Debugging distributed systems

Bert Jan Schrijver

Y @bjschrijver

e (0]
\\\PT\NCT‘\\\‘ ig 1V

How the Internet WOorks

Debugqqi A e

Bert Jan Schrijver

Y @bjschrijver

)

Bert Jan Schrijver

@ OPENVALUE
nl.
@® jug

& &

Y @bjschrijver

What's next?

O A structured approach

® Demo

—0 War stories

Why are distributed o

Networking 101 @

Y @bjschrijver

The hierarchy of complexity for debugging

 Level 1: Non-concurrency
» Level 2: Concurrency
» Level 3: Distribution

A distributed system Is a system whose
components are [ocated on different
hetworked computers, which
communicate and coordinate their actions
by passing messages to one another.

Characteristics of distributed systems

» Concurrency of components
» Lack of a global clock
» Independent failure of components

» Distributed systems are harder to reason
about

“ Working with distributed systems is
fundamentally different from writing
software on a single computer - and the
main difference Is that there are lots of new
and exciting ways for things to go wrong.
- Martin Kleppmann

The fallacies of distributed computing
are a set of assertions made by L Peter
Deutsch and others at Sun Microsystems
describing false assumptions that
programmers new to distributed
applications invariably make.

Fallacies of distributed computing

1. The network is reliable;

2. Latency Is zero;

3. Bandwidth is infinite;

4. The network is secure;

5. Topology doesn't change,;

6. There is one administrator;

/. Transport cost is zero;

8. The network is homogeneous.

OSI & TCP/IP

OSI Reference Model TCP/IP Conceptual Layers

Application
Presentation Application

Session

Transport Transport

Network < > Network

Data Link

Network
Interface

Physical

What happens when you type google.com...

.. In your browser's address barand press Enter

“In a distributed system, there may well be

some parts of the system that are broken in

some ‘unpredictably way, even though other
parts of the system are working fine...”

Source: Martin Kleppmann

Are we done yet?

A structured approach
to debugging distributed systems

Observe & document
Create minimal reproducer
@ Debug client side

Check DNS & routing

@ Check connection

@ Inspect traffic / messages

Debug server side
Wrap up & post mortem ,@bjschrijver

Step 1: Observe & document

» What do you know about the problem?

* |Inspect logging, errors, metrics, tracing

» Draw the path from source to.target - what's
in between? Focus on details!

» Document what you-Know

» Can we reproduce in a test?
» By.injecting errors, for example

& Ot HSTS

B Ched DN (gt
() Query ONS

§) o roquei
l ® Come(t G())Voﬁ‘ q”@”-ﬁ/)
N—B N PR

Step 2: Create minimal reproducer

« Goal: maximise the amount of debugging
cycles

» Focus on short development iterations /
feedback loops

* Get closeto the action!

Step 3: Debug client side

» Focus on eliminating anything that could be
wrong on the client side

» Are we connecting to the right host?

* Do we send the right message?

* Do we receive a response?

» Not much different from local debugging

Step 4: Check DNS & routing

» DNS:
» Make sure you know what IP address the
hostname should resolve to
» Verify that this actually happens at the client
* Routing:
» Verify you can reach the target machine

Step 5: Check connection

* Can we connect to the port?
* If not, do we get.a REJECT or a DROP?

» Does/the connection open and stay open?
«“Are-we-talkimg TLS?
» What is the connection speed‘between us?

Step 6: Inspect traffic / messages

» Do we send the right request?

» Do we receive the right response?

* How do we know?

» How do we handle TLS?

» Are there any load balancers or proxies in
between?

Step 7: Debug server side

Inspect the remote host

Can we attach a remote debugger?
«..See https://youtube.com/OpenValue

Profiling
Strace

Step 8: Wrap up & post mortem

» Document the issue:
» Timeline
» What did we see?
» Why did it happen?
» What was the impact?
» How did we find out?
» What did we do to mitigate and fix?
» What should we do to prevent repetition?

“If you really want a reliable system, you
have to understand what its fallure modes
are. You have to actually have withessed
It misbehaving.”

- Jason Cahoon

Distributed systems war stories

\ -

¢
W&Q"i
r?.”ﬂ.” 3

e

Ime...

The one where two services didnt speak
the same language...

Katharine
@katharineCodes
Hours. Hours debugging 2 microservices.

Why won't they talk to each other?
Why???

Because one was doing PUT, and server was expecting
POST.

&L L

Resolved [org.springframework.web.HttpRequestMethodNotSupport
bd 'POST' not supported]

12:15 PM - Jul 13, 2021 - Twitter Web App

0 pavs
SINCE IT

WAS DNS

(It's always DNS)

The one where breaking news broke

something else...

Summary: a structured approach
to debugging distributed systems

Observe & document
Create minimal reproducer
@ Debug client side

Check DNS & routing

@ Check connection

@ Inspect traffic / messages

Debug server side
Wrap up & post mortem ,@bjschrijver

INATSIN

”U“ﬁ” KICK'SOMERSS!

e Y
ol 5 e -
A

5 . . - : v k S N4
, d. g - v & k s .]
8.y o & o, P 2 AT A ¢ e a
J < # 4 Sy L' ¥ - v
AR, : ‘\‘_lﬁz" % el .,_L..Wn “.ﬂi ¥l 1 v
- ' A , o TR e L4 ..
o rm.iln ’ -

v il i
L¥ Sy X oy gir 2 r N ™
P : > —~~ B D : .
. e p IR TR ’

e B s . D ‘
_-‘-:f:\"b‘}_j o e

P

