
Copyright © by Zühlke Engineering AG
www.zuehlke.com

UML with Action Semantics

Concepts, Application and Implications

Milan Ignjatovic

Software Engineering Consultant

Software Engineering Trainer

Zuehlke Engineering AG

Copyright © by Zühlke Engineering AG
www.zuehlke.com

Agenda

� Part 1: What is UML with Action Semantics?

� Part 2: Overview of Behavioural Modelling

� Part 3: The Action Metamodel

� Part 4: The Action Package

� Part 5: Object Action Language

� Part 6: Pathfinder Solutions Action Language – PAL

� Part 7: Live Demonstration

� Part 8: Implications and Summary

� Part 9: Q/A

Copyright © by Zühlke Engineering AG
www.zuehlke.com

Before we start

Newton as seen by Blake

Copyright © by Zühlke Engineering AG
www.zuehlke.com

Part 1

What is UML with Action Semantics?

Copyright © by Zühlke Engineering AG
www.zuehlke.com

Visual intelligence

� Kiczales:

- „The way we visualize code doesn't do much to use all
we've learned about how to use form to reflect function.
This is critical, because most of the brain's cortex is visual“

� Half of the cerebral cortex is devoted directly or
indirectly to vision.

� Hoffman: Visual Intelligence

- What does it mean to loose a critical aspect of visual
intelligence? The story of Mr. P.

� Q: what about Euler?

- What kind of model did he build? Language? Notation?

- How did he use the model? Was he model-driven?

- What if he was born blind or never gone blind at all?

Copyright © by Zühlke Engineering AG
www.zuehlke.com

What is UML with action semantics

� Action - fundamental unit of computational behaviour

� Action semantics are based on proven concepts from
computer science

� Action semantics remove assumptions about specific
computing environments in user models:

- execution engines, PLs, implementation details

- do not require specification of software components,
tasking structures or forms of transfer of control

- yet allows modellers to produce executable specifications

� Action semantics have no normative notation

- OAL, PAL are concrete products and define own syntax

� Open the eye of reality: layman‘s dream (Jacobson)

� Complete specification available in UML 1.5 / Sept 2002

� Terminology: xUML { executable UML � UML with Action Semantics

Copyright © by Zühlke Engineering AG
www.zuehlke.com

How it works: xUML?

� You capture and formalize knowledge

- Define the behaviour of the model in sufficient detail so
that it can be executed

� Use the model is like code

� To get the running system: use the model compiler to
compile several executable UML models each of which
captures a single cross-cutting concern:

- analysis models

- design model i.e. design policies e.g. design patterns

- base mechanisms e.g. communication models

- ...

� xUML models define the minimal model required to
show how a domain operates in the context of problem*

� xUML delivers executable analysis models

Copyright © by Zühlke Engineering AG
www.zuehlke.com

Meta-stacks

EBNF

Any PL

Source Code

Execution

GOPRR
DSML
DSM

Execution

MoF
UML

UML Model
Execution

Meta-Metamodel
Metamodel

Model
Information domain

<<instantiates>>

Copyright © by Zühlke Engineering AG
www.zuehlke.com

xUML is the foundation for MDA

Copyright © by Zühlke Engineering AG
www.zuehlke.com

Part 2

Overview of Behavioural Modelling

Copyright © by Zühlke Engineering AG
www.zuehlke.com

Behavioural elements

Copyright © by Zühlke Engineering AG
www.zuehlke.com

Use Cases and xUML

� Focus of activities is moving upwards, to the front of
the development process i.e. to analysis

� Provide a foundation for modelling

- Identify domain ontology and emerging phenomena

� Our objective here is to understand enough about the
domain in order to build executable models

- Sky: doTrainSimulation

- Kite: LoadTrain, PositionTrain, StartSimulation

- Sea: Interact (triggered) by a single actor

- Mud: Complex UC hierarchies ending in technology details

� UCs provide a source for test cases

*Beware: UCs may lead to poor abstractions if applied
literally

Copyright © by Zühlke Engineering AG
www.zuehlke.com

Part 3

The Action Metamodel

Copyright © by Zühlke Engineering AG
www.zuehlke.com

Actions: pins

� An action takes a set of inputs and converts them into
a set of outputs

� Input pins

- hold values to be consumed by the action

� Output pins

- hold values generated by the action

� Pins are type conform

- The type of the output pin is the same as or is a
descendant of the type of the input pin

� Fan out of output pins is allowed

� No fan in of input pins is possible

Copyright © by Zühlke Engineering AG
www.zuehlke.com

Actions: data flow, control flow

� A data flow sequences execution of two actions by
carrying data between them i.e. provides implicit
sequencing

- A data flow has source and destination pins

- Output pins of one action are input pins of some other action

� A control flow defines a sequencing dependency
between two actions i.e. provides explicit sequencing

- The successor action of the flow may not execute until the
predecessor action has completed execution

� The specification maximises action concurrency

- it treats all actions as executing concurrently unless explicitly
sequenced by a flow of data or control

Copyright © by Zühlke Engineering AG
www.zuehlke.com

Primitive actions, procedures

� Primitive actions do not contain any subactions i.e.
nested actions

� Procedure is an action container: a set of actions
within a model e.g. body of a method

� Procedure provides a context for action execution

� Procedure takes a single object as argument and
produces a single reply object as result

� Multiple arguments or results possible i.e. represented
as object attributes

� May be attached to methods, state machines

Copyright © by Zühlke Engineering AG
www.zuehlke.com

Action foundation model

Copyright © by Zühlke Engineering AG
www.zuehlke.com

Life cycle for action execution

Copyright © by Zühlke Engineering AG
www.zuehlke.com

Life cycle for procedure execution

Copyright © by Zühlke Engineering AG
www.zuehlke.com

Part 4

The Action Package

Copyright © by Zühlke Engineering AG
www.zuehlke.com

UML: Action package

Copyright © by Zühlke Engineering AG
www.zuehlke.com

UML: Kinds of actions

� New Data Types may be defined using metamodel Data
Types e.g. UnlimitedInteger

- defines a data type whose range is the nonnegative
integers augmented by the special value “unlimited”.

- used for the upper bound of multiplicities

- discussion of metamodel Data Types is beyond scope

� Read and write actions

- variables, attributes, links

� Composite actions

- group, conditional and loop actions

� Computation actions

- Math is N/A, left to the implementation to define as needed

- ApplyFunctionAction, CodeAction, MarshalAction...

Copyright © by Zühlke Engineering AG
www.zuehlke.com

UML: More actions

� Collection actions: contain a subaction, an embedded
action that is executed once for each element in the
input collection:

- Iterate: applies a subaction to each of the elements in a
collection repeatedly within a loop

- Filter: selects a subset of the elements in a collection into a
new collection

- Map: action applies a subaction in parallel to each of the
elements in a collection

� Messaging

- Actions for synchronous, asynchronous invocation

� Jumps

- break, continue, exceptions

� Surface languages may define their own actions

Copyright © by Zühlke Engineering AG
www.zuehlke.com

UML: Object Action Metamodel

Copyright © by Zühlke Engineering AG
www.zuehlke.com

Part 5

Object Action Language, Project Technology

Copyright © by Zühlke Engineering AG
www.zuehlke.com

OAL: Object and attribute actions

� Create object

- create object instance <objref> of <class>

- ReclassifyObjectAction

� Write attribute

- <objref>.<attribute name> = <expression>

� Read attribute

- use of ... <objref>.<attribute name> in expressions

� Delete object

- delete object instance <objref>

Copyright © by Zühlke Engineering AG
www.zuehlke.com

OAL: Link actions

� Links are maintained via the relate and unrelate
constructs

� Create link

- // Create and relate a new b to the given a.
create object instance b of B;
relate b to a across R1;

� Delete link

- unrelate <source instance handle> from <destination
instance handle> across <relationship specification>;

- unrelate <source instance handle> from <destination
instance handle> across <relationship specification> using
<associative instance handle>;

Copyright © by Zühlke Engineering AG
www.zuehlke.com

OAL: Selection expressions

� Class extent

- select many <objrefset> from instances of <class>;

� Qualification i.e. a single object

- select any <objrefset> from instances of <class>
where <where clause>;

• select any dog related by owner->D[R2]
where (selected.name == "Fido");

� Qualification i.e. many objects

- select many <objrefset> from instances of <class>
where <where clause>;

• select many dogs related by owner->D[R2]
where selected.color == "black";

Copyright © by Zühlke Engineering AG
www.zuehlke.com

OAL: Synchronising Objects and Timing

� There is no global synchronisation or global time
concept in executable UML

� Time is local to each concurrently executing object

� Einstein´s relativistic view of time

� Model Compiler issues:

- The model compiler is required to preserve the explicit
synchronisation built into your executable models i.e.
deliver each and every signal originating from producers
and directed towards consumers

� Do not depend on the order of received signals, order
is non-deterministic

Copyright © by Zühlke Engineering AG
www.zuehlke.com

OAL: Create events and generate signals

� generate <signal> to <instance handle>

- select one b1 related by self->L_BU[R1];
generate L_BU1:ev_toggle to b1;

- create event instance toggle of L_SW1:ev_toggle() to s1;

- my_timer=TIM::timer_start_recurring(microseconds:500000,
event_inst:toggle);

� Beware: an object can be in a single state at a time:

- UML transitions must run to completion

- make them really atomic & instant

- there is no way to limit action activity within transition
processing

- It is up to you and your know-how

Copyright © by Zühlke Engineering AG
www.zuehlke.com

Part 6

Pathfinder Solutions Action Language - PAL

Copyright © by Zühlke Engineering AG
www.zuehlke.com

PAL: data types and basics

� Boolean, Character, String, Real, Integer,

� Constant Declaration

� Local Variable Declaration

� Assignment action

� GenericValue: stores a String, Real, Handle, or Integer
(similar to C union)

� Handle: generic reference (similar to void* in C)

� Group<base_type>, GroupIter<base_type>,

� Ref<class_name>,

� UserDefined enumeration,

� UserDefined typedef,

� ServiceHandle: allows a run-time dynamic binding
mapping, a kind of DII mechanism

Copyright © by Zühlke Engineering AG
www.zuehlke.com

PAL: Conditional, Iteration, Jumps

� Conditional:

- IF (Boolean Expression) { StatementBlock }
[ELSE IF (Boolean Expression) {StatementBlock}]
[ELSE { StatementBlock }]

� Iteration:

- FOREACH cursor_variable = CLASS class name
[WHERE (Expression)]
{ StatementBlock }

- FOREACH cursor_variable = Navigation [WHERE
(Expression)]
{ StatementBlock }

- WHILE (Expression) { StatementBlock }

� Jumps:

- BREAK, CONTINUE, RETURN [Expression]

Copyright © by Zühlke Engineering AG
www.zuehlke.com

PAL: Creation, Deletion, Find, Linking

� Object creation, deletion

- CREATE class_name
[(attribute_name = Expression, …)] [IN initial_state]

- DELETE instance_ref

� Finding objects:

- FIND [{ FIRST | LAST }] CLASS class_name [WHERE
(Expression)]

� Linking:

- LINK instance1_ref A<number> instance2_ref
[ASSOCIATIVE assoc_ref]

- UNLINK instance1_ref Anumber instance2_ref

Copyright © by Zühlke Engineering AG
www.zuehlke.com

PAL: Navigation, Event generation

� SubSuper Navigation – “downcast” to get from a supertype
to a specific subtype. Upcasting is performed automatically. A
subtype can be used anywhere a supertype is expected.

- supertype_ref ->Srelationship_number->subclass_name

� GENERATE event_name [AFTER (delay)]
[TO (destination_ref)]

Copyright © by Zühlke Engineering AG
www.zuehlke.com

A process for executable UML: MBSE

Copyright © by Zühlke Engineering AG
www.zuehlke.com

Part 7

Demo: Lightland Example

Copyright © by Zühlke Engineering AG
www.zuehlke.com

Part 8

Implications and summary

Copyright © by Zühlke Engineering AG
www.zuehlke.com

Implications

� Separation of model engineering from platform
specific software engineering

� Creativity is focused on:

- Producing domain models

- Translating models to code

� Complete and executable models are produced by
domain experts in form of instrumented software

� Design i.e. platform specific models are delivered by
software engineering teams

� Less hindrance with implementation means more time
devoted to analysis for domain experts

Copyright © by Zühlke Engineering AG
www.zuehlke.com

Summary

� A good attempt at solving the software crisis

- perhaps the most far reaching one, until now

� Results in more powerful models and our ability to
conquer more complexity than ever before.

� Brings a new sign of ripeness to the discipline of
software engineering

� Be prepared for tomorrow‘s challenges

Copyright © by Zühlke Engineering AG
www.zuehlke.com

References

� UML 1.5 with Action Semantics, Sept 2002

� Model Driven Architecture, OMG documentation set

� Executable UML, Mellor/Balcer, Project Technology

� Pathfinder Solutions, PAL documentation set

� Kennedy Carter, iUML documentation set

� Convergent Architecture, Richard Hubert

� Leon Starr, Executable UML: How to Build Class Models

� MDA Course, Jim Arlow, Zuehlke Engineering AG

Copyright © by Zühlke Engineering AG
www.zuehlke.com

Part 9

Q/A

