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PR-based async code review
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Ticket 1

Hey, can you
review my PR? Canyay changed here you go merged
: review my PR, YOU's
PLEASE? Oh, | thought this way, approved

can we change this? not that way
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What was | curious to see?

e Engagement
e WaitTime
e Size



Engagement



Why was | curious about the engagement?

e Systemic effects of delayed and ‘choked’ feedback
o High-latency, low-throughput feedback
e Engagement by size
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engagement per size (comments/100 LoC)
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“Never had a huge PR that didn't
look good to me”

| Am Devloper
@iamdevloper

10 lines of code = 10 issues.
500 lines of code = "looks fine."

Code reviews.
10:58 AM - Nov 5, 2013

Q) 4,691 () 8,220 people are talking about this



Wait time
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While I'm waiting,
let me start working
on something else

@d_stepanovic

Ticket 1
Hey, can you Can you
review my PR? review my PR,

PLEASE?

wait to processing time ratio

Ticket 1

can we change this?

changed

Oh, | thought this way,
not that way

« Lunch, breaks
- Meetings (standup/refinement/planning/AHM),

emails, checking/answering Slack...

« Outside of business hours

here you go

approved

merged

lead time of multiple days



Okay, I'm done
coding and I'd like
to get a feedback

[ coding I feedback ]

def start_of_processing_timé(self): :
def end_of_wait_time(self):

return self.merged_at

return earliest_of([self.opened_at,
self.commits.time_of_first()])

def end_of_processing_time(self): .
return earliest_of([self.review_requested_at, def start_of_wait_time(self):
self.comments.time_of_first_from_human(), return self.end_of_processing_time()

self.commits.time_of_last()])



Important assumptions and approximations

Processing time can have wait time

Wait time can have processing time

Processing Time and Flow Efficiency on the bigger size PRs end of the
spectrum inaccurate because of git rewrite practice

Wait Time way more accurate than Processing Time

PR size is measured through simple LoC changed



Period

Number of PRs analyzed
Period covered (using PR merge time)
Period covered (months)

Period covered (days)

Flow Efficiency

Processing time (cumulative, in days)
Wait time (cumulative, in days)
Wait time (cumulative, in months)

Lead time (cumulative, in days)

500
['2020-10-13', '2021-04-15']

184.0

298.0
830.9
277
1128.9



wait time (hours)
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wait time per size (minutes/LoC)
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Small PRs

quicker to write

quicker to review

less time allocation for review
higher engagement

less risky

shorter Lead Time to Change and
higher Deployment frequency
etc.




The system that people work in and the interaction
with people may account for 90 or 95 percent of
performance

W. Edwards Deming
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www.draganstepanovic.com/2020/11/16/pr-size-cannot-be-reduced.html



http://www.draganstepanovic.com/2020/11/16/pr-size-cannot-be-reduced.html
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average flow efficiency (%) for PRs up to size
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Some trade-offs actually do not
exist because underlying
assumption is flawed





https://sircharlescaryinc.com/having-your-cake-and-eating-it-too/
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Luka

While I'm waiting,
let me start working
on something else

Ticket 1

Hey, can you
review my PR?

wait to processing time ratio
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In order to not exponentially lose the
throughput while reducing the average
size of a PR
people need to get exponentially
closer and closer in time

=> Continuous Code Review
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You cannot be

interrupted if you're not
doing anything else
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https://i.ytimg.com/vi/2TUza5C2uJ8/maxresdefault.jpg

creation patterns

Enter Co

https://www.codefellows.orag/blog/6-reasons-for-pair-programming/

https://en.wikipedia.org/wiki/Mob programming



https://en.wikipedia.org/wiki/Mob_programming
https://www.codefellows.org/blog/6-reasons-for-pair-programming/
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https://lastcallmedia.com/blog/why-devops-most-important-tech-strategy-today
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engagement per size (comments/100 LoC)
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Throughput

Quality




PR Score
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What are we trying to optimize for?

Size |
Walt time per size |
Engagement per sizet (or not |)



PR Score

def pr_score_for(size, engagement, wait_time):

return math.log(1 + Score.absolute(engagement, size, wait_time)) == O

def absolute_score(size, wait_time, engagement):

return size * wait_time.in_seconds() / (1 + engagement) = O

1 0 1
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The optimal size of Pull Request is one
LoC that is reviewed immediately as it's
being typed.



How would the world look like had we
paired (for PRs up to 100 LoC)?

What would be the cumulative lead time had we paired? 146.1 instead of 486.4 days (-340.3)
How many times sooner would we finish had we paired? 3.3%

When would we finish had we paired? 2020-12-11 instead of 2021-04-15
How long would it take us had we paired? 53.5 instead of 178.0 days (-124.5)
Number of PRs with size up to a median 319

How many more PRs would we finish had we paired? 1053 (+734)

How many more PRs would we finish had we paired (%)? +230%
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Hope you now (also) have
a data-informed reason to
not believe that






