

Microservices Primer
A Short Overview

Eberhard Wolff

This book is for sale at http://leanpub.com/microservices-primer

This version was published on 2018-04-25

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean Publishing is
the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have
the right book and build traction once you do.

© 2016 - 2018 Eberhard Wolff

http://leanpub.com/microservices-primer
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!
Please help Eberhard Wolff by spreading the word about this book
on Twitter!

The suggested tweet for this book is:

I just bought the Microservices Primer by @ewolff

The suggested hashtag for this book is #MicroservicesPrimer.

Find out what other people are saying about the book by clicking
on this link to search for this hashtag on Twitter:

#MicroservicesPrimer

http://twitter.com
https://twitter.com/intent/tweet?text=I%20just%20bought%20the%20Microservices%20Primer%20by%20@ewolff
https://twitter.com/search?q=%23MicroservicesPrimer
https://twitter.com/search?q=%23MicroservicesPrimer

Also By Eberhard Wolff
Microservices - Ein Überblick

Microservices Rezepte

Microservices - A Practical Guide

Microservices Recipes

http://leanpub.com/u/ewolff
http://leanpub.com/microservices-ueberblick
http://leanpub.com/microservices-rezepte
http://leanpub.com/practical-microservices
http://leanpub.com/microservices-recipes

Contents

1 Introduction . 1

2 What Are Microservices? 2
2.1 Size . 4
2.2 Bounded Context and Domain-Driven Design 8
2.3 Conway’s Law . 12
2.4 Conclusion . 16

3 Why Microservices? . 18
3.1 Scaling Agility . 18
3.2 Migrating Legacy Applications 19
3.3 Sustainable Development Speed 20
3.4 Robustness . 21
3.5 Continuous Delivery 22
3.6 Independent Scalability 24
3.7 Technology Freedom 25
3.8 Conclusion . 25

4 What’s Next? . 27
4.1 Microservices: Just a Hype? 27
4.2 Self-contained Systems 28
4.3 Examples . 28
4.4 More literature . 30
4.5 Final Remark . 31

1 Introduction
Microservices have turned into a hype. Like for every other archi-
tecture approach there are certain scenarios where the advantages
of Microservices can best unfold. Besides, their characteristic ad-
vantages come at the price of challenges in other areas.

This primer provides a short introduction into the topic of Mi-
croservices. It presents what Microservices actually are and which
advantages they can have. This overview is meant to facilitate
the start into the topic and to help with judging the applicability
and the usefulness of Microservices in a certain context. Thereby
Microservices can turn from just a hype into a meaningful element
in an architect’s tool kit.

2 What Are Microservices?
The idea behind Microservices is not new. A very similar approach
is also followed by the UNIX philosophy, which is based on three
ideas:

• A program should fulfill only one task, and it should do it
well.

• Programs should be able to work together.
• Besides, the programs should use a universal interface. In
UNIX these are text streams.

The realization of these ideas leads to the creation of reusable
programs, which are in the end a kind of component.

Microservices serve to divide large systems. Consequently, Mi-
croservices represent a modularization concept. There is a large
number of such concepts, but Microservices are different. They can
be brought into production independently of each other. Changes
to an individual Microservice only require that this Microservices
has to be brought into production. In the case of other modular-
ization concepts all modules have to be delivered together. Thus,
a modification to an individual module necessitates that the entire
application with all its modules has to be deployed again.

Microservice = Virtual Machine

Microservices cannot be implemented via the modularization con-
cepts of programming languages. These concepts usually require
that all modules have to be delivered together in one program.
Instead Microservices have to be implemented as virtual machines,
as more light-weight alternatives such as Docker containers or as

2 What Are Microservices? 3

individual processes. Thereby they can all easily be brought into
production individually.

This results in a number of additional advantages: For instance,
Microservices are not bound to a certain technology. They can be
implemented in any programming language or on any platform.
Moreover, Microservices can of course also bring along their own
supporting services such as databases or other infrastructure.

Besides, Microservices should possess their own separate data stor-
age i.e. a separate database or at least a separate schema in a
common database. Consequently, each Microservice is in charge
of its own data. In fact, experience teaches that the shared use of
database schemas renders changes to the data structures practically
impossible. Since this interferes profoundly with software change-
ability, this kind of coupling should be prevented.

Communication Between Microservices

Microservices have to be able to communicate with each other. This
can be achieved in different manners:

• The Microservices can replicate data. This does not just
mean to copy the data without changing the schema. In that
case changes to the scheme are impossible because multiple
Microservices use the same schema. However, when one Mi-
croservice processes orders and another analyzes the data of
the orders, the data formats can be different and also access to
the data is different: The analysis Microservice will primarily
read data, for order processing reading and writing are rather
equal. Classical data warehouses also employ replication for
analyzing large amounts of data.

• WhenMicroservices possess an HTMLUI, they can easily use
links to other Microservices. Besides, it is possible that a Mi-
croservice integrates the HTML code of other Microservices
in its own web page.

2 What Are Microservices? 4

• Finally, the Microservices can communicate with each other
by protocols like REST or messaging via the network.

In a Microservice-based system it has to be defined which commu-
nication variants are used to ensure that the Microservices can in
fact be reached with these technologies.

2.1 Size

The term “Microservice” focuses on the size of Microservices. This
makes sense for distinguishingMicroservices from other definitions
of “services”. Nevertheless, it is not so easy to indicate the concrete
size of Microservices.

Defining the unit poses already a problem: Lines of Code (LoC) are
not a good unit. In the end, the actual number of Lines of Code
of a program does not only depend on its formatting, but also on
the programming language. In fact, it does not seem to make much
sense to evaluate an architectural approach based on such metrics.
Ultimately, the size of a system can hardly be given in absolute
terms, but only in relation to the represented business processes and
their complexity.

Therefore, it makes much more sense to define the size of Microser-
vices with the aid of upper and lower limits. In general, it holds true
that smaller is better for Microservices:

• A Microservice should be developed by one team. Therefore,
a Microservice should never be so large that more than one
team is necessary to develop it further.

• Microservices represent a modularization approach. Devel-
opers should be able to understand individual modules –
therefore modules and thus Microservices have to be so small
that an individual developer is still able to comprehend them.

2 What Are Microservices? 5

• Finally, a Microservice should be replaceable. When a Mi-
croservice cannot be maintained anymore or for instance
a more powerful technology is supposed to be used, the
Microservice can be replaced by a new implementation. Mi-
croservices represent therefore the only software architecture
approach which takes a future replacement of the system
or at least of system parts already into consideration during
development.

Fig. 1: Ideal Size of a Microservice

This leaves the question why not to just build the Microservices
as small as possible. In the end, the advantages reinforce each
other when the Microservices are especially small. However, there
are different reasons why Microservices cannot be tiny without
creating also a number of problems:

• Distributed communication between Microservices via the
network is expensive. When Microservices are large, the
communication occurs rather locally within a Microservice
and is therefore faster and more reliable.

2 What Are Microservices? 6

• It is difficult to move code across Microservice boundaries.
The code has to be transferred into another system. When
this system uses a different technology or programming
language, rewriting the code in a different language might
be the only option for moving a functionality from one
Microservice into another. Of course, it is always possible to
turn the respective functionalities into a new Microservice,
which can be accessed by the otherMicroservices. In contrast,
within aMicroservice refactoring is quite easy with the aid of
the usual mechanisms e.g. automated refactoring in the IDE.

• A transaction within a Microservice is easy to implement.
Beyond the boundaries of an individual Microservice this
is not trivial anymore since distributed transactions become
necessary. Therefore the best is to decide for a Microservice
size which allows that a transaction can be entirely processed
in one Microservice.

• The same holds true for the consistency of data: When for
instance the account balance is supposed to be consistent
with the result of earnings and expenses, this can quite easily
be implemented in one Microservice, but is hardly feasi-
ble across Microservices. Therefore, Microservices should be
large enough to ensure that data which have to be consistent
are handled in the same Microservice.

• Each Microservice has to be brought into production inde-
pendently and therefore needs its own environment. This
uses up hardware resources and means in addition that the
effort for system administration increases. When there are
larger and therefore fewer Microservices, this expenditure
becomes smaller.

To a certain degree the size of a Microservice depends on the
infrastructure: When the infrastructure is very simple, it can sup-
port a multitude of Microservices and therefore also very small
Microservices are possible. In such a case the advantages of a

2 What Are Microservices? 7

Microservice-based architecture are accordingly larger. Already
relatively simple measures can help to reduce the infrastructure
expenditure: When there are templates for Microservices or other
possibilities to create Microservices easily and to more uniformly
administrate them, this can already reduce expenditure and thereby
enable the use of smaller Microservices.

Nanoservices

Certain technological approaches can further reduce the size of
a service. Instead of delivering Microservice as virtual machines
or Docker containers, the services can be deployed on Amazon
Lambda¹. It allows the deployment of individual functions written
in Java, Node.js or Python. Each function is automatically moni-
tored. In addition, each call to a function is billed. Functions can
be called using REST or due to events e.g. data written to Amazon
S3 or DynamoDB. Using such an infrastructure makes it possible to
create services that just consist of a few Lines of Code each because
the overhead for deployment and operations is so low.

A similar approach can be implemented using a Java EE appli-
cation server. Java EE defines different deployment formats and
allows to run multiple applications on an application server. The
services communicate for instance via REST or messaging just like
Microservices. However, in such a scenario the services are not so
well isolated from each other anymore: When an application in an
application server uses up a lot of memory, this will also affect the
other applications on the application server.

Another alternative are OSGi bundles. This approach also defines
a module system based on Java. However, in contrast to Java
EE this approach allows method calls between bundles so that
communication via REST or messaging is not necessarily required.

Unfortunately, both approaches are problematic when it comes to

¹https://aws.amazon.com/lambda/

https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/

2 What Are Microservices? 8

independent deployment: In practice, Java EE application servers
and also OSGi runtime environments have often to be started again
when new modules are deployed. Therefore, a deployment affects
also other modules.

On the other hand, the expenditure for infrastructure and commu-
nication is lower since OSGi allows for instance to use local method
calls. This enables the use of smaller services.

To clearly distinguish these services fromMicroservices it is sensible
to use an alternative term like “Nanoservices” for this approach.
Ultimately these services offer neither the isolation ofMicroservices
nor their independent deployment.

2.2 Bounded Context and
Domain-Driven Design

It is one of themain objectives ofMicroservices to limit changes and
new features to one Microservice. Such changes can comprise the
UI – therefore a Microservice should also provide a UI. However,
also in another area modifications should occur within the same
Microservice – namely in regards to data.

A service which implements an order process should ideally also be
able to query and modify the data for an order. Microservices have
their own data storage and can therefore store data in the way that
best suits them. However, an order process requires more than just
the data of the order. Also the data concerning the customer or the
items are relevant for the order process.

Here, Domain-driven Design ((DDD)²) is helpful. Domain-driven
Design serves to analyze a domain. The essential basis isUbiquitous
Language. This is like other components of Domain-driven Design

²Eric Evans: Domain-Driven Design: Tackling Complexity in the Heart of Software,
Addison-Wesley,2003, ISBN 978-0-32112-521-7

2 What Are Microservices? 9

also a pattern and therefore here set in italics. Ubiquitous Language
denotes the concept that everybodywho participates in the software
should use the same terms. Technical terms like order, bill etc.
should be directly echoed in the software. Often enterprises have
their own specific language – this language should then also be
implemented in the software.

The domain model can consist of different elements:

• Entity is an object with its own identity. In an E-commerce
application the customer or the item could be Entities. Enti-
ties are typically stored in a database.

• Value Objects do not have their own identity. An example is
an address which onlymakes sense in the context of a specific
customer and therefore does not possess an identity.

• Aggregates are composite domain objects. They enable a
simpler handling of invariants and other conditions. For
instance, an order can be an Aggregate of order lines. This
allows for instance to ensure that the order of a new customer
does not surpass a certain limit. The invariant has to be
fulfilled via a calculation of values from the order lines so
that the order as Aggregate can ensure these conditions.

• Services contain business logic. DDD focuses on themodeling
of business logic as Entities, Value Objects and Aggregates.
However, logic which accesses multiple of these objects
cannot be modelled in one of these objects. For this purpose
there are Services.

• Repositories serve to access the entirety of all Entities of a
type. Typically, some kind of persistence, for example in a
database, is what is used to implement a Repository.

The implementation of a domainmodel from these components and
also the idea ofUbiquitous Language facilitate the design and devel-
opment of object-oriented systems. However, it is not immediately
clear which relevance DDD might have for Microservices.

2 What Are Microservices? 10

Bounded Context

Domain-driven Design does not only provide a guideline for how
a domain model can be implemented, but also for the relationships
between domain models. Having multiple domain models initially
appears unusual. After all, concepts like customer and order are
central for the entire enterprise. Therefore, it seems attractive to
implement exactly one domain model and to carefully consider all
aspects of the model. This should make it easy to implement the
software systems in the enterprise based on these elements.

However, Bounded Context states that such a general model cannot
be implemented. Let’s take the customer of the E-commerce shop
as an example: The delivery address of this customer is relevant in
the context of the delivery process. During the order process, on the
other hand, the specific preferences of the customer matter, and for
billing the options for paying, for which the customer has deposited
data, are most important – for example his/her credit card number
or information for a direct debit.

Theoretically it might be possible to collect all this information in
a general customer profile. However, this profile would then be
extremely complex. Besides, in practice it would not be possible to
handle it: When the data regarding one context change, the model
needs to be changed and this will then concern all components
which use the customer data model – and these can be numerous.
In addition, the analysis needed to arrive at such a customer model
would be so complex that it would be hard to achieve in practice.

Bounded Context and Microservices

Therefore a domain model is only sensible in a certain context – i.e.
in a Bounded Context. For Microservices it makes the most sense
to design them in a way that each Microservice corresponds to
a Bounded Context. This provides an orientation for the domain
architecture of Microservices. This design is especially important

2 What Are Microservices? 11

since a good domain architecture enables independent work on
features. When the domain architecture ensures that each feature is
implemented in an individual Microservice, the implementation of
features can be uncoupled. Since Microservices can even be brought
into production independently of each other, features cannot only
be developed separately, but also rolled out individually.

The independent development of features also profits from the
distribution in Bounded Contexts: When a Microservice is also in
charge of a certain part of the data, the Microservice can introduce
features without causing changes to other Microservices.

When for example in an E-commerce system a payment option via
PayPal is supposed to be introduced, this requires only changes to
theMicroservice for billing thanks toBounded Context. There the UI
elements and the new logic are implemented. As the Microservice
for billing administrates the data for the Bounded Context, only
the PayPal data have to be added to the data of the Microservice.
Changes to a separate Microservice, which administrates the data,
are not necessary. Therefore, the Bounded Context is also an advan-
tage in regards to changeability.

Relationships Between Bounded Contexts

In his book Eric Evans describes different manners how Bounded
Contexts can work together. In the case of Shared Kernel for
instance a shared Bounded Context can be used in which the shared
data are stored. A radical alternative option is Separated Ways:
Here, both Bounded Contexts use completely independent models.
Anticorruption Layer uncouples two domain models. Thereby it is
for instance possible to prevent that an old and hard to understand
data model from a mainframe has to be used in the remainder of
the system. With the aid of an Anticorruption Layer the data are
transferred into a new, easily understandable representation.

Of course, depending on the model used for the relationships be-
tween the Bounded Contexts more or less communication between

2 What Are Microservices? 12

the teams working on the Microservices will be necessary.

In general, it is therefore conceivable that a domainmodel also com-
prises multiple Microservices. Maybe it is sensible in the example
of the E-commerce system that the modeling of the basic data of
a customer is implemented in one Microservice and only specific
data are stored in the otherMicroservices – following the concept of
Shared Kernel. However, in such a case more coordination between
Microservices might be necessary which can interfere with their
separate development.

2.3 Conway’s Law

Conway’s Law³ was coined by the American computer scientist
Melvin Edward Conway and states:

Organizations which design systems can only create such
designs which reflect the communication structures of these
organizations.

The reason behind Conway’s Law is that each organizational unit
designs a certain part of the architecture. If two parts of the
architecture are supposed to have an interface, coordination is
required regarding this interface – and therefore a communication
relationship between the organizational units which are responsible
for the respective parts.

The Law as a Limit for Architecture

An example for the effects of the Law: An organization forms one
team of experts each for the web UI, the logic in the backend and

³http://www.melconway.com/research/committees.html

http://www.melconway.com/research/committees.html
http://www.melconway.com/research/committees.html

2 What Are Microservices? 13

for the database (compare Fig. 2). This organization has advantages:
The technical exchange between experts is relatively simple and
holiday replacements are easy to organize. Therefore, the idea to
have employees with similar qualification work together in one
team is not very far fetched.

However, according to Conway’s Law the three teams will create
artifacts in the architecture. A database layer, a backend layer and
a UI layer will be created.

Fig. 2: Team setup by technical skills

This architecture entails a number of disadvantages:

• To implement a feature, the customer has to talkwith all three
teams. He/she has to explain the requirements for the new
feature to each of the three teams. When the customer does
not have detailed knowledge about the system architecture,
the teams will have to discuss with him/her how the func-
tionalities can be implemented in the different layers.

• The teams have to coordinate their work for instance in
regards to interfaces.

2 What Are Microservices? 14

• In addition, it has to be ensured that each team delivers its
part of the work in time. The backend can hardly implement
new features without changes to the database. Likewise, the
UI cannot be implemented without changes to the backend.

• The dependencies and the resulting need for communication
slow down the implementation of the feature. The database
team can only deliver the changes at the end of its sprint.
As the work of the backend team is based on the changes
introduced by the database team, it has to wait until the
other team is done. Likewise, the UI team has to wait for the
backend team to finish. Therefore, it might take three sprints
until the entire implementation is completed. Of course,
optimizations are possible. However, a completely parallel
implementation is practically impossible.

The way the teams were created results therefore in an architecture
which interferes with a faster implementation of features. This
problem is often not perceived, as the relationship between orga-
nization and architecture is frequently not considered.

Conway’s Law as Enabler

However, it is also possible to deal very differently with Conway’s
Law. It is the explicit aim of Microservices to implement a domain
architecture where each Microservice implements a meaningful
part of the architecture e.g. a Bounded Context. That facilitates and
parallelizes the work on domain aspects. Therefore, there is another
way to handle Conway’s Law in the context of Microservices:
Instead of letting the architecture be a result of the organization,
the architecture drives the organization. The organization gets
structured in the way that best supports the architecture.

2 What Are Microservices? 15

Fig. 3: Team setup by functionalities

Fig. 3 shows a possible architecture for a Microservice-based sys-
tem: There is one component each for product search, the handling
of customers and the order process. For each Microservice there is
a team which implements this Microservice. Thereby the domain-
based distribution into Microservices is not only implemented at
the level of architecture, but also at the organizational level. This
supports the architecture: Transgressing the architecture gets diffi-
cult because according to Conway’s Law the organization enforces
a domain-based architecture.

Nevertheless, the different technical artifacts have to be imple-
mented in the Microservices. Accordingly, the required technical
skills have to be present in the different teams. Within a team the
coordination of experts is profoundly easier than across teams. For
this reason, requirements which have to be implemented across
different technical artifacts are now easier to implement.

Organizational Compromises

In practice, even in a system structured as described with a support-
ing organization there are nevertheless still challenges to deal with.
In the end, features are supposed to be implemented in the system.

2 What Are Microservices? 16

These features are sometimes not limited to one Microservice, but
require changes tomultipleMicroservices. Besides, sometimesmore
changes have to be introduced into a Microservice than one team
can handle. In practice, it has proven best to have one team in
charge of a Microservice, but to allow also other teams to modify
the Microservice. When a feature requires changes to multiple
Microservices, one team can introduce all these changes without
having to let changes be prioritized by another team. Besides,
multiple teams canwork on oneMicroservice in order to implement
a greater number of features. Nevertheless, the team assigned to
the Microservice is still in charge. In particular, it has to review all
modifications to guide its development.

One Microservice per Team?

By the way, it is not really necessary that one team only implements
one Microservice. A team can definitely also implement multiple
Microservices. However, it is important that a team has a precisely
defined responsibility in the domain architecture. In addition, one
domain aspect should be implemented in as few Microservices
as possible. It can definitely be desirable to implement smaller
Microservices so that one team is in charge of more than one
Microservice.

2.4 Conclusion

The discussion in section 2.1 about the size of Microservices fo-
cuses rather on the technical structure of the system for defining
Microservices. For the distribution according to Bounded Context
(section 2.2) the domain architecture is the most important aspect.
Conway’s Law (section 2.3) states that Microservices also have
effects on the organization. Only together these aspects give a
faithful picture of Microservices. Which of these aspects is the most

2 What Are Microservices? 17

important depends on the use context of the Microservice-based
architectures.

3 Why Microservices?
There is more than one reason to use Microservices. Depending on
the context the architectural designs can look completely differ-
ently. Therefore, it is not only important to know the advantages,
but also to judge their relevance for a concrete project and to
implement a fitting architecture.

3.1 Scaling Agility

As mentioned in section 2.3, Microservices can affect the organiza-
tion. Ideally each Microservice should be developed by one team or
at least exactly one team should be in charge of the Microservice.

This provides options for the scaling of agile projects: Normally
all teams have to coordinate and concertedly work on features.
When each team has its own stream of requirements and can
implement them by changes to its own Microservice, the teams can
work largely independently of each other on features. This allows
to tackle also larger projects in an agile manner. In principle the
system is just divided into multiple small projects which each can
work independently of each other. Apart from supporting a domain
architecture it is also very helpful that Microservices can bring
features into production without influencing other Microservices.
This allows for a largely independent development. In addition
to the independence concerning features, Microservices offer also
technical independence: Technology decisions can be limited to
individual Microservices. This extends the independence the teams
have: They cannot only largely independently implement features,
but also make their own independent technology decisions.

Thereby Microservice-based architectures enable the independent

3 Why Microservices? 19

development of individualMicroservices and therefore facilitate the
scaling of agile processes to larger project organizations.

3.2 Migrating Legacy Applications

Work with legacy code is often difficult: Systems grown over time
are often badly structured so that it is difficult to get an overview.
In addition, the code is often of poor quality, and tests are lacking.
Besides, the technological basis if often outdated so that modern
approaches cannot be used.

Some of these problems can be solved by changing the approach
for modifying the system: Instead of modifying the code of the
legacy system, the system is supplemented or partly replaced at
its external interfaces by Microservices. The advantage: Instead of
editing the badly structured and hard to understand legacy code,
this code is practically left untouched and rather supplemented by
external systems.

The overall goal is the complete replacement of the legacy system
by a multitude of Microservices. However, it is easy to start by
supplementing the legacy system by Microservices. This does not
require a lot of preparations and can thus easily be tried out. Should
Microservices not prove to be a good solution in a specific context,
they are also easy to remove again from the system.

The easy integration ofMicroservices are one reasonwhyMicroser-
vices are so interesting. Replacing a legacy system by a multitude
of Microservices is often a very useful approach to rapidly benefit
in a system from advantages like Continuous Delivery.

3 Why Microservices? 20

3.3 Sustainable Development Speed

Microservice-based architectures distribute a system into multiple
independently deployable services. The distribution of a system into
Microservices is an important architecture decision. It determines
the responsibilities of the components.

In a deployment monolith there is also such an architecture at
the beginning. However, there it is often lost over time since it
is very easy to incorporate new dependencies into a deployment
monolith: It suffices to reference a class somewhere in the code. The
architecture of an E-commerce system might define for instance
that the order process is to call the billing. In contrast, billing
may not call the order process. Dependencies which only go into
one direction have the advantage that modules remain changeable.
In the example it is possible to change the order process without
having to modify billing. However, changing the billing might
affect the order process since the order process uses the billing.

While implementing features in the billing process, a developer
might after all use functionalities from the order process. Some-
thing like that happens easily. Experience shows that this initial
dependency is soon followed by additional ones so that it is at some
point not possible anymore to go on to develop the two components
independently since they are using each other.

In the case of Microservices it is not so easy to use another
Microservice just like that. Microservices have each an interface,
and it is only possible to use them via their interfaces. This requires
to call the interface via technologies such as REST or messaging.
This does not happen just by mistake.

If the Microservice intended to be used is developed by another
team, it can even be necessary to contact this team. Ultimately, the
distribution of architecture into Microservices is relatively stable,
and in contrast to deployment monoliths the architecture cannot
easily get lost. Of course, similar results can also be accomplished

3 Why Microservices? 21

by other measures enforcing architecture integrity. There are for
instance architecture tools which alert developers to their trans-
gression of architecture rules e.g. Structure101⁴ or Sonargraph⁵.
However, in the case of Microservices such measures are already
integrated into the system.

Replaceability

Another important characteristic of Microservices is their replace-
ability: Without much effort a Microservice can be replaced by
a new implementation. This solves another problem of legacy
systems: When a system cannot be maintained anymore, it is often
also impossible to rewrite it as the expenditure would just be too
large. However, to replace a Microservices is not very difficult.

Conclusion

Within a Microservice-based system it should also in the long run
be easy to implement new features since a Microservice is small.
If a Microservice should nevertheless stop to be maintainable at
some point, it can be replaced. The architecture of the whole system
can be expected to be stable in the long run. Therefore, the long
term maintainability of the system can be ensured. In summary,
Microservice-based systems promise a lasting good maintainability
and changeability of the software system.

3.4 Robustness

In aMicroservice-based system there is a high robustness in regards
to certain problems - in contrast to deployment monoliths: When
a functionality in a deployment monolith uses up a lot of CPU

⁴http://structure101.com/
⁵https://www.hello2morrow.com/products/sonargraph

http://structure101.com/
https://www.hello2morrow.com/products/sonargraph
http://structure101.com/
https://www.hello2morrow.com/products/sonargraph

3 Why Microservices? 22

or memory, other modules will be affected. If in the worst case a
module causes the system to break down, all other modules will
likewise not be available anymore.

A Microservice is a separate process or even an individual vir-
tual machine. Therefore, a problem in one Microservice does not
influence another Microservice since the operating system or the
virtualization isolates the Microservices from each other.

Nevertheless, Microservices are distributed systems. They run on
multiple servers and use the network. Servers and network can fail.
Accordingly, a Microservice-based system in its entirety should not
be very robust since it is more affected by these dangers.

Therefore, Microservices have to be safeguarded from the failure
of other Microservices. This is called “Resilience”. Resilience can be
implemented in very different ways: When an order process cannot
be finished, it might be an option to try again later. When a credit
card cannot be verified, it might be a possibility to nevertheless
perform the order up to a certain upper limit. What this upper
limit is, would have to be decided as part of the requirements of
the system.

Resilience allows to make a Microservice-based system very robust.
The basis for this is the strict separation in processes or virtual
machines.

3.5 Continuous Delivery

Continuous Delivery⁶ is an approach where software is regularly
brought into production. The basis for this is mainly a largely
automated process as illustrated in Fig. 4:

• In the commit phase unit tests and static code analyses are
performed.

⁶http://continuous-delivery-book.com

http://continuous-delivery-book.com/
http://continuous-delivery-book.com/

3 Why Microservices? 23

• Automated acceptance tests ensure that the software cor-
rectly implements features.

• Capacity tests on the other hand check whether the perfor-
mance is fine and whether the expected load can be handled.

• Manual tests can address new features, but also error-prone
areas.

• In the end the software goes into production.

Fig. 4: Continuous Delivery Pipeline

Continuous Delivery is hard to implement in the context of deploy-
ment monoliths:

• Automating tests and deployments is complex since deploy-
ment monoliths are difficult to bring into production. The
database which can be quite large and often contains a lot of
data plays for instance a central role. In addition, many third
party systems need to be integrated or simulated.

• The tests are laborious. Especially for deployment monoliths
modifications can easily have unintended side effects. There-
fore a comprehensive regression test has to be performed
for each change. This causes a lot of effort and slows the
Continuous Delivery Pipeline down.

• Finally, it is hard to safeguard a release. It would be con-
ceivable to create a second environment, to deploy the new
version in this environment and only to switch to the new
version when it has been tested once more. In such a case it
is also possible to fall back to the old version. However, for a
deploymentmonolith such approaches are hard to implement
because the required environment is too large and complex.

Microservices are independent deployment units. Therefore, they
can have independent ContinuousDelivery Pipelines. These Pipelines

3 Why Microservices? 24

can be created relatively easily. In addition, it is comparably fast
to bring a Microservice through the Continuous Delivery Pipeline
into production. Moreover, deployments of Microservices are easier
to safeguard. All the problems concerning Continous Delivery in
the context of deployment monoliths can be solved by the smaller
size of Microservices. Thus Continuous Delivery is profoundly
facilitated by Microservices.

Of course some measures are necessary to ensure the indepen-
dent deployment of Microservices. Nevertheless, the advantages
in regards to Continuous Delivery are for many architects and
developers an important reason to get interested in Microservices.

3.6 Independent Scalability

EachMicroservice runs as an individual process, sometimes even in
a separate virtual machine. This allows to scale just the concerned
Microservice when a certain functionality is used especially heavily
while the other Microservices continue to run with the same
capacity.

This does not sound impressive at the start. However, in practice
this characteristic of Microservices leads to a number of profound
advantages since scaling is facilitated. In general, performance re-
quirements which are limited to certain cases are really demanding.
The independent scalability of Microservices allows to concentrate
on the ones, which are under heavy load, and to use much less
resources to deal with the problem than would be the case for
a deployment monolith. This can also be a relevant reason for
introducing Microservices.

3 Why Microservices? 25

3.7 Technology Freedom

In principle each Microservice can be implemented in a different
technology. Of course, this renders the system overall more com-
plex. This complexity can be limited by the use of standards for
operations, monitoring, log formats or deployment. This will ensure
at least that the operation is largely uniform.

Still the technology freedom allows for example to use an indi-
vidual search technology for the product search without requiring
extensive coordination with other Microservices and teams. When
a team requires a bugfix in a library and therefore wants to use
a new version, this change is likewise limited to one team and can
therefore be performed by this one team which then carries also the
risk. In case of a deployment monolith an extensive coordination
would be necessary and accordingly also more tests.

In the end new technologies can be tested without a large migration
effort. Risk and expenditure are limited: Initially a single Microser-
vice can be migrated. If the migration does not work, only this one
Microservice will fail and, besides, in case of larger problems only
this one Microservice has to be newly implemented.

A special project for bringing a deployment monolith to another
technology is not necessary for Microservices and the migration is
much easier. This entails also other positive consequences: Devel-
opers are free to try out new technologies which generally increases
motivation.

3.8 Conclusion

Microservices have a large number of advantages. Which advan-
tages are in the end the most important, depends on the concrete
context. For many projects the focus is on the replacement of a
deployment monolith. In such a case the easy handling of the

3 Why Microservices? 26

legacy system (see section 3.2) is an important advantage during
migration. Reasons to migrate are in such cases often the wish to
scale agile processes (section 3.1) or for an easier implementation of
Continuous Delivery (section 3.5).

However, there are also very different scenarios where for instance
the objective is to increase the stability of an application in opera-
tion. In this case robustness (section 3.4) is an important motivation,
and independent scaling (section 3.6) can be another important
factor.

Last but not least Microservices promises to make systems main-
tainable even in the long run (section 3.3) and can use many
different technologies where they are most useful (section 3.7).

Therefore, the relevant advantages depend on the respective con-
text. How Microservices should be used in the context of a certain
system, likewise depends on the specific advantages which are
supposed to be realized.

4 What’s Next?
This primer can only provide a short introduction into Microser-
vices. Therefore, it is an important question how to go on after
reading this brochure.

4.1 Microservices: Just a Hype?

Microservices are more than just a hype. Amazon employs the
distribution into teams with their own technologies already since
2006. This architecture and this approach is what is nowadays
called Microservices. Pioneers like Netflix rightly expected so great
advantages from this architecture approach that they were willing
to heavily invest into the creation of the necessary infrastructures.
Nowadays the technologies they created are available for every-
body so that the introduction and the use of Microservices are much
easier and less costly.

In addition, the trends to agility, Continuous Delivery and Cloud
are reflected by Microservice-based architectures. Even beyond
these criteria there are good reasons for Microservices â€“ ranging
from individual scalability to robustness. Therefore, Microservices
are not only a good supplement for a number of trends, but they
represent also a solution for different problems. The trend to use
Microservices is thus based on a number of reasons. Therefore it is
extremely unlikely that it will just be a short-lived hype.

4 What’s Next? 28

4.2 Self-contained Systems

An approach based on Microservices are Self-contained Systems⁷.
They focus on coarse-grained systems which allow teams to work
independently. They should be integrated on the UI level and
only use asynchronous communication among each other. This
is a more coarse-grained architecture than Microservices. While
Microservices can be used in many different scenarios and for
many different purposes, as explained in chapter 3, Self-contained
Systems represent a more specific approach toMicroservices, which
is custom-tailored to solve problems of large projects.

4.3 Examples

The primer discusses Microservices only theoretically and does not
introduce technologies for implementation.

http://ewolff.com/microservices-demos.html shows several exam-
ples for the different options to implement microservices:

Synchronous Communication

There are several options for synchronous communication between
microservices:

• The Consul demo⁸ is written in Javawith Spring Cloud / Boot.
The demo uses Consul for service discovery, Apache httpd for
routing, Hystrix for resilience and Ribbon for load balancing.
It also provides a Prometheus installation⁹ formonitoring and
an ELK stack¹⁰ for log analysis.

⁷http://scs-architecture.org
⁸https://github.com/ewolff/microservice-consul
⁹https://github.com/ewolff/microservice-consul#prometheus
¹⁰https://github.com/ewolff/microservice-consul#elastic-stack

http://scs-architecture.org/
https://github.com/ewolff/microservice-consul
https://github.com/ewolff/microservice-consul#prometheus
https://github.com/ewolff/microservice-consul#elastic-stack
http://scs-architecture.org/
https://github.com/ewolff/microservice-consul
https://github.com/ewolff/microservice-consul#prometheus
https://github.com/ewolff/microservice-consul#elastic-stack

4 What’s Next? 29

• The Netflix demo¹¹ uses the Netflix stack. The demo is writ-
ten in Java with Spring Cloud / Boot. It uses Netflix Eureka
for service discovery, Netflix Zuul for routing, Hystrix for
resilience and Ribbon for load balancing.

• Kubernetes is a system to run Docker containers in a cluster.
The Kubernetes demo¹² is written in Java with Spring Cloud
/ Boot. It uses Kubernetes for service discovery, routing and
load balancing. The demo also uses Hystrix for resilience. The
code does not depend on Kubernetes.

• Cloud Foundry is a PaaS. It provides an application with an
environment to run in. The Cloud Foundry demo¹³ is written
in Java with Spring Cloud / Boot. Uses Cloud Foundry for
deployment, service discovery, routing and load balancing.
The demo also uses Hystrix for resilience. The code does not
depend on Cloud Foundry.

Asynchronous Communication

Asynchronous communication makes it easier to deal with unreli-
able networks and services:

• Kafka¹⁴ uses Kafka for communication. Kafka is a message-
oriented middleware and allows systems to send messages to
one another.

• Atom¹⁵ uses REST / HTTP for asynchronous communication
with the Atom format.

UI Integration

UI integration provides very loose coupling:

¹¹https://github.com/ewolff/microservice
¹²https://github.com/ewolff/microservice-kubernetes
¹³https://github.com/ewolff/microservice-cloudfoundry
¹⁴https://github.com/ewolff/microservice-kafka
¹⁵https://github.com/ewolff/microservice-atom

https://github.com/ewolff/microservice
https://github.com/ewolff/microservice-kubernetes
https://github.com/ewolff/microservice-cloudfoundry
https://github.com/ewolff/microservice-kafka
https://github.com/ewolff/microservice-atom
https://github.com/ewolff/microservice
https://github.com/ewolff/microservice-kubernetes
https://github.com/ewolff/microservice-cloudfoundry
https://github.com/ewolff/microservice-kafka
https://github.com/ewolff/microservice-atom

4 What’s Next? 30

• ESI¹⁶ shows how Edge Side Includes (ESI) can be used to
integrate the UI of microservices. On microservice is written
in Java with Spring Boot, the other one with Go. The Go
microservices is built using multi stage Docker containers.

• jQuery¹⁷ shows how jQuery can be used to integrate the UI
of microservices.

The website for each demo explains how the demo can be built and
started.

4.4 More literature

Additional literature such as the Microservices Book¹⁸ (there is
also a German version¹⁹) by the same author will be needed to
appreciate the full scope of Microservices and to learn how to
actually implement them technically.

The free booklet Microservices Recipes²⁰ gives an overview of tech-
nologies that can be used to implement amicroservices architecture.
It explains the demosmentioned above inmore detail and illustrates
how the technology work and to provide a foundation for the
implementation of a microservices architecture. There is also a
German version²¹).

The book Microservices - A Practical Guide²² contains a more
detailed description of technologies for the implementation of mi-
croservices. In addition, it contains an introduction tomicroservices

¹⁶https://github.com/ewolff/SCS-ESI
¹⁷https://github.com/ewolff/SCS-jQuery
¹⁸http://microservices-book.com
¹⁹http://microservices-buch.de
²⁰http://practical-microservices.com/recipes.html
²¹http://microservices-praxisbuch.de/rezepte.html
²²http://practical-microservices.com/

https://github.com/ewolff/SCS-ESI
https://github.com/ewolff/SCS-jQuery
http://microservices-book.com/
http://microservices-buch.de/
http://practical-microservices.com/recipes.html
http://microservices-praxisbuch.de/rezepte.html
http://practical-microservices.com/
https://github.com/ewolff/SCS-ESI
https://github.com/ewolff/SCS-jQuery
http://microservices-book.com/
http://microservices-buch.de/
http://practical-microservices.com/recipes.html
http://microservices-praxisbuch.de/rezepte.html
http://practical-microservices.com/

4 What’s Next? 31

and an overview of technologies for the monitoring of microser-
vices. There is also a German version²³).

4.5 Final Remark

A final remark: the risk associated with introducing Microservices
is very limited: A first Microservice has just to be developed
and brought into production. This Microservice can for instance
supplement an existing deployment monolith. Should this approach
not work out, it is very easy to remove the Microservice again.

²³http://microservices-praxisbuch.de/

http://microservices-praxisbuch.de/
http://microservices-praxisbuch.de/

	Table of Contents
	1 Introduction
	2 What Are Microservices?
	2.1 Size
	2.2 Bounded Context and Domain-Driven Design
	2.3 Conway's Law
	2.4 Conclusion

	3 Why Microservices?
	3.1 Scaling Agility
	3.2 Migrating Legacy Applications
	3.3 Sustainable Development Speed
	3.4 Robustness
	3.5 Continuous Delivery
	3.6 Independent Scalability
	3.7 Technology Freedom
	3.8 Conclusion

	4 What's Next?
	4.1 Microservices: Just a Hype?
	4.2 Self-contained Systems
	4.3 Examples
	4.4 More literature
	4.5 Final Remark

