
Time-Travel Debugging 
Java applications

Greg Law, co-founder



Debugging - our dirty secret

Programming is debugging

Most software is not truly understood by anyone

What happened?

printf, printf, printf

Why can’t the computer just tell us?

2



3



In the beginning

Sir Maurice Wilkes, 1913-2010





In the beginning

 I well remember [...] the realization 

came over me with full force that a 

good part of the remainder of my 

life was going to be spent in 

finding errors in my own programs

Sir Maurice Wilkes, 1913-2010





Everyone knows that debugging is twice as hard as writing a 
program in the first place. So if you're as clever as you can be 
when you write it, how will you ever debug it?

Brian Kernighan



Computers are hard



What happened?



What makes bugs really hard?

Time between the root cause and effect being noticed

R
ep

ea
ta

bi
lit

y





What happened?What was the previous state?
Two options:

1. Save it.
2. Recompute it.

a = a + 1 ✓

a = b ✗





Snapshots

 Maintain snapshots through history

 Resume from these - run forward as needed

 Copy-on-Write for memory efficiency

 Adjust spacing to anticipate user’s needs



Event log

 Event Log captures non-deterministic state

 Stored in memory

 Efficient, diff-based representation

 Recorded during debug (or Live Recording)

 Replayed to reconstruct any point in history

 Saved to create a recording file for later use



 Undo Engine captures all non-determinism

 Some machine instructions are non-deterministic

rdtsc, cpuid, syscall, etc

 Needs to capture all this and provide precise control 
over execution in general

 Solution: Runtime instrumentation

Instrumentation





Works well in conjunction with live logging & tracing

Logging & tracing give a high-level ‘story’ of a program’s execution
Use it to know where to go in a recording
Apply logging to a recording



80/20 Rule



80/20 Rule



Multiple implementations

For Linux:
● Undo LiveRecorder (C++, Go, Java)
● rr (C++, Go)
● gdb process record

For Windows:
● Microsoft’s Time-Travel Debugger (C++, C#, Chakracore JS)
● RevDebug (C#, Java)

Cross platform
● Chronon debugger
● Omniscient debugger



1. Computers are hard & 
debugging is under-served

2. Time Travel is awesome!
3. 80/20 rule does not always apply


