Async Code Reviews Are Killing
Your Company's Throughput

Ex: Principal @Careem/Uber,
HelloFresh, GetYourGuide

XP, ToC, Lean, Systems Thinking
Rants on

o draganstepanovic.com
o (@d_stepanovic

| put mayo on Q D

http://draganstepanovic.com
http://twitter.com/d_stepanovic

justsharing.dev

PR-based async code review

« Lunch, breaks
« Meetings (standup/refinement/planning/AHM),

@d_stepanovic emails, checking/answering Slack...

While I'm waiting,
let me start working
on something else

« Outside of business hours

ot
o*
ot
.

Ticket 1

Hey, can you
review my PR? Canyay changed here you go merged
: review my PR, YOU's
PLEASE? Oh, | thought this way, approved

can we change this? not that way

Luka wait to processing time ratio

= . T B T 6 O

lead time of multiple days =

What was | curious to see?

e Engagement
e WaitTime
e Size

Engagement

Why was | curious about the engagement?

e Systemic effects of delayed and ‘choked’ feedback
o High-latency, low-throughput feedback
e Engagement by size

engagement

70

60

50

40

30

20

10

1000

@ e

1500

2000
size (LoC)

2500

3000

3500

4000

4500

score

22

20

18

16

14

12

10

engagement per size (comments/100 LoC)

100

80

60

40

20

Lack of engagement/feedback =>
No ability to build the quality in

1000
size (LoC)

2000

score

22

20

18

16

14

12

10

“Never had a huge PR that didn't
look good to me”

| Am Devloper
@iamdevloper

10 lines of code = 10 issues.
500 lines of code = "looks fine."

Code reviews.
10:58 AM - Nov 5, 2013

Q) 4,691 () 8,220 people are talking about this

Wait time

Ema

Luka

While I'm waiting,
let me start working
on something else

@d_stepanovic

Ticket 1
Hey, can you Can you
review my PR? review my PR,

PLEASE?

wait to processing time ratio

Ticket 1

can we change this?

changed

Oh, | thought this way,
not that way

« Lunch, breaks
- Meetings (standup/refinement/planning/AHM),

emails, checking/answering Slack...

« Outside of business hours

here you go

approved

merged

lead time of multiple days

Okay, I'm done
coding and I'd like
to get a feedback

[coding I feedback]

def start_of_processing_timé(self): :
def end_of_wait_time(self):

return self.merged_at

return earliest_of([self.opened_at,
self.commits.time_of_first()])

def end_of_processing_time(self): .
return earliest_of([self.review_requested_at, def start_of_wait_time(self):
self.comments.time_of_first_from_human(), return self.end_of_processing_time()

self.commits.time_of_last()])

Important assumptions and approximations

Processing time can have wait time

Wait time can have processing time

Processing Time and Flow Efficiency on the bigger size PRs end of the
spectrum inaccurate because of git rewrite practice

Wait Time way more accurate than Processing Time

PR size is measured through simple LoC changed

Period

Number of PRs analyzed
Period covered (using PR merge time)
Period covered (months)

Period covered (days)

Flow Efficiency

Processing time (cumulative, in days)
Wait time (cumulative, in days)
Wait time (cumulative, in months)

Lead time (cumulative, in days)

500
['2020-10-13', '2021-04-15']

184.0

298.0
830.9
277
1128.9

wait time (hours)

1000

800

600

400

200

100

,r,.‘.:!'

oo.oo

200

‘.

300

size (LoC)

X
*®

20t 8RB o & S0 .

400

500 600

700

score

22

20

18

16

14

12

10

score

20

50

18

40

16
14
12

30
20

(D01/sa3nuiw) azis 4ad awiy 3em

10

10

L

o ¢°

o®
e ©

1500

1000

500

size (LoC)

wait time per size (minutes/LoC)

50

40

30

20

10

500

size (LoC)

1000

1500

score

8

cost of code
review per size

Y
A4

Small PRs

quicker to write

quicker to review

less time allocation for review
higher engagement

less risky

shorter Lead Time to Change and
higher Deployment frequency
etc.

The system that people work in and the interaction
with people may account for 90 or 95 percent of
performance

W. Edwards Deming

Y

Cost of code
review per size

size

+ PSS
R
number of PRs
/'__> to review
+

_> B
temptation to start Q
working on . PR size

something new
(author)

number of
interruptions
(reviewers)

J

perceived
cost of code
review per
line of code

R -
(author)
motivation/
incentive
to review
+ a
\ time waiting
for a review -
(author)

www.draganstepanovic.com/2020/11/16/pr-size-cannot-be-reduced.html

http://www.draganstepanovic.com/2020/11/16/pr-size-cannot-be-reduced.html

Flow efficiency

wov ¥ wark| | or K wark wor kK

Lead Time

Wov K

Wor k. + Wart X OOO/D

average flow efficiency (%) for PRs up to size

20

15

10

\ cumulative_lead _time(15 PRs, 20 LoC) >> cumulative_lead _time(1 PR, 300 LoC)

50

starts plummeting here

100

150

200
size (LoC)

a 300 LoC change

250

300

350

400

20
18
16
14
12
10

score

L

&)
o ®

P e
@ .b. o’

50
40
30
20

(D01/sa3nuiw) azis 4ad awiy 3em

1500

1000

500

size (LoC)

likeliness of

engagement + » amount of + > buildin
/ per size feedback aing
quality in

e
. linearly .
PR size + > processing
(LoC) time per size |
 —
- N wait time to throughput
. . 1 3 —_— - - + .
) o waittime | procei::i?(;g time > | flow efficiency | —— (LoC }[)1(::1 :)mt of
exponentially per size)

perceived cost 4_/,/
of code review

per LoC

engagement per size (comments/100 LoC)

100

(¢]

Quality |

®
(€] (.
S~ D S @
1000 1500)/
size (LoC)

score

wait time per size (minutes/LoC)

2000

1500

1000

Throughput |

size (LoC)

Optimal
Batch Size

b
m *
(o
O

Tr :
o Onsactmn cost

Batch Size

DORA

DEVOPS RESEARCH & ASSESSMENT

EPUHER
Throughput

ADND
Stability

Nicole Forsgren, PhD
Jez Humble, ond Gene Kim

Some trade-offs actually do not
exist because underlying
assumption is flawed

https://sircharlescaryinc.com/having-your-cake-and-eating-it-too/

cost of code
review per size

Yy

size

:> throughput

Yy

size

throughput

Y

cost of code
review per size

availability of
actors

size

Y

Y

actors’ reaction
time

size

%

Yy

size

Actors = Author + Reviewers

size

Luka

While I'm waiting,
let me start working
on something else

Ticket 1

Hey, can you
review my PR?

wait to processing time ratio

Ticket 1

Can you

review my PR,

PLEASE?

@d_stepanovic

can we change this?

changed

Oh, | thought this way,
not that way

« Lunch, breaks
« Meetings (standup/refinement/planning/AHM),

emails, checking/answering Slack...

here you go

appr

« Outside of business hours

oved

merged

lead time of multiple days

availability of
actors

Y

size

Hey, can you
reviewmy PR? Canyou

review my PR,
PLEASE?

Hey, can you
review my PR? changed

can we change this?

|
0

o

h,

changed

can we change this?

O

here you go
, | thought this way,
not that way

Oh, | thought this way,

approved

not that way

merged

here you go

approved

merged

In order to not exponentially lose the
throughput while reducing the average
size of a PR
people need to get exponentially
closer and closer in time

=> Continuous Code Review

@d_stepanovic

R
number of PRs
/—-'> to review \
+
B
temptation to start
working on _— PR size
something new + e
(author) number of
interruptions
(reviewers)
perceived
cost of code
review per
line of code R)
(author)
motivation/ /
incentive
to review

+
+
\ time waiting

for a review
(author)

You cannot be

interrupted if you're not
doing anything else

1;

PORTALTO
APARALLEL
UNIVERSE

https://i.vtimg.com/vi/2TUza5C2ud8/maxresdefault.fog

https://i.ytimg.com/vi/2TUza5C2uJ8/maxresdefault.jpg

creation patterns

Enter Co

https://www.codefellows.orag/blog/6-reasons-for-pair-programming/

https://en.wikipedia.org/wiki/Mob programming

https://en.wikipedia.org/wiki/Mob_programming
https://www.codefellows.org/blog/6-reasons-for-pair-programming/

Cost

Optimal
Batch Size

g Holding cost

Batch Size

https://lastcallmedia.com/blog/why-devops-most-important-tech-strategy-today

wait time per size (minutes/LoC)

2000

1500

1000

500

How would this scatter look like if
we had done continuous code
review (after each line of code)?

size (LoC)

500

engagement per size (comments/100 LoC)

100

80

60

40

20

How would this scatter look like
we had done continuous code

if

review (after each line of code)?

1000
size (LoC)

2000

score

22

20

18

16

14

12

10

Throughput

Quality

PR Score

wait time per size (minutes/LoC)

2500

2000

1500

1000

500

COae @O o

D

«9®
L0

N2
(L3
W

\(

X
< (

o
3K
’ﬁp
(]

<

0 200 400 600 800 1000 1200 1400
size (LoC)

score

22

20

18

16

14

1.2

10

What are we trying to optimize for?

Size |
Walt time per size |
Engagement per sizet (or not |)

PR Score

def pr_score_for(size, engagement, wait_time):

return math.log(1 + Score.absolute(engagement, size, wait_time)) == O

def absolute_score(size, wait_time, engagement):

return size * wait_time.in_seconds() / (1 + engagement) = O

1 0 1

4841

4827 5078
4867 ©
20 47201160 2NN ARl 4921 4958
4937 o . 5040

® 4942 49e®74

6 °
430
wB B TR a8t %3
5 . 47984803 48 345"@
728 “a761 78 430 .%’é% &%‘3’54
¢ 4 o 4824 483
4814 4840
i 555 479;18.02 ° ?9 9.99%015 37 50.56
g 771 4978 .
S o 4831 486h 4g§89 4929 49 5
o ° 47.90 48.11 048859 & 48%%45 494;863 ° %‘i‘ 351
10 42785 Y 4965 aoge s ik
48022 ® 487982 4976 . % o 5081 = °
L o i 5064 e R15% £
4914 4951 D Sie 7
A o 4970082 2
. . o o . °
Continuous code review (pairing/mobbing)
5
0
May 2020 Jul 2020 Sep 2020 Nov 2020 Jan 2021 Mar 2021 May 2021

merged at

The optimal size of Pull Request is one
LoC that is reviewed immediately as it's
being typed.

How would the world look like had we
paired (for PRs up to 100 LoC)?

What would be the cumulative lead time had we paired? 146.1 instead of 486.4 days (-340.3)
How many times sooner would we finish had we paired? 3.3%

When would we finish had we paired? 2020-12-11 instead of 2021-04-15
How long would it take us had we paired? 53.5 instead of 178.0 days (-124.5)
Number of PRs with size up to a median 319

How many more PRs would we finish had we paired? 1053 (+734)

How many more PRs would we finish had we paired (%)? +230%

Weve-beentotd-att-atengthat
U achi ” Lioais
Lol o ¥

Hope you now (also) have
a data-informed reason to
not believe that

