
Efficient Object-Relational
Mapping for JAVA and J2EE
Applications – or the impact of
J2EE on RDB
Marc Stampfli
Oracle Software (Switzerland) Ltd.

According to customers about
20-50% percent of the time of
developer is used for manual
object-relational mapping.

Underestimation

Managing persistence related issues is
the most underestimated challenge in
enterprise Java today – in terms of
complexity, effort and maintenance

Doesn’t JDBC
handle

these issues?

Agenda

Impedance Mismatch
Object Persistence Options
J2EE Persistence Requirements
J2EE Persistence Framework

Enterprise App. Architecture

Focus of attention

Web Server,
Content Server,
Distribution Server

JDBC

Java standard for
accessing databases
JDBC is simply the
database connection
utilities Java developers
need to build upon

rows SQL

JDBC

• Connection con =
DriverManager.getConnection(…);

• Statement stmt = con.createStatement();
• stmt.execute("create table JUGSData ("+

"programmer varchar (32),"+"day char
(3),"+”cups integer);")

SQLJ

Meta-Standard for
accessing databases
Pre-compiler to build
JDBC Java Code

SQLrows

JDBC

1. #sql iterator Iter (double sal, String
ename);

2. String ename = 'Smith';
3. Iter it; ...
4. #sql it = { select ENAME, SAL from EMP

where ENAME = :ename };

SQLJ Pre-
Compiler

Impedance Mismatch

The differences in relational and object
technology is known as the “object-relational
impedance mismatch”
Challenging problem to address because it
requires a combination of relational database
and object expertise

Impedance Mismatch
Factor J2EE Relational Databases

Logical Data
Representation

Objects, methods,
inheritance

Tables, SQL, stored procedures

Scale Hundreds of megabytes Gigabytes, terabytes

Relationships Memory references Foreign keys

Uniqueness Internal object id Primary keys

Key Skills Java development,
object modeling

SQL, Stored Procedures, data
management

Tools IDE, Source code
management, Object
Modeler

Schema designer, query
manager, performance profilers,
database configuration

Object Level Options

Depends on what component architecture is
used:

– Entity Beans BMP – Bean Managed Persistence
– Entity Beans CMP – Container Managed

Persistence
– Access Java Objects via Persistence Layer

(POJO or J2EE)
Can be off the shelf or “home-grown” Do you build

your O-R
Mapping Tool

yourself?

Entity Beans - BMP

In BMP, developers write the persistence code
themselves
Database reads and writes occur in specific
methods defined for bean instances
The container calls these methods - usually on
method or transaction boundaries

ejbLoad() - “load yourself”
ejbStore() - “store yourself”
ejbCreate() - “create yourself”
findBy…() - “find yourself”

ejbRemove() - “remove yourself”

Entity Beans - CMP
Persistence is based on information in the deployment
descriptors

– More “automatic” persistence – managed by the Application
Server, can be faster than BMP

– No special persistence code in the bean
– Description of the persistence done with tools and XML files

Less control, persistence capabilities are limited to the
functionality provided.

– Very difficult to customize or extend CMP features as it is
built-in

– Do have options to plug-in a 3rd party CMP solution on an
app server

Object Persistence Layer
Abstracts persistence details from the application
layer, supports Java objects/Entity Beans

SQLrows

Objects

Persistence Layer

Objects
object-level

querying and creation
results are objects

results are
returned as

raw data

API uses SQL
or database
specific calls

J2EE & J2EE &
Web Web

ServicesServices

JDBC

object creation and
updates through
object-level API

Basic J2EE Persistence Checklist
Mappings
Object traversal
Queries
Transactions
Optimized database interaction
Database Triggers and Cascade Deletes
Caching
Locking
Database features

Mapping

Object model and Schema must be mapped
– True for any persistence approach

Most contentious issue facing designers
– Which classes map to which table(s)?
– How are relationships mapped?
– What data transformations are required?

Good and Poor Mapping Support

Good mapping support:
– Domain classes don’t have to be “tables”
– References should be to objects, not foreign keys
– Database changes (schema and version) easily handled

Poor mapping support:
– Classes must exactly mirror tables
– Middle tier needs to explicitly manage foreign keys
– Classes are disjoint
– Change in schema requires extensive application changes

Data and Object Models

Rich, flexible mapping capabilities provide
data and object models a degree of
independence
Otherwise, business object model will force
changes to the data schema or vice-versa
Often, J2EE component models are nothing
more than mirror images of data model – NOT
desirable

Simple Object Model

Customer

id: int
name: String
creditRating: int

Address

id: int
city: String
zip: String

1:1 Relationship

Typical 1-1 Relationship Schema

CUST

ID NAME A_IDC_RATING
ADDR

ID CITY ZIP

Other possible Schemas…

CUST

ID NAME C_RATING C_ID

ADDR

ID CITY ZIP

A_ID

CUST_ADDR

C_ID

CUST

ID NAME C_RATE C_ID

ADDR

ID CITY ZIP

CUST

ID NAME CITY ZIPC_RATING

Even More Schemas…
CUST

ID NAME A_ID

ADDR

ID CITY ZIP

CUST_CREDIT

ID C_RATING

CUST

ID NAME

CUST_CREDIT

ID C_RATING

ADDR

ID CITY ZIP C_ID

CUST

ID NAME

ADDR

ID CITY ZIP

CUST_CREDIT

ID C_RATING A_IDCUST

ID NAME

CUST_CREDIT

ID C_RATING

ADDR

ID CITY ZIP C_ID

CUST

ID NAME

ADDR

ID CITY ZIP

CUST_CREDIT

ID C_RATING A_IDCC_ID

Mapping Summary

Just showed nine valid ways a 1-1
relationship could be represented in a
database

– Most persistence layers and application servers
will only support one

Without good support, designs will be forced
Imagine the flexibility needed for other
mappings like 1-M and M-M

Object Traversal – Lazy Reads

J2EE applications work on the scale of a few
hundreds of megabytes
Relational databases routinely manage
gigabytes and terabytes of data
Persistence layer must be able to
transparently fetch data “just in time”

Just in Time Reading – Faulting Process

Customer

Order

Proxy

1. Accessing relationship for first
time

2. Get related
object based on
FK3b. SQL if

not cached

3a. Check
Cache

4. Plug
result
into
Proxy

Order

Object Traversals
Even with lazy reads, object traversal is not
always ideal

– To find a phone number for the manufacturer of a
product that a particular customer bought, may
do several queries:

Get customer in question
Get orders for customer
Get parts for order
Get manufacturer for part
Get address for manufacturer

– Very natural object traversal results in 5
queries to get data that can be done in 1

N+1 Reads Problem

Many persistence layers and application
servers have an N+1 reads problem
Causes N subsequent queries to fetch related
data when a collection is queried for
A side effect of the impedance mismatch and
poor mapping and querying support in
persistence layers

N+1 Reads
Must have solution to minimize queries
Need flexibility to reduce to 1 query, 1+1
query or N+1 query where appropriate

– 1 Query when displaying list of customers and
addresses – known as a “Join Read”

– 1+1 Query when displaying list of customers and
user may click button to see addresses – known
as a “Batch Read”

– N+1 Query when displaying list of customers but
only want to see address for selected customer

Queries

Java developers are not usually SQL experts
– Maintenance and portability become a concern

when schema details hard-coded in application
Allow Java based queries that are translated
to SQL and leverage database options

– EJB QL, object-based proprietary queries, query
by example

Queries
Persistence layer handles object queries and converts
to SQL
SQL issued should be as efficient as written by hand
Should utilize other features to optimize

– Parameter binding, cached statements

Some benefits to dynamically generated SQL :
– Ability to create minimal update statements

Only save objects and fields that are changed
– Simple query-by-example capabilities

Query Requirements

Must be able to trace and tune SQL
Must be able use ad hoc SQL where
necessary
Must be able to leverage database abilities

– Outer joins
– Nested queries
– Stored Procedures
– Oracle Hints

Transaction Management
J2EE apps typically support many clients
sharing small number of db connections
Ideally would like to minimize length of
transaction on database

Begin Txn

Ti
m

e

Begin Txn
Commit Txn

Commit Txn

Caching

Any application that caches data, now has to
deal with stale data
When and how to refresh?
Will constant refreshing overload the
database?
Problem is compounded in a clustered
environment
App server may want be notified of database
changes

Caching
4. SQL Query (if needed)

1. OO Query

5. Results(s)

2. Does PK for row
exist in cache?

6. NO – Build
bean/object from
results

Return object
results

3. YES – Get from
Cache

Locking

J2EE developers want to think of locking at
the object level
Databases may need to manage locking
across many applications
Persistence layer or application server must
be able to respect and participate in locks at
database level

Optimistic Locking

DBA may wish to use version, timestamp
and/or last update field to represent optimistic
lock

– Java developer may not want this in their
business model

– Persistence layer must be able to abstract this
Must be able to support using any fields
including business domain

Pessimistic Locking
Requires careful attention as a JDBC
connection is required for duration of
pessimistic lock
Should support SELECT FOR UPDATE
[NOWAIT] semantics

Ti
m

e

Begin Txn

Commit Txn

Begin Txn

Commit Txn

Pess Lock

Conclusion
J2EE apps accessing relational databases:

– Don’t need to compromise object/data model
– Need to fully understand what is happening at

database level
– Can utilize database features
– Do not have to hard code SQL to achieve optimal

database interaction
– Can find solutions that effectively address

persistence challenges and let them focus on
J2EE application

TopLink Key Technical Features

TopLink Persistency Layer Framework from
Oracle Application Server 10g solves
these issues by:

– Meta-Data Architecture
– Comprehensive Visual Mapping Workbench
– Advanced Mapping Support and Flexibility
– Query Flexibility
– Just In Time reading
– Caching
– Transaction support and integration
– Locking
– Performance tuning options
– SDK

TopLink Runtime Architecture

Data Source

To
pL

in
k Persistence Manager

Cache
Query

TX

Object
Data

Conversion

Presentation Interface

Application Logic

J2EE
Server

Business Entities

J2EE Services

JTACMP/
BMP

Connection
Pools

JDBC

Mappings

Meta-Data Architecture for
Object Relational Mapping

Mapping information is kept in XML descriptors and
not in the objects
Meta-data means OracleAS TopLink is NOT at all
intrusive on either the object model or the schema
Employee
firstName
lastName
address

birthDate

Address

E_ID F_NAME L_NAME A_ID B_DATE

A_ID CITY STATE ZIP

city
state
zip

Advanced Mapping Support and Flexibility

Direct to Field, One to One, One to Many, Many to
Many

– Any kind of foreign key relationships in Database
supported – including intermediate tables

Object Type, Transformation
– Enumeration (‘Male’-> ‘M’) or conversions (String to

Number)
– User defined transformations

Aggregates, Multiple tables
– Multiple objects/beans per row
– Man an object/bean to multiple tables

And many more – Serialized mappings, Direct
Collections, Object-Relational Mappings, etc

Mapping Workbench

Lots of
mapping tools
out there,
however don’t
get fleeced by
a slick GUI
The underlying
mapping
support is
what’s
important

Summary
Oracle Application Server 10g – TopLink Persistency
Layer solves all the mentioned problems

– Mapping
– Queries
– Transactions
– Deferred Read Management
– Locking
– Caching

TopLink is independent of Database and Application
Server Technology

20042004

http://www.fawcette.com/reports/javaone/2003/awards/

For further Information contact:
Marc Ph. Stampfli

E-Mail: marc.stampfli@oracle.com
Phone: +41 56 483 32 11

	Efficient Object-Relational Mapping for JAVA and J2EE Applications – or the impact of J2EE on RDB
	Underestimation
	Agenda
	Enterprise App. Architecture
	JDBC
	SQLJ
	Impedance Mismatch
	Impedance Mismatch
	Object Level Options
	Entity Beans - BMP
	Entity Beans - CMP
	Object Persistence Layer
	Basic J2EE Persistence Checklist
	Mapping
	Good and Poor Mapping Support
	Data and Object Models
	Simple Object Model
	Typical 1-1 Relationship Schema
	Other possible Schemas…
	Even More Schemas…
	Mapping Summary
	Object Traversal – Lazy Reads
	Just in Time Reading – Faulting Process
	Object Traversals
	N+1 Reads Problem
	N+1 Reads
	Queries
	Queries
	Query Requirements
	Transaction Management
	Caching
	Caching
	Locking
	Optimistic Locking
	Pessimistic Locking
	Conclusion
	TopLink Key Technical Features
	TopLink Runtime Architecture
	Meta-Data Architecture for Object Relational Mapping
	Advanced Mapping Support and Flexibility
	Mapping Workbench
	Summary

