IBM's Mixed-Mode
Interpreter

Dr. Robert Lougher
IBM Hursley, UK

IBM Centre for
8 JAVA"

Technology

N
‘j Development

What is the Mixed-Mode Interpreter?

"The mixed-mode interpreter (MMI) is a new,
high-speed profiling interpreter which
completely replaces the existing interpreter
within the Java Virtual Machine (JVM). Itis
separate but complementary to the JIT."

MMI Releases

» First appeared in JDK 1.1
= Windows NT/98 JDK |.1.7
=0S/390JDK [.1.8
=0S/2JDK I.1.8
> Java 2
= Improved portability
= Greater maintainability
= Supported Platforms
e AIX, Windows NT/98, 05/390, OS/2, Liny

Why "Mixed-Mode"?

» C/Assembler Interpreter
= All methods interpreted as bytecodes
» With JIT
= <clinit> interpreted
= All other methods compiled on first use
» MMI and JIT
= Truly mixed-mode of execution
e JIT-insensitive methods are interpreted
® Hot methods compiled

Why Do we Need MMI?

» The Start-up Time Problem

= Each Technology Improvement

o C interpreter, Assembler, JIT 1.0, JIT 2,0, JIT 3.0, JIT
3.5, etc.

= Performance increases
= Start-up time longer and longer

Start-up time versus Performance

Start-up time
——
Performance
——

‘ ‘ ‘ ‘ ‘
T 1O NT 2.0 NIT 3.0 T35 etc.

Reducing Start-up Time

» Pre-compile bytecodes to native code
= native code already available at start-up
= Fat Classes

e pre-compiled bytecodes contained within class file
= JIT caching
e native code cached to disk as JVM runs

» Selective Compilation
= select the best sub-set of methods to compile
= delays method compilation at start-up

Selective Compilation

» Select Methods Based on Usage
= Profile Count
e Decremented on each invocation
e Compile method when count reaches zero
* MMI uses initial value of 500
= Problems
e What do you do with methods that contain loops?
+ Method invocation count weights these methods too low

Loop Detection

» \When MMI encounters a bytecode of the form
= opc_ifxx
= opc_if_icmpxx
» Checks if it is a loop backedge by comparing with
specific bytecode pattern
» Modifies profile count depending on
= computed loop count
= distance of backward branch

Loop Detection Example

Bytecodes Java

loop:

for(i = 0; i < 1000; i++) {
iinc | 1
iload_|
sipush 1000
if_icmplt loop

pattern match

}

Loop Detection (Cont)

» MMI Loop Thresholds
= Count < 3 => Profile count unchanged
= Count <50 => Profile count decreased
= Count <200 => Compile next Invocation
u
= Problem:

e Methods with loops which never exit
+ Symantec benchmark
+ Scanning of last 20 bytecodes

Long-Running Loops

» JIT Compilation with Transfer Point
= JIT compiler produces two entry points:
e Method entry
e Loop backedge
= Glue code to compute compiler-generated local variables
at transfer point
» Direct Control Transfer

= MMI re-creates stack frame for JIT and jumps to glue
code :

Direct Control Transfer

Bytecode of Method A JITted code of Method A

entry: entry:

loop: 4—)| / JIT transfer glue - = Ioc;;;:q—J
if_icmplt loop —=] bIt loop

Implications of Mixed-Mode Execution

» Transfer Between Modes Must be Low-Cost
= Interpreter and JIT uses different stacks
e Interpreter uses "JavaStack"
o JIT uses native stack
= MMI must share stacks
» Low-Cost Exceptions
e Interpreter and JIT use different exception handlers
+ Rethrowing of exceptions at boundary
e MMI must share exception handlers

» High-Speed

Shared Native Stack

C Stack C Stack
Java Stack
Callee’s C
Frame
J E param 3 param 3 sh d
ava Frame are!
aram 2 aram 2
(9 words) P P parameters
param 1 param 1
Caller's Local vars Copy in
Stack reverse
order
param 1 Caller's Caller's
allers Stack
param 2 Frame (4-8
words)
param 3

High-Speed

» Hand-written assembler
= PowerPC approx 14,000 lines
= Intel approx 18,000 lines
» Architecture tuning
= PowerPC
e Bytecode prefetch
¢ 'Free' bytecode decode
= |ntel
e Instruction cache balancing

Shared Exception Handler

compiled
& -+ handler

func2 { interpreted
not found, throw e;
Interpreter throw again
handler }
funcl {
not found, JIT handler func();
throw again }
try { interpreted
Interpreter | ——. funC | ()'
handler .
found } catch(Exception e) {

not found,
check caller

Shared

found

Start Up Times With MMI

eSuite 1.5 Start up Time

MMI with JIT Performance

SpecJVMI8 (size = 10, best run)

w

< h N ¢
o ;AN O wo

Index

-

o

mtrt compress mpegaudio java
jess db jack

Tests

B Interpreter wiJIT
E MmiI widIT

20
(2}
el
c
Q
3
[%]
Interpreter MMI with JIT (count = 0)
MMI with JIT (count = inf) MMI with JIT (count = 500)
Conclusions

» MMl is extremely effective at reducing start-up times
= MMI avoids JITting all methods
= MMI delays compilation at load-time

» MMI improves performance
= MMl is twice as fast as existing interpreter
= MMI works as an efficient profiler to find JIT sensitive
code
= MMI generates execution profile that enables JIT to
apply more effective optimisations

