
TDD: seriously, try it ! 😃

2Confidential

First thing first

3Confidential

Why this session?

• Review the basics around TDD

• Understand the benefits of building code

designed by tests

VS

building the tests after we write our code

(before VS after)

• See an example

• (I hope) learn some tips

• … so do not run away, please! 😉

Confidential 4

Nacho Cougil

• Senior Software Engineer at Dynatrace

• TDD & clean code fan

• Started to write in Java before the effect 2000

• Founder of the Barcelona Java Users Group &

co-founder of the Java and JVM Barcelona Conference (JBCNConf)

• Father, former mountain marathon runner 😅

@icougil

Who am I?

https://www.barcelonajug.org/
https://www.jbcnconf.com/
https://twitter.com/icougil

Confidential 5

• Raise your hand at any moment!

Ask questions at any time, please!

6Confidential

Warning

Based on my *personal* experience

7Confidential

• Where it cames from?

• Advantages & disadvantages

• Process & rules

• Good habits

• Example

• Final Recap

Agenda

8Confidential

• Where it cames from?

• Advantages & disadvantages

• Process & rules

• Good habits

• Example

• Final Recap

Agenda

Confidential 9

• Kent Beck “rediscovered” TDD when writing first

testing framework SUnit in 1994.

“Take the input tape, manually type in the output

tape you expect, then program until the actual

output tape matches the expected output.”

• TDD became part of Extreme Programming book

in 1999.

A bit of history

https://www.quora.com/Why-does-Kent-Beck-refer-to-the-rediscovery-of-test-driven-development-Whats-the-history-of-test-driven-development-before-Kent-Becks-rediscovery

Confidential 10

• … you can find defects earlier ⏱ (when running or

designing your tests)

• … you can easily detect regression errors 🔴

• … you follow a simple process ⚙️ that helps you to

develop your software in a straightforward way

• … your software is going to be easier to refactor

because of ✅ green (safety net)

For a moment, imagine…

Confidential 11

For a moment, imagine…

• ... your software guides you how a consumer will use your
component ⏛

• … tests are living documentation (really 🖖 !!)

• … the software you write it is likely to have less bugs🐛

• … your development costs 💰will be lower

References:
- Test-driven development as a defect-reduction practice (IEEE)
- Guest Editors' Introduction: TDD--The Art of Fearless Programming (computer.org)

https://ieeexplore.ieee.org/document/1251029
https://www.computer.org/csdl/magazine/so/2007/03/s3024/13rRUygT7kK

Confidential 12

Yes, TDD has some disadvantages

• It is not so easy to start with 😅

(not many good places to help, majority of people are not using it

daily)

• Has a high learning curve 😟

(depends directly on the complexity of your code + your design

and engineering capabilities)

• Can be a large investment 💸 in a team (depending on the

experience of the members + requires time ⏳ & effort 🙇♀️🙇♂️)

Confidential 13

• It is really easy to forget 😓 about it

(especially if you are not in an environment / team that

does not encourage its use or you cannot experiment

with it comfortably)

• It provokes resistance ☹️ (in some people)

• Can be corrupted and lead to the syndrome of reaching

the highest possible level of coverage🙈

• It is extremely difficult 😤 to master at it

Yes, TDD has some disadvantages

Confidential 14

So, … how it is?

• You learned how to write code time ago,…

• …and now you’d may learn a different way of writing software.

Like “learning to ride a very different bike”,... but being older 😅

Confidential 15

16Confidential

• Where it cames from?

• Advantages & disadvantages

• Process & rules

• Good habits

• Example

• Final Recap

Agenda

Confidential 17

The process

Confidential 18

 Focus on building tests 1st that will help us demonstrate the

behaviour we want.

We will start writing tests and we can’t write very much apart

from a unit test. Tests are first class citizens

No overengineering, simple code, simple solution: make the

test pass

• You are not allowed to write any production code unless it is to

make a failing unit test pass.

• You are not allowed to write any more of a unit test than is

sufficient to fail.

• You are not allowed to write any

more production code than is

sufficient to pass the one failing

unit test.

Robert C. Martin

(uncle Bob)

The rules

Confidential 19

• Where it cames from?

• Advantages & disadvantages

• Process & rules

• Good habits

• Example

• Final Recap

Agenda

Confidential 20

• Before you write production code,

check that your test is failing 🔴!

• Each test has only 1 reason to fail

• Write the assertion first

Good habits

Confidential 21

Tests naming convention

Describe the
expected
behaviour, not
the internals.

Our tests
should describe
behaviour in
plain english

Ending the class name
with Should will “force “
you to start describing
an action for every test
you may create

Confidential 22

• Our tests methods will only describe behavior.

Therefore we will have a better understanding on

what this class does

• Our tests will be more clear

• If some tests fails, we can have a look and see

easily which case is failing

• We don’t need to get into details on any particular

test if we don’t need it

The result will be focused on the business

Confidential 23

Test creation order

1) Name the class

2) Name the method

3) Define what you want to check

4) Trigger the code

5) Do the setup

Confidential 24

• Start little by little...

• Katas

• Proofs of concept

• Personal projects

• Practice...

• ... and keep practicing

• ... and continues

• ... until you finally internalize it 🖖♀️😉

• Check online content

• Practice with somebody else (pair-programming) -
next slide 👉-

But, how to start?

Confidential 25

• An Extreme Programming (XP) Practice in which 2 developers participate in one

development effort at one workstation.

• One, the driver, writes code while the other, the navigator or observer, reviews the

code as it is typed in. The 2 engineers switch roles frequently.

• While reviewing, the observer also considers the "strategic" direction of the work,

coming up with ideas for improvements and likely future problems to address. This is

intended to free the driver to focus all of their attention on the "tactical" aspects of

completing the current task, using the observer as a safety net and guide.

Pair programming

Confidential 26

• Where it cames from?

• Advantages & disadvantages

• Process & rules

• Good habits

• Example

• Final Recap

Agenda

Confidential 27

Warning – Live coding!

Confidential 28

Kata: Film Recommendation Service

• We have just started working in a startup that sells and

rents out films over the Internet

• Our product managers have told us that they want to add

new functionalities by building a service that allows

them to recommend films to the users of the current

platform.

• Requirements:

• Build a service that returns a list of films that are associated with a

particular genre

• By default, the result must be ordered according to the average rating given

to the films by the users

• A film should contain at least a title, a year when it was published, one or

more tags and one or more genres

• Example:

• recommendationService.filmsByGenre("science-fiction”)

https://github.com/icougil/FilmRecommendationService

https://github.com/icougil/FilmRecommendationService

Confidential 29

• Where it cames from?

• Advantages & disadvantages

• Process & rules

• Good habits

• Example

• Final Recap

Agenda

Confidential 30

• Martin Fowler (main concepts around testing)

• https://www.martinfowler.com/bliki/TestDouble.html

• https://martinfowler.com/articles/mocksArentStubs.html

• https://martinfowler.com/articles/practical-test-

pyramid.html

• James Shore (JS practices)

• https://www.youtube.com/user/jdlshore/videos

• Jason Gorman (Java practices)

• https://www.youtube.com/user/parlezuml/videos

Recommended content

https://www.martinfowler.com/bliki/TestDouble.html
https://martinfowler.com/articles/mocksArentStubs.html
https://martinfowler.com/articles/practical-test-pyramid.html
https://www.youtube.com/user/jdlshore/videos
https://www.youtube.com/user/parlezuml/videos

Confidential 31

• TDD helps you to develop your code in a simple and effective way

(better modular design) 👌

• It is difficult to adapt to its mechanics and sometimes is difficult 😅

to maintain its practice...

• It worth a try 😉 (your software will have less bugs 🐛 & it will be

easier to maintain 💰)

• There are some tips 💡

(could make your life easier)

• Try to pair, it will help 😃 you (a lot)

• Practice, practice & practice 🖖 again

Final Recap

32Confidential

nacho@cougil.com

https://nacho.cougil.com

@icougil

Questions?

I need your feedback, please:
https://bit.ly/tdd-seriously-try-it-feedback

mailto:nacho@cougil.com
https://twitter.com/icougil
https://twitter.com/icougil
https://bit.ly/tdd-seriously-try-it-feedback

33Confidential

