HAZ=LCAST

Real-time Stream Processin
without Migraines

Fawaz Ghali, PhD

Principal Data Science Architect
Head of Developer Relations

@fawazghali

1-#
oF: 0.
H NZ= LC ’\ST

Ccan Me to Lo
vin S100 |:¢':|."'it"-'

Check In

@fawazghali

4
X
)
)
C
@)
O
U
(O
4+
(O
)

@fawazghali

Time Decay

The longer you wait...

The less value the information has

@fawazghali HAZ=LCAST

How fastis too fast?

@fawazghali

Let's build a stream-processing app!

Order Number (id) Collect Money
Shipper Order number

Ship timestamp Customer ID _ .
Name Pick and Ship

Address Order number
Phone Customer ID
Total Name
Address Ship Confirmation
Phone Order number
ltem number Customer ID
Shipper
Order timestamp
Ship timestamp

Order Number (id) Inventory Update
Customer ID ltem number
Item number Subtract Order Quantity

Order quantity
Timestamp

Customer ID Item number
Name Inventory quantity
Address Unit price

Phone

@fawazghali HAZ=LCAST

[SQL Access] [APIs & Clients]

Hazelcast Engine

Stream Processing

Fast Data Store

Real-Time Machine Learning Inference Feature Store

$10108UUO0D YUIS

w
| .
o]
+—
Q
O
C
C
@]
@)
Q
o]
=
-0
(@]
w

Availability Consistency

Distributed Architecture

Security

& Geo Replication

Disaster Recovery
Monitoring

} { Management &

System of Record Integration

@fawazghali HAZ=LCAST

Real time is:

* While a customer is banking
* When a customer is shopping
* During a fraudulent event

* Before a process breaks

* While travelers are enroute

@fawazghali HAZ=LCAST

Instant Action

r [Delayed Action

Streaming ETL '

1 |

Batch

J

Real-Time Apps

ML/Al Automation

Basic Automation

@fawazghali

v

Streaming Data Technology Leverage

HAZ=LCAST

| have the perfect application
But...

@fawazghali

@fawazghali HAZ=LCAST

/here is my data?

Data is deserialized/serialized in many places:

Data is written

Data is read

Data is replicated to a backup node
Data is saved to disk and reloaded
Data is rebalanced

@fawazghali HAZ=LCAST

How many serializations/ deserializations?

=V = map.put(K,\V)
= Option A: 2 serializations and 1 deserialization.

= Option B: 3 serializations and 2 deserialization.

@fawazghali HAZ=LCAST

High-Performance Real-time

Instant computation on both
new and historical data

@fawazghali

Microservices:

= Are Easier to Build and Enhance

@fawazghali HAZ=LCAST

Microservices:

Are Easier to Build and Enhance
Are Easier to Deploy

@fawazghali HAZ=LCAST

Microservices:

Are Easier to Build and Enhance
Are Easier to Deploy
Are Easier to Maintain, Troubleshoot, and Extend

@fawazghali HAZ=LCAST

Vlicroservices:

Are Easier to Build and Enhance

Are Easier to Deploy

Are Easier to Maintain, Troubleshoot, and Extend
Deliver Performmance and Scale

@fawazghali HAZ=LCAST

Vlicroservices:

Are Easier to Build and Enhance

Are Easier to Deploy

Are Easier to Maintain, Troubleshoot, and Extend
Deliver Performmance and Scale

Simplify Real-Time Processing

@fawazghali

HAZ=LCAST

Microservices Pattern for Similarity Search and Stream
Processing

Embeddings
movies

-SSR

Distributed cluster

@fawazghali HAZ=LCAST

@fawazghali

Microservices Pattern for Similarity Search and Stream
Processing

Embeddings
movies

Embeddings
actors

Distributed cluster

HAZ=LCAST

@fawazghali

Microservices Pattern for Similarity Search and Stream

Processing
Embeddings Embeddings Embeddings
movies actors cinemas

Distributed cluster

HAZ=LCAST

@fawazghali

Microservices Pattern for Similarity Search and Stream

Processing
Embeddings Embeddings Embeddings Embeddings
movies actors cinemas reviewers

Distributed cluster

HAZ=LCAST

r Data Processing \
Live Events i i
Event Stream Input 7' Streaming Ingest % Analytios > Sﬂgiziensélfeg;fn?ng §
Source .
(>) Live Events __ Queries, Logic & N
|~ Streaming Ingest 8 Analytics _ Machine Learning \\
Source) .) \
. Live Events _ Queries, Logic § —
— Streaming Ingest > N . —> :
&ng @ Analytics __, Machine Learning Sink or
\ / Client App
e :: Streaming Ingest LiveEvents , Queries, Logic & //
Analytics . Machine Learning -

@fawazghali HAZ=LCAST

Kafka is great for:

Messaging
Event sourcing
Data pipelines

@fawazghali

Time-Based SLA

Action - milliseconds Response
Ingest — Enrich - Transform — Predict - Act
{ { { { _ {
Real-time data Batch data Add/Remove Real-time ML Yes or No
} } } } }

@fawazghali HAZ=LCAST

DIY Approach

= More integration work

@fawazghali HAZ=LCAST

DIY Approach

= More integration work
= Higher maintenance

4 B
r B
. & |
T %L
Stream :
Data Sources Processor
\ J " ¥
4 N 1 ‘[
ORACLE
Systems of Record
N\ Y ‘

High-Speed

‘ [Reference Database

@fawazghali HAZ=LCAST

DIY Approach

= More integration work
= Higher maintenance

= Higher operational cost

4 B
d B
i X a
= -
Stream i
Data Sources Processor

N J L J—

4 N\
@ l State Store
ORACLE
Systems of Record ‘ l
R v
High-Speed —
Reference Database p
ML Inference i
T Engine

@fawazghali HAZ=LCAST

DIY Approach

More integration work
= Higher maintenance

| Higher operational cost

& L L = Higher Latency
glﬂ % ﬁ % a d Operational Data Store/ i

Stream Digital Integration Hub

Data Sources Processor

\ J L /—14—\ —
a ~N 'a r N
K] % < |

Data Warehouses,
ORACLE Analytics Databases)

X

TAY

State Store

!

Systems of Record

A / (" N
High-Speed p - ‘
Reference Database B <
ML Inference 1 Online
Engine _ Feature Store 4

I

@fawazghali HAZ=LCAST

DIY Approach

More integration work
= Higher maintenance

] = Higher operational cost
4 N\ .

f fi s >3 - = Higher Latency

‘lﬂ » > (L)

= % ﬁ a Operational Data Store/ [Online End Users

Stream ¢ Digital Integration Hub Applications
Data Sources Processor

\ J

& /4—‘ —]

4 N\
4 N
b
0 @ £
LB State Store Ly
Data Warehouses,
ORACLE Analytics Databases)
Systems of Record l
A / (" N
High-Speed p - ‘
Reference Database B
ML Inference 1 Online
Engine _ Feature Store 4
ap T B Data Access
m Data Flow

@fawazghali HAZ=LCAST

Simplified Architecture

Applications

Hazelcast Unified Real-Time Data Platform

Kafka Pulsar

Kafka Pulsar

oo

S0L Access APIs & Clients

B ®

#x
Amazon 0

@ @ Y

L A_ma?__on MO
Kinesis Kinesis MQ
Hazelcast Engine
@ Change Data
= RDEMS - .
Capture Streaming
piur 4 Stream Processing ® S roeus S oeomne
b= =
— Data = o x
E Warehouse E‘-ﬁ Data Lake o (9] Data
5 Fast Data Store g Warehouse Data Lake
6] =
& nosaL &8 File system o 8 _
g Real-Time Machine Learning Inference | Feature Store § 8 MoSOL % File System
e (=] w
@ Log Files 07 Clickstreams & Availability Consistency
&= Live
o : & [;:gtwboards A\ Alerts
@ IoT Data !:Eg PoS Data Distributed Architecture
aldc i L=

Security

Actionable Data (Sources) System of Record Integration Destinations (Sinks)

Data Lake

@fawazghali HAZ=LCAST

@fawazghali

Applications

Hazelcast Client
Hazelcast Client

Hazelcast Client

Browser

Authentication

JAAS Authentication

Mutual Socket Interceptor
Authentication

TLS/SSL

Authentication

LDAP/Active
Directory JAAS Authentication
Authentication

Hazelcast Cluster

Authorization

JAAS Authorization

Socket Interceptor HAZ=LCAST

Mutual
Authentication

Authorization

Read/Write
Read only
Metrics only

HAZ=LCAST

Open SSL

HAZ=LCAST

Symmetric
Encryption

TLS/SSL

Management
Center

HAZ=LCAST

Tech Stack for Handling Events and Services: Option T

External
Events External
Data Stores
“ Topic . :
microservice

Topic

microservice

ATTP) 4 Mmicroservice § i-
Caller Map

34 Hazelcast HAZ=LCAST

Tech Stack for Handling Events and Services: Option 2

External
Events External
Data Stores
“ Topic . :
microservice

Topic

microservice

Coc R s) =
Caller a4 MICroservice y Map

35 Hazelcast HAZ=LCAST

Tech Stack for Handling Events and Services: Option 3

External
Events External

Data Stores

Topic

- microservice

microservice

microservice

Topic

: Request

HTTP Response

Caller 1opIC Map

8 1

36 Hazelcast HAZ=LCAST

Vector Databases

VDBs lack context and many-to-many relationship
representations

HAZ=LCAST

Embeddings

cosine similarity

Encode

HAZ=LCAST

38 Hazelcast

Movies

Actors

a
|

Encode description

Embeddings
cosine similarity

—=—

Actors

J

Encode

Predicates APl / SQL

Search for a movie

39 Hazelcast

Search for a movie
and actor

HAZ=LCAST

Vorkflow

A
11

ul
(python)

Listener N

telemetry

Emulator

Read as
GenericRecord

-

machine_profiles
IMap

Compute 10s
Tumbling Avg
by S/N

Y

machine_events
IMap

machine_controls
IMap

Look Up

Machine

Specific
Parameters

Categorize
green/orange/red

Filter out
"no change"
events

Y

Write control
signals to map

@fawazghali

HAZ=LCAST

= Access the Ul at http://localhost:8050
= Open up the management center http://localhost:8080

@fawazghali HAZ=LCAST

http://localhost:8050/
http://localhost:8080/

1-#
oF: 0.
H NZ= LC ’\ST

Ccan Me to Lo
vin S100 |:¢':|."'it"-'

Check In

@fawazghali

Join the Community

@fawazghali

Architecture Overview

Hazelcast Cluster

Kafka CF events topic

CL -
SQL

I

create and manage
pipelines

Pipeline

enrich events

enrich

IMap

Events with
context

IVET

HAZ=LCAST

Setup

= Install Hazelcast

= hz-start

= hz-cli sql
= |Install Kafka

= cd Documents/kafka_2.13-3.4.0
bin/zookeeper-server-start.sh config/zookeeper.properties
bin/kafka-server-start.sh config/server.properties
bin/kafka-server-stop.sh
bin/zookeeper-server-stop.sh

@fawazghali HAZ=LCAST

	Folie 1: Real-time Stream Processing without Migraines
	Folie 2: Scan me to win $100
	Folie 3: Data != Context
	Folie 4
	Folie 5
	Folie 6: Let’s build a stream-processing app!
	Folie 7
	Folie 8: Real time is:
	Folie 9
	Folie 10
	Folie 11
	Folie 12: Where is my data?
	Folie 13: How many serializations/ deserializations?
	Folie 14
	Folie 15: Microservices:
	Folie 16: Microservices:
	Folie 17: Microservices:
	Folie 18: Microservices:
	Folie 19: Microservices:
	Folie 20: Microservices Pattern for Similarity Search and Stream Processing
	Folie 21: Microservices Pattern for Similarity Search and Stream Processing
	Folie 22: Microservices Pattern for Similarity Search and Stream Processing
	Folie 23: Microservices Pattern for Similarity Search and Stream Processing
	Folie 24
	Folie 25
	Folie 26
	Folie 27: DIY Approach
	Folie 28: DIY Approach
	Folie 29: DIY Approach
	Folie 30: DIY Approach
	Folie 31: DIY Approach
	Folie 32: Simplified Architecture
	Folie 33
	Folie 34: Tech Stack for Handling Events and Services: Option 1
	Folie 35: Tech Stack for Handling Events and Services: Option 2
	Folie 36: Tech Stack for Handling Events and Services: Option 3
	Folie 37
	Folie 38
	Folie 39
	Folie 40: Workflow
	Folie 41
	Folie 42: Scan me to win $100
	Folie 43: Join the Community
	Folie 44
	Folie 45: Setup

