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Time Decay

The longer you wait...

The less value the information has
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How fastis too fast?
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Let's build a stream-processing app!

Order Number (id) Collect Money
Shipper Order number

Ship timestamp Customer ID _ .
Name Pick and Ship

Address Order number
Phone Customer ID
Total Name
Address Ship Confirmation
Phone Order number
ltem number Customer ID
Shipper
Order timestamp
Ship timestamp

Order Number (id) Inventory Update
Customer ID ltem number
Item number Subtract Order Quantity

Order quantity
Timestamp

Customer ID Item number
Name Inventory quantity
Address Unit price

Phone
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[ SQL Access ] [ APIs & Clients ]

Hazelcast Engine

Stream Processing

Fast Data Store

Real-Time Machine Learning Inference Feature Store
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Availability Consistency

Distributed Architecture

Security

& Geo Replication

Disaster Recovery
Monitoring

} { Management &

System of Record Integration
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Real time is:

* While a customer is banking
* When a customer is shopping
* During a fraudulent event

* Before a process breaks

* While travelers are enroute
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Instant Action

r [ Delayed Action

Streaming ETL '

1 |

Batch

J

Real-Time Apps

ML/Al Automation

Basic Automation
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Streaming Data Technology Leverage
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| have the perfect application
But...
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/here is my data?

Data is deserialized/serialized in many places:

Data is written

Data is read

Data is replicated to a backup node
Data is saved to disk and reloaded
Data is rebalanced
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How many serializations/ deserializations?

=V = map.put(K,\V)
= Option A: 2 serializations and 1 deserialization.

= Option B: 3 serializations and 2 deserialization.
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High-Performance Real-time

Instant computation on both
new and historical data
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Microservices:

= Are Easier to Build and Enhance
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Microservices:

Are Easier to Build and Enhance
Are Easier to Deploy
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Microservices:

Are Easier to Build and Enhance
Are Easier to Deploy
Are Easier to Maintain, Troubleshoot, and Extend
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Vlicroservices:

Are Easier to Build and Enhance

Are Easier to Deploy

Are Easier to Maintain, Troubleshoot, and Extend
Deliver Performmance and Scale
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Vlicroservices:

Are Easier to Build and Enhance

Are Easier to Deploy

Are Easier to Maintain, Troubleshoot, and Extend
Deliver Performmance and Scale

Simplify Real-Time Processing
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Microservices Pattern for Similarity Search and Stream
Processing

Embeddings
movies

-SSR

Distributed cluster
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Microservices Pattern for Similarity Search and Stream
Processing

Embeddings
movies

Embeddings
actors

Distributed cluster
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Microservices Pattern for Similarity Search and Stream

Processing
Embeddings Embeddings Embeddings
movies actors cinemas

Distributed cluster
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Microservices Pattern for Similarity Search and Stream

Processing
Embeddings Embeddings Embeddings Embeddings
movies actors cinemas reviewers

Distributed cluster
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Kafka is great for:

Messaging
Event sourcing
Data pipelines
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Time-Based SLA

Action - milliseconds Response
Ingest — Enrich - Transform — Predict - Act
{ { { { _ {
Real-time data Batch data Add/Remove Real-time ML Yes or No
} } } } }
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DIY Approach

= More integration work
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DIY Approach

= More integration work
= Higher maintenance

4 B
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Stream :
Data Sources Processor
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ORACLE
Systems of Record
N\ Y ‘

High-Speed

‘ [ Reference Database
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DIY Approach

= More integration work
= Higher maintenance

= Higher operational cost
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DIY Approach

More integration work
= Higher maintenance

| Higher operational cost
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DIY Approach

More integration work
= Higher maintenance

] = Higher operational cost
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Simplified Architecture

Applications

Hazelcast Unified Real-Time Data Platform

Kafka Pulsar

Kafka Pulsar
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Applications

Hazelcast Client
Hazelcast Client

Hazelcast Client

Browser

Authentication

JAAS Authentication

Mutual Socket Interceptor
Authentication

TLS/SSL

Authentication

LDAP/Active
Directory JAAS Authentication
Authentication

Hazelcast Cluster

Authorization

JAAS Authorization

Socket Interceptor HAZ=LCAST

Mutual
Authentication

Authorization

Read/Write
Read only
Metrics only

HAZ=LCAST

Open SSL

HAZ=LCAST

Symmetric
Encryption

TLS/SSL

Management
Center
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Tech Stack for Handling Events and Services: Option T

External
Events External
Data Stores
“ Topic . :
microservice

Topic

microservice

ATTP ) 4 Mmicroservice § i-
Caller Map
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Tech Stack for Handling Events and Services: Option 2

External
Events External
Data Stores
“ Topic . :
microservice

Topic

microservice

Coc R s ) =
Caller a4 MICroservice y Map
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Tech Stack for Handling Events and Services: Option 3

External
Events External

Data Stores

Topic

- microservice

microservice

microservice

Topic

: Request

HTTP Response

Caller 1opIC Map

8 1
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Vector Databases

VDBs lack context and many-to-many relationship
representations
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Embeddings

cosine similarity

Encode

HAZ=LCAST
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Movies

Actors

a
|

Encode description

Embeddings
cosine similarity

—=—

Actors

J

Encode

Predicates APl / SQL

Search for a movie
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Search for a movie
and actor
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Vorkflow

A
11

ul
(python)

Listener N

telemetry

Emulator

Read as
GenericRecord

-

machine_profiles
IMap

Compute 10s
Tumbling Avg
by S/N

Y

machine_events
IMap

machine_controls
IMap

Look Up

Machine

Specific
Parameters

Categorize
green/orange/red

Filter out
"no change"
events

Y

Write control
signals to map
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= Access the Ul at http://localhost:8050
= Open up the management center http://localhost:8080
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http://localhost:8050/
http://localhost:8080/
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Join the Community
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Architecture Overview

Hazelcast Cluster

Kafka CF events topic

CL -
SQL

I

create and manage
pipelines

Pipeline

enrich events

enrich

IMap

Events with
context

IVET
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Setup

= Install Hazelcast

= hz-start

= hz-cli sql
= |Install Kafka

= cd Documents/kafka_2.13-3.4.0
bin/zookeeper-server-start.sh config/zookeeper.properties
bin/kafka-server-start.sh config/server.properties
bin/kafka-server-stop.sh
bin/zookeeper-server-stop.sh
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