
Async Code Reviews Are Killing
Your Company’s Throughput

● Ex: Principal @Careem/Uber,
HelloFresh, GetYourGuide

● XP, ToC, Lean, Systems Thinking

● Rants on

○ draganstepanovic.com
○ @d_stepanovic

● I put mayo on 🍕 😱

http://draganstepanovic.com
http://twitter.com/d_stepanovic

justsharing.dev

PR-based async code review

Meet people where they are

What was I curious to see?

● Engagement
● Wait Time
● Size

Engagement

Why was I curious about the engagement?

● Systemic effects of delayed and ‘choked’ feedback

○ High-latency, low-throughput feedback

● Engagement by size

Lack of engagement/feedback =>
No ability to build the quality in

“Never had a huge PR that didn’t
look good to me”

~ Anonymous Developer

Wait time

Important assumptions and approximations

● Processing time can have wait time

● Wait time can have processing time

● Processing Time and Flow Efficiency on the bigger size PRs end of the

spectrum inaccurate because of git rewrite practice

● Wait Time way more accurate than Processing Time
● PR size is measured through simple LoC changed

cost of code
review per size

size

● quicker to write
● quicker to review
● less time allocation for review
● higher engagement
● less risky
● shorter Lead Time to Change and

higher Deployment frequency
● etc.

Small PRs

The system that people work in and the interaction
with people may account for 90 or 95 percent of

performance

W. Edwards Deming

www.draganstepanovic.com/2020/11/16/pr-size-cannot-be-reduced.html

http://www.draganstepanovic.com/2020/11/16/pr-size-cannot-be-reduced.html

Flow efficiency

starts plummeting here

cumulative_lead_time() >> cumulative_lead_time()

a 300 LoC change

15 PRs, 20 LoC 1 PR, 300 LoC

Throughput ↓

Throughput ↓

Quality ↓

Quality

Throughput

QualityThroughput

https://lastcallmedia.com/blog/why-devops-most-important-tech-strategy-today

Throughput

Stability
ORAND

EITHERBOTH

“There’s always a trade-off”“There’s always a trade-off”

Some trade-offs actually do not
exist because underlying
assumption is flawed

https://sircharlescaryinc.com/having-your-cake-and-eating-it-too/

https://sircharlescaryinc.com/having-your-cake-and-eating-it-too/

cost of code
review per size

size

throughput

size

cost of code
review per size

size

actors’ reaction
time

size

availability of
actors

size

Actors = Author + Reviewers

throughput

size

availability of
actors

size

In order to not exponentially lose the
throughput while reducing the average

size of a PR
people need to get exponentially

closer and closer in time

=> Continuous Code Review

You cannot be
interrupted if you’re not
doing anything else

https://i.ytimg.com/vi/2TUza5C2uJ8/maxresdefault.jpg

https://i.ytimg.com/vi/2TUza5C2uJ8/maxresdefault.jpg

Enter Co-creation patterns

https://en.wikipedia.org/wiki/Mob_programming https://www.codefellows.org/blog/6-reasons-for-pair-programming/

https://en.wikipedia.org/wiki/Mob_programming
https://www.codefellows.org/blog/6-reasons-for-pair-programming/

https://lastcallmedia.com/blog/why-devops-most-important-tech-strategy-today

https://lastcallmedia.com/blog/why-devops-most-important-tech-strategy-today

How would this scatter look like if
we had done continuous code

review (after each line of code)?

How would this scatter look like if
we had done continuous code

review (after each line of code)?

Throughput
AND

Quality

Throughput
OR

Quality

PR Score

 Size ↓
 Wait time per size ↓
 Engagement per size↑ (or not ↓)

 What are we trying to optimize for?

def pr_score_for(size, engagement, wait_time):

 return math.log(1 + Score.absolute(engagement, size, wait_time))

PR Score

def absolute_score(size, wait_time, engagement):

 return size * wait_time.in_seconds() / (1 + engagement)

1 ↑0

= 0

= 0

Continuous code review (pairing/mobbing)

The optimal size of Pull Request is one
LoC that is reviewed immediately as it’s

being typed.

And I don’t know of a better way to achieve it
than by Pair/Mob programming.

How would the world look like had we
paired (for PRs up to 100 LoC)?

We’ve been told all along that
we’ll achieve more if we limit
and delay our interactions

Hope you now (also) have
a data-informed reason to
not believe that

We’ve been told all along that
we’ll achieve more if we limit
and delay our interactions

@d_stepanovic

