
PaaSterns for Java developers
in the cloud

(aka The Cloud with no pain in the PaaS)

Sacha Labourey
CEO, CloudBees, Inc.

September 18/19, 2012 – Zurich/Berne
Photo credit: @romainguy©2012 CloudBees, Inc. All Rights Reserved

2

• Born in 1975 in Switzerland

• JBoss
– Clustering lead – 2001
– GM Europe - 2003
– CTO - 2005

• Red Hat
– JBoss acquisition in June 2006
– co-GM of Red Hat’s middleware division
– Left Red Hat in April 2009

• CloudBees
– Started in April 2010
– About 30 bees in 6 countries

Introduction – Sacha Labourey

©2012 CloudBees, Inc. All Rights
Reserved

X

3

• What does “Cloud” mean to developers?
– IaaS vs. PaaS vs. SaaS

• A few words on CloudBees
• A few PaaSterns
• Closing comments

Agenda

©2012 CloudBees, Inc. All Rights
Reserved

What does “Cloud” mean to
developers?

Iaas vs. PaaS vs. SaaS

©2012 Cloud Bees, Inc. All Rights Reserved

5

Easy: « Just use a XaaS! »

©2012 CloudBees, Inc. All Rights
Reserved

6

setup

monit
or

Patch

updat
e

valida
te

• Click to edit Master text styles
– Second level
– Third level

• Fourth level
– Fifth level

Traditional software stack
We have done this for 20 years!

©2012 CloudBees, Inc. All Rights
Reserved

Server

Hypervisor

VM

AS

JVM

LB

Applicatio
n

monitor

Patch

You

7

setup

Monito
r

Patch

Updat
e

Validat
e

• Click to edit Master text styles
– Second level
– Third level

• Fourth level
– Fifth level

©2012 CloudBees, Inc. All Rights
Reserved

Servers

OS

VM

AS

JVM

LB

Applications

Monitor

Patch

Cloud Computing: How to do it? Who does what?

Cloud
Provid

er?

8

• AWS – the most popular example
• Server Lego blocks – VM, storage, IP, etc.
• Development environment:

– “Give me a server, an OS, a virtualization layer,
an application server, a firewall, a database, I’ll
deal with it! And patch it. And monitor it. And…”

– Flexible but cOmpLiCaTed

• User point of view
– Custom systems and environments

IaaS

©2012 CloudBees, Inc. All Rights
Reserved

9

Must probably be the same…

IaaS – Let’s try not to change too
much…

©2012 Cloud Bees, Inc. All Rights
Reserved

?

SUN/HP/IBM/XYZ

AWS/Rackspace/etc.

10

IaaS – Congratulations!

©2012 Cloud Bees, Inc. All Rights Reserved

“Great” news: you have now become responsible for the data-center!

11

Directly managing your IaaS resources provides you with
resource elasticity (CAPEX-free), but…

 The amount of soft-IT typically required to do so is …
higher!
– All of the traditional IT activities remain

(maintain/patch/monitor OS+JVM+AS+DB++, etc.)
– + cloud-specific items: elasticity/security/automation

• I can read your mind: this is where you will start
• My advice? Move on…

IaaS – Consequences

©2012 CloudBees, Inc. All Rights
Reserved

12

• SalesForce.com, Zendesk, NetSuite, etc.
• Development environment

– Rigid – mostly through CONFIGURATION
– When available “development” takes place

within the SaaS itself

• User point of view
– Standard applications
– Very fast bootstrap
– Most of the time, lock-in is

very high

SaaS

©2012 CloudBees, Inc. All Rights
Reserved

13

• Cloud concepts are applied to Applications
and Data
– On-demand, pay-as-you-go, elasticity, etc.
– No need to handle updates, patches, scalability,

failover, etc.

• Development environment
– “Give me my typical development

environment and manage everything
else for me – servers, scalability, etc.”

• User point of view
– Custom applications
– Harder to “grasp” initially

PaaS

©2012 CloudBees, Inc. All Rights
Reserved

This is a Service, not just some Software!

14

• Could I please get a « Private PaaS »?
– Sure! We can also sell you a private jet!
– Very tempting! All of the advantages but no decision about

the cloud is needed! And I’ll be able to customize it!

• Yes, but…
– A great part of the value from a PaaS comes from the « S »:

SERVICE
– With a public PaaS, you are outsourcing your Operations &

DevOps

– With a Private PaaS you’ll get a better « interface » between
DEV and IT compared to traditional middleware, but, overall,
you remain in charge of all operations!

– And remember: Customization is the root of all evil!
– « Can I get a 160V plug just for this toaster? »

One last warning…

©2012 CloudBees, Inc. All Rights
Reserved

Why am I telling you all of this?

Enter into the world of CloudBees!

©2012 Cloud Bees, Inc. All Rights Reserved

16

©2012 CloudBees, Inc. All Rights Reserved

Why does CloudBees rock?

Configure OS Secure OS Setup JVM

Install AS on OS Configure AS Secure AS

provision
nodes

Install load-
balancer (LB)

Configure LB

Secure LB
Setup BC for

cluster
QA cluster

Configure DNS

Provision node:

Provision cluster:

 Provision node Install DB Configure DB

Secure DB Setup BC for DB

Provision DB:

 Provision
cluster

Provision DB Deploy schema

Deploy App to
each node

Deploy App:

(not a transparent update process)

Analyse sec.
bulletins

Analyse QA
bulletins

Analyse AS/OS
logs

maintain OS maintain JVM maintain AS

maintain DB

Manage environment (recurring)

maintain FW
Validate/QA

stack

Measure App
performance

Acquire
Hardware Provision node

Update Cluster Update LB

Metering/Scaling (recurring)

Update Security

(transparent,
multi-version,
HA, scalable)

• No need to care about servers,
load-balancers, firewalls,
backups, etc.

• The environment is constantly
managed and monitored

• Scalability happens in realtime

• Integrated failover/HA

• We do « Ops », you do « Dev »

Deploy app to traditional Java
platform

Deploy app to
CloudBees

DEPLOY

17

Stage Deplo
y Scale

Public Edition - IaaS Providers

©2012 CloudBees, Inc.
All Rights Reserved

CloudBees Platform as a Service

Continuou
s

Deployme
nt

Production

Build

Test

Provisioning

Maintenance

Jenkins

SaaS Vendor
Applications

Enterprise
User

Applications

JVM – Java EE
Java, Python, Scala,

…

CloudBees Core Platform Services

RUN@DEV@

Repositories

Data
Services

Metering
Billing

MonitoringManagement

Messaging Identity
Logging/
Auditing

Back-end
services

Runtime
services

Developmen
t Projects

C
lo

u
d

B
e

e
s

E

c
o

s
y

s
te

mGI
T

Mave
n

…SVN

APIs

C
lo

u
d

B
e

e
s

S

m
a

rt P
lu

g
in

s

Databases

Other
SaaS

On
Premise

Private Edition - On-Premise

S
t
a
g
e

D
e
pl
o
y

S
c
al
e

Iterate

18

©2012 CloudBees, Inc. All Rights Reserved

19

All of you assets in a click!

Let’s move onto some
“PaaSterns” now…

(mostly “good design” principles)

Patterns…

Starting…
Portability in the cloud

Tiers vs Tears
Deployment Environments

Dev & Prod Parity
Data & App cloning

Networking
CDNs

Cloud Automation
Continous Deployment

SOA
…

Getting started

Lots of new things to learn!
(delegation of trust, access to legacy

data, latency, elasticity, iterativity, etc.)

The cloud is not perfect
Might not solve all of your problems today

Put a team together
Start small
Non-critical

Learn and Extend
(and enjoy!)

Portability

Follow the right patterns

Avoid lock in to any cloud!
Java is your friend here

Lock-in mostly with PaaS API (automation)
not an issue initially

In fact - easier to go “cloud on premises“
than other way around (cloud keeps you “clean”)

Data is “sticky” so be careful with DBs
(any DB, cloud or not cloud)

Classical enterprise
tiers

Web

App App App

DB

Other services

Firewalls

All your job

Dev servers

Repos and
build

PaaS cloud “tiers”

Routing
service

Data services

App service App

Other
Services

Your job !

Repo
service

CI service

Someone else’s
problem

All services are someone else’s problem
Note transition from server -> service

Similar, but nuanced

Classic enterprise
servers

Large, expensive
Vertically scalable

Intrinsic redundancy
CAPEX not OPEX

outages rare**, but long

Cost of provisioning: high in time and
money

** Really?

Common cloud servers

Numerous, cheap
Horizontally scalable **

Outages more common, but short
PaaS job is to hide all this !

Not your problem !

Cost of provisioning: low in time and
money

** Actually a lot of choice nowadays

Deployment
Environments

Classic: Dev, Test, UAT, Staging, Production

Often anemic hardware for non prod

Work to move between
Hardware/software not consistent

DEV

S
ta

g
in

g

PROD

Dev and Prod parity

Homogenous environments
Dev and prod “identical”

differ in name only
No “server crunch” - so why compromise

No “surprises” when promoting

Only pay for what you use:
hi-fidelity environments - start/stop as needed

Dev and Prod parity

Dev and prod
differ in name only

“A” “B” “C”

One App Many Deploys

Parameterize via Environment variables
When build “promoted” - same bits as tested !!

“common sense” ??

“Config varies substantially across deploys,
code does not” **

** (http://www.12factor.net/)

http://www.12factor.net/

One App Many Deploys

You can have multiple concurrent versions
…as many as you need

Differ in URL

Slowly transition

Enables A/B testing

Data cloning

For “modest” volumes of data
Clone into each environment:

Networking

Classic: layered, partitioned, ops controlled
firewalls

Cloud: flatter networks, programmatic firewalls
Firewalls also happen at server level

A PaaS manages this for you

Hybrid Networking

Need: cloud apps, but some “behind firewall
data”

Very frequent within companies using Java

Typical Solutions:
 - Replicate data
 - VPN
 - Firewall rules on private network (fixed IPs)
 that expose select services (optional
tunneling)
 - VPC (growing usage!)

Private
Datacente

rApp
on

PaaS

To the
Internet

VPC
App
on

PaaS
To the
Internet

“Legacy”
On-

premises
resources

Data
Copy ?

Private
Datacente

rApp
on

PaaS

To the
Internet

VPC
App
on

PaaS
To the
Internet

“Legacy”
On-

premises
resources

Data
Copy

1

2

3

Use A CDN

CDN=Content Delivery Network

Fight latency
Move static/cacheable content to CDN edge

nodes

Examples: Amazon Cloudfront, Cachefly

Now easily accessible by “anybody”

Shift to cloud -> shift to remote servers
(sometimes)

Great, let’s take it to our advantage!

Some users latency sensitive
Use a CDN with geo-aware DNS (all of them)

Bulk of “data” delivered can be cached
in some cases

CDN == a better
cache

Use hash based asset paths
(framework + build tools help)

No expiry caching

==

Maximum chance of cache hit and low latency
Massively improve experience of modern apps

Latency Friendly GUIs

Web interfaces: lightweight js + background
loading (eg backbone.js style)

Mobile apps: naturally latency friendly

Classic request/response web apps are latency
sensitive.

Some latency inevitable, pick frameworks
wisely

Use cloud automation
APIs

All types of clouds have apis

Make use of them from builds:
Deploy time (easy roll back !)

Development and testing (multiple
environments)

Cost saving: only run when needed

bees app:stop
bees app:hibernate **

** will wake when testers need it

Deploy early and often

When it is easy to roll back, it is easy to deploy

Deliver smaller changes, more often

(data breaking changes, you can take your
time !)

Risk in deployment is proportional to the time
since last deployment

Risk = X * (Now - LastDeployment)

Continuous
Deployment

CI == continuous integration
Continuous deployment takes the next step

Tests + Automation == Lower risk

Deploy to “an environment” continuously
(may not be production !)

Need a “build/test/dev” automation workflow
server (eg Jenkins)

Continuous
Deployment

source
buil
d

runtime

Change Deployment rules

If only someone had built this !

Build Workflow

> 400 plugins

Dog Fooding

SOA
Same Old Architecture?

Got a bad name due to WS-* and Enterprise
Vendors

Is a very useful approach
In use by all modern web companies

Just not WS-* !

Build apps as composeable, re-useable services
On paas cloud: http + rest

SOA
Build multi tiered applications

Separate out tiers
Separate out background vs online

GUI vs backoffice functionality

WebApp iOS API

Account
s

Paymen
t

Jobs

Services UI apps

All are just apps on a PaaS

SOA
Services are still just apps !

They are consumed by other apps

Different apps/services can have different
release cadences

Use CI automation to help keep things in sync

HTTP interfaces for your own use (health,
business stats) - not just user facing

Use Natural Sharding
Many apps have a “natural” way to split up data

if needed

(users, accounts etc)

As a way to scale out, split apps into multiple
instances

Databases in to shards

Cheap and easy to clone environments if
needed.

REST-api first design
Increasingly common to build REST apis first

Separate apps for Web, Mobile clients

Server side becomes less GUI centric

Shift in frameworks - choose wisely

Services, like databases, live on, are reused,
and composed into new services

Prefer Stateless
Easy to say - hard to do

Stateless apps delegate state to:
Databases, cookies, cache servers, external

services

Places state can “hide”:
User sessions, caches, frameworks

Prefer Stateless
Session data:

Use session service (cloudbees service) –
cluster friendly (and transparent)

cookies (modulo security)
database

Maybe Stateful
Stateful is actually ok:

A cache that can be replaced
eg Lift Web Framework

not required to be replicated

In this case - use “sticky sessions” - session
affinity to a server (just a flag on cloudbees)

Scale up vs out

State is short lived

Prefer Stateless
Why stateless?

Allows fine grained scaling
Allows scaling out (as well as up +1 dimension)

High Availability
Zero downtime deploys

Client side UI state (eg mobile, HTML5) makes
this easier than ever

Why does a server care what tab a user has
selected?

Use fine grained
scaling

Smaller state-light apps
Scale out quickly

Autoscale
(track stats, ensure SLA being met

automatically)
(no work for you !)

Only pay for what you need

Use Add-ons
Why host your own email service

Why host your own monitoring/analysis

Some PaaS providers
 (CloudBees, Heroku, etc.)

Offer a rich ecosystem to choose from
(send grid, new relic, for example)

Use Add-ons

Use Add-ons
This is the “re-use” we were “promised” many

years ago

Finally delivered
Compose services together

Use Add-ons
Worried about lock in?

Data services are built on open source, you can
always export your data and host it yourself

Other services are less “latency sensitive” (eg
newrelic is popular for on-prem systems too)

Skunkworks
“It is easier to ask forgiveness than it is to ask

permission”
-- Grace Hopper

Cost of trying/building is cheap, so you can
“just build it”

Find a part of your application that could be
split off into a cloud service on a paas

“ask forgiveness”

Example: Lose it!
• Lose it!

• Mobile application
• >10 millions customers
• >20,000 transactions per minute, at peak time

• And… only 4 employees and …2 developers!
• No IT, no servers, no DevOps
• Complete focus on SOFTWARE DEVELOPMENT
• Anything else is handled by CloudBees (AS + DB)

• Unmatched productivity level!
• This is possible TODAY
• Will you wait for your competitors to shoot first?

SaaS

By 2020, IT will either be about…

PaaSor

“Can I find a pre-built
solution that matches my

needs?”

 SaaS

“If not, then I need to
build a custom
application”

 PaaS

Weather Forecast

Join the light side of the
Force

You can’t really get what is a PaaS until you try
it

You need to feel this “ah ah!!” moment

Register on CloudBees.com (free and complete)

●(Jenkins as a Service, Git, SVN, Maven,
MySQL as a Service, Eclipse Plugin,

etc.)

www.cloudbees.com/signup

Get started in a click

i.e. you have no excuse!

Thank you

@SachaLabourey

	Folie 1
	Introduction – Sacha Labourey
	Agenda
	Folie 4
	Easy: « Just use a XaaS! »
	Traditional software stack We have done this for 20 years!
	Folie 7
	IaaS
	IaaS – Let’s try not to change too much…
	IaaS – Congratulations!
	IaaS – Consequences
	SaaS
	PaaS
	One last warning…
	Folie 15
	Why does CloudBees rock?
	CloudBees Platform as a Service
	Folie 18
	All of you assets in a click!
	Folie 20
	Patterns…
	Getting started
	Portability
	Classical enterprise tiers
	PaaS cloud “tiers”
	Someone else’s problem
	Classic enterprise servers
	Common cloud servers
	Deployment Environments
	Dev and Prod parity
	Folie 31
	Dev and Prod parity
	One App Many Deploys
	Folie 34
	One App Many Deploys
	Data cloning
	Networking
	Hybrid Networking
	Folie 39
	Folie 40
	Use A CDN
	Folie 42
	CDN == a better cache
	Latency Friendly GUIs
	Use cloud automation APIs
	Deploy early and often
	Continuous Deployment
	Continuous Deployment
	Build Workflow
	Dog Fooding
	SOA
	SOA
	SOA
	Use Natural Sharding
	REST-api first design
	Prefer Stateless
	Prefer Stateless
	Maybe Stateful
	Prefer Stateless
	Use fine grained scaling
	Use Add-ons
	Use Add-ons
	Use Add-ons
	Use Add-ons
	Skunkworks
	Example: Lose it!
	Folie 67
	Join the light side of the Force
	Folie 69
	Thank you

