.

<head>
<titl e>Conmponent information for org.deno. exanpl eConponent</title>
<dat eCr eat ed>Mon, 14 Apr 2008 14:18:51 GMUI</dat eCr eat ed>
<owner Name>Your nane, or nane of project</owner Nane>
<owner Enai | >cont act . us@onewher e. conx/ owner Enai | >
</ head>

And after the head comes the body part that consists of a sequence of outline elements — they can
be nested if you want to use “subfolders’.

252

Draft

Bookmarks and OPM L Draft

<body>
<l-- outline elenents --!>
</ body>

A regular link (non feed) is expressed in an outline element like this:

<outline text="d oudsmith"
description="Cloudsnith's site"
url ="http://ww.cloudsmith. cont
| anguage="unknown"
title="d oudsnith"
type="1i nk"

/>

And afeedisjust assimple:

<outline

text="My Feed"

description="This is ny feed"

htm Url ="http://ww. somewhere. or g"

| anguage="unknown"

title="M Exanpl e Feed"

type="rss"

ver si on="RSS2"

xm Url ="http://feeds. sonmewhere. or g/ exanpl ef eed"
/>

In both of the above examples — the ‘t ext ’ attribute is the label typically used in the RSS reader’s
bookmarks.

/ém Note

Some oPML viewers use theti t | e instead, and the reader may or may not show the
descri ption.

Regular links (t ype="11i nk") should use the ur | attribute for the link, and a feed (t ype="rss")
should usethexm Ur | attribute for the feed, but also add a link to a human readable web page in the
ht ml Ur | attribute, and this is often a link to the page where it is possible to subscribe to the feed,
or read its content online.

In the feed example above, the feed typeisset to ‘rss’ — and the version is set to ‘RSS2’. A feed
should always have the type set to r ss (including atom feeds, but for atom feeds, the oPmL specifi-
cation is vague. In practice, a RSS reader will figure things out on it’s own, and a version of ‘at ont
works just fine. The feed type and version are mainly indication for a processor of the opvL itself, a
feed reader will look at the actual feed to determine its type anyway.

Y ou can read more about the oPML 2.0 standard at http://www.opml.org/spec2.

And then finally, a subfolder is very simple to create;

<outline text="A Subfol der">
<outline />
<outline />
</outline>

Even if the creation of a component’s oPML is done via manual XML editing, we hope the examples
above show that it isreally quite easy.

253

http://www.opml.org/spec2

Draft Draft

Colophon

How to print this book. This book was produced by using the following specifications and tools:
* DocBook 4.5 schema

* Serna 4.l free— for editing

» Apache Fop 0.95 — for producing PDF output

» Doc Book XsLT style sheets 1.75.1

Parameter settings are required to set the font size for monospaced verbatim areas as code examples otherwise
would be truncated. A size of 8pt isrequired.

Parameters also needs to be set to produce PDF “bookmarks’ (i.e. a PDF TOC). This is done on the command line
asadirectivetoxsl t proc.

Tools used. This book was authored by using the following tools:
» Serna 4.1 free— for DocBook editing

* InkScape 0.46 — for vector graphics

» LineForm 1.5 — for vector graphics

 graphviz 2.24 — for graph generation

254

	Eclipse Buckminster
	Table of Contents
	Preface
	Why use Buckminster?
	Why read this book
	This book’s audience
	Conventions used in this book
	Getting examples from this book
	Request for comment
	Acknowledgements

	Part I. Introduction
	Chapter 1. Eclipse
	Eclipse technology
	Equinox
	Platform
	Java Development Tools (JDT)
	Plugin Development Environment (PDE)
	Rich Client Platform (RCP)
	p2

	The Eclipse component types
	Plugins, features and OSGi bundles
	Bundle
	Plugin
	Feature

	Fragments
	Products

	The Workspace
	The Target Platform
	Launch configuration
	ANT

	Chapter 2. p2
	The Installable Unit
	Metadata repository
	Artifact repository
	Combined / co-located repositories
	Profile
	p2 internals
	Categories
	Publishing
	Installing
	The SDK agent
	The director application
	The p2 Installer
	The EPP wizard
	The Buckminster installer

	Shipping
	Summary

	Chapter 3. Buckminster Introduction
	Functional Overview
	Getting Components
	Component
	Component attributes
	Component actions
	Actors
	Turning something into a component
	Decorating a component with additional advice

	Summary

	Part II. Buckminster
	Chapter 4. Resource Map
	The search for the component
	Creating a RMAP
	Editing a RMAP
	Designing a RMAP — some advice
	Locators
	How to write patterns
	Fail on error
	Parameterized locator
	Redirects
	Locators summary

	Search paths
	Providers
	Reader type
	CVS reader
	SVN reader
	Perforce (P4) reader
	Maven 1 and 2 readers
	Eclipse import reader
	URL reader
	URL catalog reader
	URL zipped reader
	Local reader

	Providers and authentication
	Component types
	Advice regarding components with no meta data

	Version converter
	Handling indirection
	The matcher

	PDE map — extended provider

	Properties
	The RMAP XML document
	Summary

	Chapter 5. Component query
	One query to get them all...
	Opening an Existing CQUERY
	Creating a new CQUERY
	The CQUERY Editor
	The editor main tab
	Advisor nodes
	General attributes
	Attribute qualification
	Special requirements
	Resolution scope
	Selection criteria
	Override (version)
	Overlay
	Properties
	Documentation

	Materialization wizard
	Advanced settings
	Watching the paint dry...

	Resolve and materialize
	Summary

	Chapter 6. Components
	The component’s anatomy
	CSPEC and CSPEX

	The CSPEC editor
	Viewing a CSPEC
	Creating a CSPEC, or CSPEX
	Name and version
	Attributes
	Reference to the component itself
	Artifacts
	Groups
	Actions
	Generators
	Dependencies
	Automatically generated meta data
	Bookmarks

	Chapter 7. Bill of Materials (BOM)
	The BOM’s anatomy
	Materializing a BOM
	Viewing a BOM
	Summary

	Chapter 8. MSPEC — Materialization Specification
	Creating a MSPEC
	Editing a MSPEC
	The MSPECModus Operandi
	MSPEC in XML
	Using properties
	Rules

	Materializing a MSPEC
	Summary

	Chapter 9. Versions
	Omni Version introduction
	Buckminster and Omni Version
	Buckminster’s named formats
	Version ranges

	Chapter 10. Properties
	Property expansion
	Setting property value with “property”
	Using “propertyElement”
	Property functions
	Replace function
	Split function

	Precedence
	Typical property use

	Chapter 11. Buckminster User Interface
	Component explorer
	Component outline
	New file wizards
	BOM visualizer
	Invoking actions
	Editors
	Preferences

	Chapter 12. Troubleshooting
	Installation Issues
	Headless issues
	Resolution issues
	Materialization issues
	Execution issues
	Component issues

	Part III. Examples
	Chapter 13. Building a p2 Update Site
	Creating the content
	Creating the plugin
	Creating the feature
	Creating the site feature

	Building the site
	Using the update site

	Chapter 14. Building a Legacy Update Site
	Chapter 15. Hello XML World
	Without Buckminster
	With Buckminster in use
	The RMAP
	The CQUERY
	Running the example
	How the code is structured
	org.demo.worlds
	org.demo.xml.provider

	Chapter 16. Building RCP Products
	Getting the code
	Structure
	The RMAP
	Using ‘useBuild’
	Building the update site
	Installing the product
	Installation using the p2 installer
	Installer properties
	Using the properties
	Running the installer

	Creating an installable zip

	The CSPEX

	Chapter 17. POJO Projects
	Chapter 18. Non Java Projects
	Chapter 19. RMAP Examples
	The ‘dogfood’ RMAP

	Part IV. Reference
	Component Types
	buckminster
	eclipse.feature
	jar
	maven, maven2
	osgi.bundle
	PDE (abstract)
	POJO (abstract)

	Actors
	ant actor
	copyTargetAction actor
	eclipse.build actor
	eclipse.clean actor
	executor actor
	fetcher actor
	jarprocessor actor
	jdt.ant actor
	null actor
	p2SiteGenerator actor
	simulation actor

	Buckminster ANT tasks
	filesetgroup support
	buckminster.importResource
	buckminster.lastTimestamp
	buckminster.lastRevision
	buckminster.substitute
	buckminster.versionQualifier
	buckminster.signatureCleaner
	buckminster.perform

	Filters
	target.arch
	target.os
	target.nl
	target.ws

	Headless Commands
	buckminster
	listcommands (lscmds)
	build (make)
	clean
	get preference (getpref)
	import (resolve)
	list preferences (lsprefs)
	perform
	set preference (setpref)
	unset preference (unsetpref)
	import target definition (importtarget)
	list target definitions (lstargets)
	export preferences (exportprefs)
	import preferences (importprefs)
	install
	list site
	uninstall

	Buckminster XML Schemas
	bc (Common-1.0)
	cs (CSpec-1.0)
	cq (CQuery-1.0)
	md (MetaData-1.0)
	mp (MavenProvider-1.0)
	opml (OPML-2)
	pmp (PDEMapProvider-1.0)
	rm (RMap-1.0)
	xh (xhtml)
	xi (XMLSchema-instance)

	Part V. Appendixes
	Appendix A. Installation
	Installing for Eclipse SDK
	Installing the Headless Product
	Connectors
	Subversion (SVN)
	Perforce (P4)

	Configuring Eclipse for XML Editing

	Appendix B. Extending Buckminster
	Core extension
	Version type

	RMAP extensions
	Extending Reader Type
	Extending Component Type
	Extending Version Converter

	CQUERY Extensions
	Custom resolver

	Appendix C. Omni Version Details
	Introduction
	Background
	Implementation
	Version
	Comparison
	Raw and Original Version String
	Omni Version Range
	Other range formats

	Format Specification
	Format Pattern Explanation
	Examples of Version Formats
	Tooling Support
	More examples using ‘format’
	FAQ
	Resources

	Appendix D. Bookmarks and OPML
	Bookmarks
	Authoring OPML

