
Continuous Delivery: What and How?
By Eberhard Wolff

Date: Feb 23, 2017

Sample Chapter is provided courtesy of Addison‑Wesley Professional.

Return to the article

Software architect Eberhard Wolfe introduces the term Continuous Delivery and explains which

problems Continuous Delivery solves and how. A first introduction into the Continuous Delivery

pipeline is also given.

1.1 Introduction: What Is Continuous Delivery?

This question is not so easy to answer. The inventors of the term do not provide a real definition.1 Martin Fowler focuses in

his discussion2 of Continuous Delivery on the fact that software can be brought into production at any time. This requires

an automation of the processes necessary for the installation of software and feedback about software quality. Wikipedia3

on the other hand defines Continuous Delivery as an optimization and automation of the software release process.

In the end, the main objective of Continuous Delivery is to analyze and optimize the process leading up to the release of
software. Exactly speaking this process is often blended out during development.

1.2 Why Software Releases are So Complicated
Software releases are a challenge—very likely every IT department has already worked during a weekend to bring a software
release into production. Such events often end with bringing the software somehow into production—because from a certain
point the path back to the old version is even more dangerous and difficult than the path ahead. However, the installation of
the release is then often followed by a long phase in which the release has to be stabilized.

1.2.1 Continuous Integration Creates Hope

Nowadays it is the release into production that represents a challenge. Not so long ago the problems started much earlier:
Individual teams worked independently on their modules, and prior to the release the different versions first had to be
integrated. When the modules were put together for the first time, the system frequently did not even compile. Often it took
days or even weeks until all changes were integrated and compiled successfully. Only then could the deployments
commence. These problems have mostly been solved by now: All teams work on a shared version of the code that is
permanently automatically integrated, compiled, and tested. This approach is called Continuous Integration. The required
infrastructure for Continuous Integration is detailed in Chapter 3, “Build Automation and Continuous Integration.” The fact
that the former problems associated with this phase have been solved raises hopes that there will also be solutions for the
problems arising during the other phases leading up to production.

1.2.2 Slow and Risky Processes

The processes in the later phases are often highly complex and elaborate. In addition, manual steps render them very
tedious and error‑prone. This is true for the release into production, but also for the preceding phases—for example, during
testing. Especially during a manual process, which, to make things worse, is only performed a few times per year, errors are
likely to occur. This of course contributes to the risk associated with the overall procedure.

Because of the high risk and complexity, releases are not very frequently brought into production. In the end this causes the
processes to take even longer due to lack of practice. In addition, this makes it difficult to optimize the processes.

1.2.3 It’s Possible to be Fast

On the other hand, there are always possibilities to bring a release rapidly into production in an emergency—for instance,
when an error has to be urgently repaired. However, in such a case all the tests and therefore all the safety nets, which are
an integral part of the standard process, are omitted. This is of course a pretty high risk—there are good reasons to
normally run those tests.

Therefore, the normal path into production is slow and risky—and in emergencies the path can be faster, but at the expense
of even more risk.

http://www.informit.com/
http://www.informit.com/authors/bio/318f7dc3-5ed2-4e7f-bdb6-e38da7b7d91f
http://www.awprofessional.com/
http://www.informit.com/articles/article.aspx?p=2765001
javascript:popUp('/content/images/chap1_9780134691473/elementLinks/ch01fn01.html')
javascript:popUp('/content/images/chap1_9780134691473/elementLinks/ch01fn02.html')
javascript:popUp('/content/images/chap1_9780134691473/elementLinks/ch01fn03.html')

1.3 Values of Continuous Delivery
Using the motivation and the approaches of Continuous Integration, we want to optimize the way for releases into
production.

A fundamental principle of Continuous Integration is: “If it hurts, do it more often and bring the pain forward.” What sounds
like masochism is in reality an approach for problem solving. Instead of avoiding problems with releases by bringing as few
releases as possible into production, these processes should be performed as often and as early as possible in order to
optimize them as quickly as possible—with regards to speed and with regards to reliability. Consequently, Continuous
Delivery forces the organization to change and to adopt a new way of working.

In the end this approach is not really surprising: As mentioned, every IT organization is able to rapidly bring a fix into
production—and in such a scenario it is common practice to perform only a fraction of the usual tests and security checks.
This is possible because the change is small and therefore represents only a small risk. Here, another approach for
minimizing risk becomes apparent: Instead of trying to safeguard against failures via complex processes and rare releases,
it is also possible to more frequently bring small changes into production. This approach is in essence identical to the
Continuous Integration strategy: Continuous Integration means that even small software changes by the individual
developers and the team are permanently integrated instead of having the teams and developers work independently for
days or weeks and integrating all the accumulated changes only at the end—a strategy that frequently causes substantial
problems; in some cases the problems are so large that the software cannot be compiled at all.

However, Continuous Delivery is more than just “fast and small.” Continuous Delivery is based on different values. From
these values, concrete technical measures can be deduced.

1.3.1 Regularity

Regularity means to execute processes more frequently. All processes that are necessary to bring software into production
should regularly be performed—and not only when a release has to be brought into production. For example, it is necessary
to build test and staging environments. The test environments can be used for acceptance or technical tests. The staging
environments can be used by the final customer for testing and evaluating the features of a new release. By providing these
environments, the process for the generation of an environment can turn into a regular process that is not merely
performed when the production environment has to be created. To generate this multitude of environments without too
much effort the processes have to become largely automated. Regularity usually leads to automation. Similar rules apply to
tests: It does not make sense to postpone the necessary tests until right before the release—instead they should rather be
performed regularly. Also in this case this approach basically forces automation in order to limit the necessary effort.
Regularity also leads to a high degree of reliability—processes that are frequently performed can be reliably repeated and
executed.

1.3.2 Traceability/Confirmability

All changes to the software that is supposed to be brought into production and to the infrastructure that is required for the
release have to be traceable. It has to be possible to reconstruct each state of the software and of the infrastructure. This
leads to versioning that does not only comprise the software, but also the necessary environments. Ideally, it is possible to
generate each state of the software together with the environment required for the operation in the right configuration.
Thereby all changes to the software and the environments can be traced. Likewise it is very easy to generate a suitable
system for error analyses. And finally, changes can be documented or audited in this manner.

One possible solution for the problem is that production and staging environments are only accessible for certain persons.
This is supposed to avoid “quick fixes” that are not documented and cannot be traced anymore. Besides, security
requirements and data security argue against accessing production environments.

With Continuous Delivery, interventions into an environment are only possible when an installation script is changed. The
changes to the scripts are traceable when they are deposited in a version control system. The developers of the scripts also
do not have access to the production data so that there are also no problems with data security.

1.3.3 Regression

To minimize the risk associated with bringing software into production, the software has to be tested. Of course, the correct
functioning of new features has to be assured during the testing. However, a lot of effort arises from the attempt to avoid
regressions—that is, errors that are introduced by modifications in already tested software parts. This would in effect
require that all tests be rerun in case of a modification since in the end a modification at one site of the system might cause
an error somewhere else. This necessitates automated tests. Otherwise the required effort for the execution becomes much
too high. Should an error nevertheless make its way into production, it can still be discovered by monitoring. Ideally, there is
the possibility to install as simply as possible an older version on the production system without the error (rollback) or to
bring a fix quickly into production (roll forward). In the end the idea is to have a kind of early warning system that takes
measures throughout different phases of the project, like test and production, to discover and solve regressions.

1.4 Benefits of Continuous Delivery
Continuous Delivery offers numerous benefits. Depending on the scenario the different advantages can be of varying
importance—consequently this will influence how Continuous Delivery is implemented.

1.4.1 Continuous Delivery for Time to Market

Continuous Delivery decreases the time required for bringing changes into production. This generates a substantial benefit
on the business end: It becomes much easier to react to changes of the market.

However, the advantages extend beyond a faster time to market: Modern approaches like Lean Startup4 advocate a strategy
that benefits even more from the increased speed. The focus of Lean Startup is to position products on the market and to
evaluate their chances at the market while investing as little effort as possible in doing so. Just like with scientific
experiments, it is defined beforehand how the success of a product on the market can be measured. Then the experiment is
performed, and afterwards the success or failure is measured.

1.4.2 One Example

Let us look at a concrete example. In a web shop a new feature is supposed to be created: Orders can be delivered on a
defined day. As a first experiment the new feature can be advertised. Here the number of clicks on a link within the
advertisement can be used as an indication for the success of this experiment. At this point no software has been developed
yet—that is, the feature is not yet implemented. If the experiment did not lead to a promising result, the feature does not
appear to be beneficial and other features can be prioritized instead—without much effort having been invested.

1.4.3 Implementing a Feature and Bringing It into Production

If the experiment was successful, the feature will be implemented and brought into production. Even this step can be
conducted like an experiment: Metrics can help to control the success of the feature. For example, the number of orders
with a fixed delivery date can be measured.

1.4.4 On to the Next Feature

The analysis of the metrics reveals that the number of orders is high enough—interestingly most orders are not sent directly
to the customer, but to a third person. Additional measurements show that the ordered items are obviously birthday
presents. Based on this information the feature can be expanded—for example with a birthday calendar and
recommendations for suitable presents. This requires of course that such additional features are designed, implemented,
brought into production and finally evaluated with regards to their success. Alternatively, there might also be options to
evaluate the potential market success of these features without any implementation—via advertisements, customer
interviews, surveys, or other approaches.

1.4.5 Continuous Delivery Generates Competitive Advantages

Continuous Delivery makes it possible to more rapidly bring required software changes into production. This allows
enterprises to more quickly test different ideas and to develop their business model further. This creates a competitive
advantage: Since more ideas can be evaluated, it is easier to filter out the right ones—and this is not based on subjective
estimations of market chances, but on the basis of objectively measured data (Figure 1.1).

Figure 1.1 Reasons for Continuous Delivery in a startup

1.4.6 Without Continuous Delivery

Without Continuous Delivery the feature for the fixed delivery dates would have been planned and brought into production
during the next release—this would likely have taken a number of months. Before the release, marketing would hardly have
dared to advertise the feature since the long time up to the next release would render such advertisements futile. If the
feature had not proven successful in the end, there would have been high costs caused by its implementation without
creating any benefit. Evaluating the success of a new feature would certainly also be possible in the classical approach;
however, the reaction would be drastically slower. Further developments such as the features supporting the buying of
birthday presents would reach the market much later since they would require that the software be brought into production
again and the time‑consuming release process be run through a second time. Besides, it remains doubtful whether the
success of the feature would have been analyzed in enough detail to recognize the potential for additional features
supporting the shopping for birthday presents.

javascript:popUp('/content/images/chap1_9780134691473/elementLinks/ch01fn04.html')
javascript:popUp('/content/images/chap1_9780134691473/elementLinks/01fig01_alt.jpg')
javascript:popUp('/content/images/chap1_9780134691473/elementLinks/01fig01_alt.jpg')
javascript:popUp('/content/images/chap1_9780134691473/elementLinks/01fig01_alt.jpg')

1.4.7 Continuous Delivery and Lean Startup

Therefore, optimization cycles can be passed through much faster thanks to Continuous Delivery because each feature can
be brought into production practically at any time. This makes approaches like Lean Startup possible. This influences how
the business end is working: It has to more rapidly define new features and does not have to focus on long range planning
anymore, but can immediately react to the outcome of the current experiments. This is especially easy in startups, but such
structures can also be built in classical organizations. The Lean Startup approach has, unfortunately, a misleading name: It
is an approach where new products are positioned on the market via a series of experiments, and this approach can of
course also be implemented in classical enterprises, not only in startups. It can also be used when products have to be
delivered classically—for instance, on media such as CDs, with other complex installation procedures, or as part of another
product such as a machine. In such a case the installation of the software has to be simplified or ideally automated. Besides
a range of customers has to be identified who would like to test new software versions and be willing to provide feedback
on them—that is, classical beta testers or power users.

1.4.8 Effects on the Development Process

Continuous Delivery influences the software development process: When individual features are supposed to be brought into
production, the process has to support this. Some processes use iterations of one or several weeks’ length. At the end of
each iteration a new release with several features is brought into production. This is not an ideal approach for Continuous
Delivery because in this way individual features cannot pass through the pipeline on their own. This also poses obstacles for
the Lean Startup approach: When several features are rolled out at the same time, it is not obvious which change influences
the measured values. Let us assume that the option for delivery on a fixed date is introduced in parallel with a change of the
shipment costs—it will not be possible to distinguish which of the two changes had a greater influence on the higher
number of sold items.

Therefore, processes like Scrum, XP (Extreme Programming), and of course the waterfall are impedimentary since they

always bring several features together into production. Kanban,5 on the other hand, focuses on bringing a single feature
through the different phases into production. This fits ideally with Continuous Delivery. Of course, the other processes can
also be modified in ways that allow them to support the delivery of individual features. However, in such a case the
processes have been adapted and are not implemented according to the textbook anymore. Another possibility is to initially
deactivate the additional features in order to bring several features together in one release into production, but still be able
to measure their effects separately.

In the end this approach also means that teams include multiple different roles. In addition to development and operation of
the features, business roles such as marketing are conceivable. Thanks to the decreased organizational hurdles, the
feedback from the business end can be translated into experiments even faster.

Try and Experiment

Gather information about Lean Startup and Kanban. Where did Kanban come from originally?

Choose a project you know or a feature in a project:

What could a minimal product look like? The minimal product should give an idea about the market chances of
the planned complete product.

Is it also possible to evaluate the product without software? Is it, for instance, possible to advertise it? Are
interviews of potential users an option?

How can the success of the feature be measured? Is there, for instance, an influence on sales, a number of clicks,
or another value that could be measured?

How much time in advance do marketing and sales typically have for planning a product or feature? How does
that fit to the Lean Startup idea?

1.4.9 Continuous Delivery to Minimize Risk

The use of Continuous Delivery as described in the last section goes together with a certain business model. However, for
classical enterprises the business often depends on long‑range planning. In such a case an approach like Lean Startup
cannot be implemented. In addition, there are many enterprises for which time to market is not a decisive factor. Not all
markets are very competitive in this regard. This can of course change when such companies are suddenly confronted with
competitors that are able to enter the market with a Lean Startup model.

In many scenarios time to market cannot motivate the introduction of Continuous Delivery. Still the techniques can be useful
since Continuous Delivery offers additional benefits:

Manual release processes require a lot of effort. It is no rare event that entire IT departments are blocked for a whole
weekend for a release. And after a release there is frequently still extensive follow‑up work to do.

javascript:popUp('/content/images/chap1_9780134691473/elementLinks/ch01fn05.html')

Also the risk is high: The software rollout depends on many manual modifications, which easily leads to mistakes. If
the errors are not discovered and fixed in time, this can have far‑reaching consequences for the enterprise.

The sufferers are found in the IT departments: Developers and system administrators who work through weekends and
nights to bring releases into production and to fix errors. In addition to working long hours they are subjected to high stress
because of the high risk. And the risks should not be underestimated: Knight Capital, for instance, lost $440M because of a

failed software rollout.6 As a consequence the company went into insolvency. A number of questions7 arise from such
scenarios—in particular why the problem occurred, why it wasn’t noticed in a timely manner, and ultimately how such events
can be prevented in other environments.

Continuous Delivery can be a solution for such situations: Fundamental aspects of Continuous Delivery are the higher
reliability and the quality of the release process. This allows developers and system administrators to sleep calmly in the
true sense of the word. Different factors are relevant for this:

Due to the higher level of automation of the release processes, the results become easier to reproduce. Thus, when
the software has been deployed and tested in a test or staging environment, the exact same result will be obtained in
production because the environment is completely identical. This allows largely eliminating sources of error, and
consequently the risk decreases.

In addition, testing software becomes much easier since the tests are largely automated. This increases the quality
further as the tests can be performed more frequently.

When there are more frequent deployments, the risk decreases likewise since fewer changes are brought into
production per deployment. Fewer changes translate into a smaller risk that an error has crept in.

In a way, the situation is paradoxical: The classical IT tries to bring releases as seldom as possible into production since they
are associated with a high risk. During each release an error with potentially disastrous consequences can creep in. Fewer
releases should therefore result in fewer problems.

Continuous Delivery on the other hand advocates frequent releases. In that case fewer changes go live at each release,
which also decreases the probability for the occurrence of errors. Automated and reliable processes are a prerequisite for
this strategy. Otherwise the frequent releases lead to an overload of the IT personnel performing manual processes, and in
addition the risk increases since errors are more prone to occur during manual processes. Instead of aiming at a low release
frequency the relevant process are automated to decrease the release‑associated risk. It is of course an added advantage
that in case of a high release frequency the individual releases comprise fewer changes so that the inherent risk of errors is
lower.

Here, the motivation for Continuous Delivery (Figure 1.2) thus profoundly differs from that of the Lean Startup idea: The
focus is on reliability and a better technical quality of the releases—not on time to market. And the beneficiaries are the IT
departments—not only the business domains.

Figure 1.2 Reasons for Continuous Delivery in an enterprise

Since the benefits are different, other compromises can be made: For example, investing in a Continuous Delivery pipeline is
often worthwhile even if it does not extend all the way up to production—that is, when the production environment still has
to be built manually. In the end the production has only to be built once for each release, but multiple environments are
required for the different tests. However, if time to market is the main motivation for Continuous Delivery, it is essential that
the pipeline include production.

Try and Experiment

Look at your current project:

Where do problems typically arise during installation?

javascript:popUp('/content/images/chap1_9780134691473/elementLinks/ch01fn06.html')
javascript:popUp('/content/images/chap1_9780134691473/elementLinks/ch01fn07.html')
javascript:popUp('/content/images/chap1_9780134691473/elementLinks/01fig02_alt.jpg')
javascript:popUp('/content/images/chap1_9780134691473/elementLinks/01fig02_alt.jpg')
javascript:popUp('/content/images/chap1_9780134691473/elementLinks/01fig02_alt.jpg')

Could these problems be solved by automation?

Where should the current approaches be simplified in order to facilitate automation and optimization? Evaluate
the required effort and the expected benefit.

How are production systems and test systems currently built? By the same team? Would it be conceivable to apply
automation to both areas or only to one of the two?

For which systems would automation be useful? How often are the systems built?

1.4.10 Faster Feedback and Lean

When a developer modifies the code, she receives feedback from her own tests, integration tests, performance tests, and
finally from production. If changes are brought into production only once per quarter, several months can pass between the
code modifications and the feedback from production. The same can hold true for acceptance or performance tests. If an
error occurs then, the developer has to think back to what it was she had implemented months ago and what the problem
might be.

With Continuous Delivery the feedback cycles become much faster: Every time the code passes through the pipeline the
developer and his/her entire team receive feedback. Automated acceptance and capacity tests can be run after each change.
This enables the developer and the development team to recognize and fix errors much more rapidly. The speed of
feedback can be further increased by preferring fast tests, such as unit tests, and by first testing broadly and only
afterwards testing deeply. This ensures from the start that all features function at least for easy cases—the so‑called “happy
path.” This makes spotting basic errors easier and faster. In addition, tests that are known from experience to fail more
often should be executed at the start.

Continuous Delivery is also in line with Lean thinking. Lean regards everything that is not paid for by the customer as waste.
Any change to the code is waste until it is brought into production since only then will the customer be willing to pay for the
modifications. Besides, Continuous Delivery implements shorter cycle times for faster feedback—another Lean concept.

Try and Experiment

Have a look at your current project:

How much time passes between a code change and

feedback from a Continuous Integration server?

feedback from an acceptance test?

feedback from a performance/capacity test?

bringing it into production?

1.5 Generations and Structure of a Continuous Delivery Pipeline
As already mentioned, Continuous Delivery extends the approach of Continuous Integration to additional phases. Figure 1.3
offers an overview of the phases.

Figure 1.3 Phases of a Continuous Delivery pipeline

This section introduces the structure of a Continuous Delivery environment. It is oriented along Humble et al. (see footnote
1) and consists of the following phases:

The commit phase comprises the activities that are typically covered by a Continuous Integration infrastructure such
as the build process, unit tests, and static code analysis. Chapter 3 discusses this part of the pipeline in detail.

Chapter 4, “Acceptance Tests.” Strictly speaking, the topic is automated tests: Either the interactions with the GUI are
automated to test the system or the requirements are described in natural language in a manner that allows them to
be used as automated tests. From this phase on, if not before it is necessary to generate environments on which the
applications can run. Therefore, Chapter 2, “Providing Infrastructure,” deals with the question of how such
environments can be generated.

javascript:popUp('/content/images/chap1_9780134691473/elementLinks/01fig03_alt.jpg')
javascript:popUp('/content/images/chap1_9780134691473/elementLinks/01fig03_alt.jpg')
javascript:popUp('/content/images/chap1_9780134691473/elementLinks/01fig03_alt.jpg')

Capacity tests (Chapter 5, “Capacity Tests”) ensure that the software can cope with the expected load. For this
purpose an automated test should be used that unambiguously indicates whether the software is sufficiently fast. The
relevant point is not only performance, but also scalability. Therefore, the test can also take place in an environment
that does not correspond to the production environment. However, the environment has to be able to deliver reliable
results about the behavior in production. Depending on the concrete use case other non‑functional requirements,
such as security, can also be tested in an automated fashion.

During explorative tests (Chapter 6, “Exploratory Testing”) the application is not examined based on a strict test plan.
Instead, domain experts test the application with a focus on new features and unanticipated behaviors. Thus, even in
Continuous Delivery not all tests have to be automated. In fact, by having a large number of automated tests, capacity
is freed for explorative testing since routine tests do not have to be manually worked off anymore.

The deployment into production (Chapter 7, “Deploy—The Rollout in Production”) merely comprises the installation of
the application in another environment and is therefore relatively low risk. There are different approaches to further
minimize the risks associated with the introduction into production.

During operation of the application, challenges arise—especially in the areas of monitoring and surveillance of log
files. These challenges are discussed in Chapter 8, “Operations.”

In principle, releases are promoted into the individual phases. It is conceivable that a release manages to reach the
acceptance test phase and successfully passes the tests there, but shows too low a performance during the capacity tests. In
such a case the release is never going to be promoted into the following phases, like explorative testing or production. In
this manner, the software has to show that it fulfills increasing requirements before it finally goes into production.

Let us assume for example that the software contains an error in the logic. Such an error would at the latest be discovered
during the acceptance tests, since those check the correct implementation of the application. As a consequence, the pipeline
would be broken off (Figure 1.4). Additional tests are not needed anymore at this point.

Figure 1.4 Continuous Delivery pipeline stops at acceptance tests

The developers will then fix the error, and the software is built anew. This time it also passes the acceptance test. However,
there is still an error in a new function for which there is no automated acceptance test. This error can only be discovered
during the explorative tests. Consequently, this time the pipeline is interrupted at the explorative tests, and the software
does not go into production (Figure 1.5). This prevents testers wasting time with software that does not fulfill the
requirements with regards to load handling, or that contains errors that can be detected by automated tests.

Figure 1.5 Continuous Delivery pipeline stops at explorative tests

In principle, several releases can be processed in the pipeline in parallel. Of course this requires that the pipeline support
multiple releases in parallel—if the tests are running in fixed environments, this is not possible since the environment will
be occupied by a test so that a parallel test of a second release cannot run at the same time.

However, it is very rare that releases are processed in parallel by Continuous Delivery. A project should have exactly one
state in the version administration, which is then promoted through the pipeline. At the most it might happen that
modifications to the software occur with such a speed that a new release is already sent into the pipeline before the
previous release has left the pipeline. Maybe there are exceptions for hotfixes—but one objective of Continuous Delivery is
just to treat all releases equally.

1.5.1 The Example

section P.2). This example is intentionally kept very simple concerning the domain logic. Essentially the first name, name,
and email address of a customer are registered. The registrations are validated. The email address has to be syntactically

javascript:popUp('/content/images/chap1_9780134691473/elementLinks/01fig04.jpg')
javascript:popUp('/content/images/chap1_9780134691473/elementLinks/01fig05_alt.jpg')
javascript:popUp('/content/images/chap1_9780134691473/elementLinks/01fig05_alt.jpg')
javascript:popUp('/content/images/chap1_9780134691473/elementLinks/01fig05_alt.jpg')

correct, and there is only one registration allowed per email address. In addition, a registration can be searched based on
the email address, and can be deleted.

Since the application is not very complex, it is relatively easy to understand so that the reader can concentrate on the
different aspects of Continuous Delivery that are illustrated by the example application.

Technically the application is implemented with Java and the framework Spring Boot. This makes it possible to start the
application, including web interface, without installing a web or application server. Thus the testing becomes easier since no
infrastructure has to be installed. However, the application can also be run in an application or web server like Apache
Tomcat if that is necessary. The data are stored in HSQLDB. This is an in‑memory database that runs inside the Java
process. This measure also reduces the technical complexity of the application.

The source code of the example can be downloaded at http://github.com/ewolff/user‑registration‑V2. An important note:
The example code contains services that run under root rights and can be accessed via the net. This is not acceptable for
production environments because of the resulting security problems. However, the example code is only meant for
experimenting. For that the easy structure of the examples is very useful.

1.6 Conclusion
Putting software into production is slow and risky. Optimizing this process has the potential to make software development
overall more effective and efficient. Continuous Delivery might therefore be one of the best options to improve software
projects.

Continuous Delivery aims at regular, reproducible processes to deliver software—much like Continuous Integration does to
integrate all changes. While Continuous Delivery seems like a great option to decrease time to market it actually has much
more to offer: It is an approach to minimizing risk in a software development project because it ensures that software can
actually be deployed and run in production. So any project can gain some advantage—even if it is not in a very competitive
market where time to market is not that important after all.

© 2018 Pearson Education, Informit. All rights reserved.
800 East 96th Street, Indianapolis, Indiana 46240

http://github.com/ewolff/user-registration-V2

