
bertjan@openvalue.eu

Debugging distributed systems
Bert Jan Schrijver

@bjschrijver

bertjan@openvalue.eu

Debugging distributed systems
Bert Jan Schrijver

@bjschrijver

Networking 101
How the internet works

Why?

Bert Jan Schrijver
L e t ’ s m e e t

@bjschrijver

Why are distributed
systems difficult?

Networking 101

What?

Why?✅
Demo

War stories

Conclusion

W h a t ‘ s n e x t ?

Outline

A structured approach

@bjschrijver

• Level 1: Non-concurrency
• Level 2: Concurrency
• Level 3: Distribution

The hierarchy of complexity for debugging

Source:	https://maximilianmichels.com/2020/debugging-distributed-systems

What is a distributed system?

A distributed system is a system whose
components are located on different

networked computers, which
communicate and coordinate their actions

by passing messages to one another.

• Concurrency of components
• Lack of a global clock
• Independent failure of components 

• Distributed systems are harder to reason
about

Characteristics of distributed systems

Source:	http://www.nasa.gov/images/content/218652main_STOCC_FS_img_lg.jpg

Working with distributed systems is
fundamentally different from writing

software on a single computer - and the
main difference is that there are lots of new
and exciting ways for things to go wrong.

- Martin Kleppmann

“

”

Photo:	Dave	Lehl

Why do things go wrong?“ ”

Photo:	Dave	Lehl

The fallacies of distributed computing
are a set of assertions made by L Peter

Deutsch and others at Sun Microsystems
describing false assumptions that
programmers new to distributed

applications invariably make.

1. The network is reliable;
2. Latency is zero;
3. Bandwidth is infinite;
4. The network is secure;
5. Topology doesn't change;
6. There is one administrator;
7. Transport cost is zero;
8. The network is homogeneous.

Fallacies of distributed computing

What could possibly go wrong?“ ”

Photo:	Dave	Lehl

OSI & TCP/IP

Source:	https://www.guru99.com/difference-tcp-ip-vs-osi-model.html

.. in your browser’s address bar and press Enter

What happens when you type google.com…

Source:	https://github.com/alex/what-happens-when

17

In a distributed system, there may well be
some parts of the system that are broken in
some unpredictably way, even though other

parts of the system are working fine…

“

”

Source:	Martin	Kleppmann

“

”

Source:	Martin	Kleppmann

… but in a system with thousands of
nodes, it is reasonable to assume that

something is always broken.
- Martin Kleppmann

Are we done yet?

Source:	https://7216-presscdn-0-76-pagely.netdna-ssl.com/wp-content/uploads/2011/12/confused-man-single-good-men.jpg

Where do I start?

A structured approach
to debugging distributed systems

@bjschrijver

Check DNS & routing

Check connection

Debug client side

Create minimal reproducer

Debug server side

Observe & document

Wrap up & post mortem

Inspect traffic / messages

Step 1: Observe & document

• What do you know about the problem?
• Inspect logging, errors, metrics, tracing
• Draw the path from source to target - what’s

in between? Focus on details!
• Document what you know
• Can we reproduce in a test?

• By injecting errors, for example

Step 1: Observe & document

Step 2: Create minimal reproducer

• Goal: maximise the amount of debugging
cycles

• Focus on short development iterations /
feedback loops

• Get close to the action!

Step 3: Debug client side

• Focus on eliminating anything that could be
wrong on the client side

• Are we connecting to the right host?
• Do we send the right message?
• Do we receive a response?
• Not much different from local debugging

Step 4: Check DNS & routing

• DNS:
• Make sure you know what IP address the

hostname should resolve to
• Verify that this actually happens at the client

• Routing:
• Verify you can reach the target machine

Step 5: Check connection

• Can we connect to the port?
• If not, do we get a REJECT or a DROP?
• Does the connection open and stay open?
• Are we talking TLS?
• What is the connection speed between us?

Step 6: Inspect traffic / messages

• Do we send the right request?
• Do we receive the right response?
• How do we know?
• How do we handle TLS?
• Are there any load balancers or proxies in

between?

Step 7: Debug server side

• Inspect the remote host
• Can we attach a remote debugger?

• See https://youtube.com/OpenValue
• Profiling
• Strace

Step 8: Wrap up & post mortem

• Document the issue:
• Timeline
• What did we see?
• Why did it happen?
• What was the impact?
• How did we find out?
• What did we do to mitigate and fix?
• What should we do to prevent repetition?

If you really want a reliable system, you
have to understand what its failure modes
are. You have to actually have witnessed

it misbehaving.
- Jason Cahoon

“

”

Distributed systems war stories

The time where it worked half of the time…

The one where two services didn’t speak
the same language…

The one with expensive logging…

The one at a school…

The one where only one country was
affected…

The one where breaking news broke
something else…

Summary: a structured approach
to debugging distributed systems

@bjschrijver

Check DNS & routing

Check connection

Debug client side

Create minimal reproducer

Debug server side

Observe & document

Wrap up & post mortem

Inspect traffic / messages

Source:	https://cdn2.vox-cdn.com/thumbor/J9OqPYS7FgI9fjGhnF7AFh8foVY=/148x0:1768x1080/1280x854/cdn0.vox-cdn.com/uploads/chorus_image/image/46147742/cute-success-kid-1920x1080.0.0.jpg

THAT’S IT.
NOW GO KICK SOME ASS!

Questions?

@bjschrijver

Thanks for your time.
Got feedback? Tweet it!

All pictures belong
to their respective

authors

@bjschrijver

