SPRING, JAKARTA EE, CDI -
GOOD PARTS

JAREK RATAJSKI

Software Developer, Wizard, Anarchitect

at Engenius GmbH

| WORK WITH JAVA EE SINCE ~2001
WITH SPRING SINCE 2006

e | remember EJB-0SS
e and huge xmls in Spring

At the moment | am making my hands dirty in about 15 various Spring
and Java EE projects

| code for only few projects that are not Spring
or Java EE based

| code for only few projects that are not Spring
or Java EE based

including one very critical application (netty based)

PERSPECTIVE
A | like digging in production bugs:

PERSPECTIVE
A | like digging in production bugs:

Concurrency, security, performance, heisenbugs, leaks

PERSPECTIVE
A | like digging in production bugs:
Concurrency, security, performance, heisenbugs, leaks

Especially, not in my code

Robert C. Martin Series

Clean Architecture

A Craftsman's Guide to
Software Structure and Design

Robert C. Martin

with contriburions by James Grenning and Simon Brown

Forenord by Kevlin Henney
0 Afterwoed by Jason Gorman

oot g SAPET

Safety:

not many pitfalls bugs

safe refactor (without bugs)

easy to test

meaningful (trustful) tests

easy to introduce new team members

SAFETY

Type System

Tests

Typical pitfall

Connection conn = ...
conn.init () ;
conn.read(); //remember to call init before read

Typical pitfall

Connection conn = ...
conn.init () ;
conn.read(); //remember to call init before read

e |tis easy to put warning into documentation

Typical pitfall

Connection conn = ...
conn.init () ;
conn.read(); //remember to call init before read

e |tis easy to put warning into documentation
e |tis easy to remember about it in a simple program

Typical pitfall

Connection conn = ...
conn.init () ;
conn.read(); //remember to call init before read

e |tis easy to put warning into documentation

e |tis easy to remember about it in a simple program

e Itis easy to forget ... when you have 8 developers working 8 hours a
day for few months

The problem: Java EE, Spring

introduce many pitfalls and they do harm to the code and
architecture

This talk is about this harm, how to avoid that, what is still good in
those platforms and what kind of alternatives we have

Codebook

Das J2EE

Ninteraktiv-CD

S}DAXDG Pun
IDAIDS eAe|

you need to read books about

SHOV WAANASVAY[g1z
pun SIFTAYES \§:

IBOSS" A Developer's Notebook™

JBoss voa._;

Server Devels

mxnmmo_ﬁmﬂm-:_mn:a uo_a_o_.___o_;

2nd Edition
Covers J2EE 1.5

10 years ago my answer would be

Spring, Java EE, before you use them.

BEANS

WHAT IS A Bean?

Not the: JavaBeans

Not the: JavaBeans

This is a closed topic, we don't go there anymore

Not the: JavaBeans

This is a closed topic, we don't go there anymore

| hope you do not write many getters and setters in 2020

SPRING BEANS, JAVA EE BEANS, CDI BEANS, JSF,
JPA...

' DOYOUKNOW HOW S
THE BEANS CAME TO BE?

I “THEY WERE IAVA CLASSES ONCE. TAKEN
q BY THE DARK POWERS. TORTURED,AND

HII'I'IIIIIIEII. A IIIIIHEII IHII 'IEIIIIIIIIE Fl!l;lﬁl:lllli

BEAN == MUTILATED, CRIPPLED CLASS(OBJECT) IN JAVA

BEAN == MUTILATED, CRIPPLED CLASS(OBJECT) IN JAVA

e Looks like normal object, but does not behave (like) normal

BEAN == MUTILATED, CRIPPLED CLASS(OBJECT) IN JAVA

e Looks like normal object, but does not behave (like) normal

BEAN == MUTILATED, CRIPPLED CLASS(OBJECT) IN JAVA

e Looks like normal object, but does not behave (like) normal

e Not instantiated by new

BEAN == MUTILATED, CRIPPLED CLASS(OBJECT) IN JAVA

e Looks like normal object, but does not behave (like) normal

e Not instantiated by new

BEAN == MUTILATED, CRIPPLED CLASS(OBJECT) IN JAVA

e Looks like normal object, but does not behave (like) normal

e Not instantiated by new
e there are special rules, limitations, conventions on use

BEAN == MUTILATED, CRIPPLED CLASS(OBJECT) IN JAVA

e Looks like normal object, but does not behave (like) normal

e Not instantiated by new
e there are special rules, limitations, conventions on use

(pitfalls)

BEANS, BUT WHY DO WE HAVE THEM?

; [INJECTIONS ’

— =

dependency injection - what is a DI? ‘

In software engineering, dependency injection is a
technique whereby one object supplies the
dependencies of another object. A "dependency" is
an object that can be used, for example a service.
Instead of a client specifying which service it will
use, something tells the client what service to use.
The "injection" refers to the passing of a dependency
(a service) into the object (a client) that would use it.
The service is made part of the client's state.[1]
Passing the service to the client, rather than
allowing a client to build or find the service, is the
fundamental requirement of the pattern.

Wikipedia

Passing the service to the client, rather than
allowing a client to build or find the service, is the
fundamental requirement of the pattern.

class MyService ({
private final DbRepo db;
public MyService () {
this.db = new DbRepo ("jdbc://url")

}

Do we have a dependency injection here?

class MyService ({
private final DbRepo db;
public MyService (DbRepo db) {
this.db = db;
}
}

MyService serviceProvider () {
var db = new DbRepo("jdbc://url")
return MyService (db)

Do we have a dependency injection here?

https://sites.google.com/site/unclebobconsultinglic/blogs-by-robert-
martin/dependency-injection-inversion

Dependency Injection doesn’t require a framework;
it just requires that you invert your dependencies
and then construct and pass your arguments to
deeper layers.

https://sites.google.com/site/unclebobconsultingllc/blogs-by-robert-martin/dependency-injection-inversion

Framework (loC container) lets you inject at a small cost

Framework (loC container) lets you inject at a small cost

_ PROBLEN SOLVED

Framework (loC container) lets you inject at a small cost

It is in fact technical debt - you will pay later

Y Amf;;

i,

HI'- |l"'

\ Typ|gal Sprfng (Dl)applgcal | rchltecturea&(smpllfl

il
-1.

e Repository in Controller - no problem

e Repository in Controller - no problem

e HttpRequest in Persistence layer - no problem

e Repository in Controller - no problem
e HttpRequest in Persistence layer - no problem

e |njecting anything anywhere - no problem

Repository in Controller - no problem
HttpRequest in Persistence layer - no problem
Injecting anything anywhere - no problem

Bean transferred diseases - gratis

Only bad developers do this

Only bad developers do this

Only bad developers do this

oh, really?

It is like GO TO

Sooner or later someone will make a shortcut an hour before DEMO
An it will stay like that - forever

Because, the most important things in agile are:

Sooner or later someone will make a shortcut an hour before DEMO
An it will stay like that - forever

Because, the most important things in agile are:

\ 6 [/ /Vellmlity and nice burndown charts
&V A7,

MO\ X (cooml (Aviowired nC
.'M all (’a&’tc (-

LOBO

Level of Beans obscurity

(same for Jakarta EE - CDI @Inject, EJB @EJB ...)

It is even pro containers argument !

Would you write all those hundreds of injections
manually?

Solution

Step 0

Step 1

(http://olivergierke.de/2013/11/why-field-injection-is-evil/)

http://olivergierke.de/2013/11/why-field-injection-is-evil/

Step 2

Step 2

Notice, this still works in spring

class A {
final X x;
final Y y;
final Z z;
A(Xx, Yy, Z z) {
this.x =x; this.y = y; this.z = z;
}
}

class ServicesConfiguration {
A getA() {

return new A(this.getX () ,this.getY¥ (), this.getZ());
}

Step 3 - finally without spring

BACK TO CODING SCHOOL:

BACK TO CODING SCHOOL:

Sections of repeating new can be extracted to methods

BACK TO CODING SCHOOL:

Sections of repeating new can be extracted to methods

Use factories / providers

BACK TO CODING SCHOOL:

Sections of repeating new can be extracted to methods

Use factories / providers

Too many arguements in constructor? Split a class in two (or three) (!)

PLENTY OF "BEANS"™ HAVE EXACTLY ONE
IMPLEMENTATION

PLENTY OF "BEANS"™ HAVE EXACTLY ONE
IMPLEMENTATION

Services, Controllers...

PLENTY OF "BEANS"™ HAVE EXACTLY ONE
IMPLEMENTATION

Services, Controllers...

You don't need to make everything injectable/configurable

EXAMPLE (IN KOTLIN + VAVR)

data class StonesModule (
private val seq: DbSequence = DbSequence(),
val stoneRepo: Lazy<StoneRepo> = Lazy.of { StoneRepo(seq) 1},

val stoneService: Lazy<StoneService> = Lazy.of {StoneService

val stoneRest: Lazy<StoneRest> = Lazy.of {StoneRest (stoneSer

) //this is Kotlin uber constructor

// somewhere else
val myModule = StoneRepo(stoneRepo = Lazy.of{MyRepo() })

val service = myModule.stoneService.get ()

"MANUAL" DI VS FRAMEWORK

Manual DI S container loC

small pain every day <--> no problem for months - then disaster

tree like structure <--> ball of mud (messy cake)

3-6depsperclass <--> 5-18deps per class (LOBO)

THERE ARE BEANS WORSE THAN SINGLETONS....

THERE ARE BEANS WORSE THAN SINGLETONS....

e Request scoped

THERE ARE BEANS WORSE THAN SINGLETONS....

e Request scoped
e Session scoped

THERE ARE BEANS WORSE THAN SINGLETONS....

e Request scoped
e Session scoped
e ThreadLocal based

THERE ARE BEANS WORSE THAN SINGLETONS....

e Request scoped
e Session scoped
e ThreadLocal based

Those are in fact global variables

private C methodl(A a, B b) {
//uses a, b, and this. fields
this.serviceX.method2 (a); //does not use b’

this.serviceY.method3 (b); //method does not use "a°

}

@Component
@Scope (value = WebApplicationContext.SCOPE REQUEST, proxyMode = ScopedProxyMode.TARGET CLASS)

class TrollService {
public A getA() {
return a;
}
public void setA (A a) {
this.a = a;
}

private A a;

}

@Service
public class ServiceX {

QAutowired
private TrollService trollService;

void method2 (A a) {
trollService.setA(a) ;

}

In spring based projects this is normal

(especially in Spring batch)

Broken Local reasoning

OUTCOME:

Many of small, reasonable changes can break your system

OUTCOME:

Many of small, reasonable changes can break your system

and tests are still green (because they test only mocks)

OUTCOME:

Many of small, reasonable changes can break your system

and tests are still green (because they test only mocks)

D %

Sleep well, all your tests are green

... EXcept...

—

» With huge codebases Corollary:
— Read: "Monoliths”
— Read: "Enterprise”

If you're seeing
benefit from loC,

* Enables a tradeoff — your codebase is
— Developer discipline already out of
— Code coherence, control.

simplicity, navigability

—

WiXEngineering

Slaying Sacred Cows: Deconstructing Dependency Injection

Tomer Gabel

ASPECTS

@Transactional

When @Transactional does not work?

When @Transactional does not work?

e private method

When @Transactional does not work?

e private method
e public, but this.call(...)

When @Transactional does not work?

private method
public, but this.call(...)

object instantiated with new

When @Transactional does not work?

private method
public, but this.call(...)

object instantiated with new
called in other thread (parallelStream(), future)

When @Transactional does not work?

private method
public, but this.call(...)

object instantiated with new
called in other thread (parallelStream(), future)
troll aspekt (@Trollsactional)

When @Transactional does not work?

private method

public, but this.call(...)

object instantiated with new

called in other thread (parallelStream(), future)
troll aspekt (@Trollsactional)

missing jar on server

ADD JPA MAGIC ON TOP OF THAT

e yet another magic Beans
e managed

e detached

o dirty check

® proxy

, » » ¥ - 2 (-3
- .
7 Wi B o . .
I~ b b B e . ‘s ?
;O »
P - L) 2 ma® i -
O o e ~ d -
e : byl 3 P u 4
o et i W - j
¥
e i 4
o, - i

ITAL FLORIDA
TRIESTE

ADD TRANSACTION ISOLATION LEVEL ASSOCIATED ISSUES

A.C.1.D.

Spring with @Transactional and JPA, and Database all together

omcat/ JBoss

Spring M

Spring WebFlow

-
AOP TX Proxy [

If @Transactional does not work - where do you put a breakpoint?

All aspects induce similar problems:

@Secured
@RolesAllowed
@Cacheable
@Lock

All aspects induce similar problems:

e @Secured

e @RolesAllowed
e @Cacheable

e @Lock

Can your company accept that those aspects may be not active on
production?

All aspects induce similar problems:

e @Secured

e @RolesAllowed
e @Cacheable

e @Lock

Can your company accept that those aspects may be not active on
production?

after small refactoring ?

All aspects induce similar problems:

e @Secured

e @RolesAllowed
e @Cacheable

e @Lock

Can your company accept that those aspects may be not active on
production?

after small refactoring ?

~ 2\

T
Gz

I'VE SEEN
YOU'VE FIXED
THE BUG. WHAT
HAVE YOU
DONE?

Those are just NOT edge cases

0
4
o)
o}
o
X
)
Q
)

I'VE SWAPPED
TWO LINES

I'VE SWAPPED
TWO LINES

It happens more often than you think

Some of the problems (like async) are solved by another set of
annotations

@Aspectd,
@PostConstruct,
@EnableAsync,
@EnableScheduling,
@NoRepositoryBean

Codebook

w
W
N
~
“n
<
Q

S}O|AIDG pun
IdAI3S eAR|

N interaktiv-CD

IBOSS" A Developer's Notebook™

JBoss Portal

Server Development

OREILLY"

2nd Edition
Covers J2EE 1.5
Basham,

Bean based development - a gentle introduction

Why did You put annotation X here?

B Just copied it from the
other piece of code

7] Was adding random
annotations till all started
to work

[l Probably it does nothing
but it also does not break
anything

[| read the specification

MAGIC IN CODE

MAGIC IN CODE

actually false (useless) definition

MAGIC IN CODE

actually false (useless) definition

THINGS, WE DO NOT
UNDERSTAND

MAGIC IN CODE

MAGIC IN CODE

practical definition (v2.0 stable)

MAGIC IN CODE

practical definition (v2.0 stable)

THINGS, THAT DO NOT
COMPOSE SAFELY

Magic is a feature with non-compositional
semantics that succeeds in making the common
case easy, at the cost of making the uncommon

cases surprising, impossible, or ridiculously

complex.

John de Goes (again)

MAGIC ON THE JVM

Dynamic proxy

Thread local

Runtime reflection
Instrumentation

bytecode manipulation
Stringly typed annotations

@Transactional
@Retryable
void myMethod () {

}

Is retry inside transaction or transaction inside retry?

@Transactional
@Retryable
void myMethod () {

}
Is retry inside transaction or transaction inside retry?

cache?, security? -> have fun

(hidden) cost of beans/aspect magic:

Heisenbugs

Paused development

Unrealistic tests (aspects are not covered)

Or Slow tests (with aspects)

Overmocking (aka Mocksturbation, ...sorry)

Fear of refactoring

classpath / classloader disasters (on application servers)
problem with new java versions (not in Spring)

ugly architecture with shortcuts

HOW WE DEFINE NEW
ASPECTS?

@Around ("@annotation (Trollsaction) ")
public Object doInTransaction (ProceedingJoinPoint joinPoint) throws Throwable {
Tx tx = startDBTransaction() ;
Object result = null;
try {
result = joinPoint.proceed() ;
tx.commit () ;
} catch (Exception e) {
tx.rollback() ;
}finally {
}

return result;

simplified Transactional handler

WHAT IF ARE NOT USING
ASPECT?

public R doInTransaction (Supplier<R>

Tx tx = startDBTransaction() ;

R result = null;

try {
result = inTransaction() ;
tx.commit () ;

} catch (Exception e) {
tx.rollback() ;

}finally {

}

return result;

inTransaction)

{

public R doInTransaction (Function<Transaction, R> inTransaction) {
Tx tx = startDBTransaction() ;
R result = null;
try {
result = inTransaction (tx) ;
tx.commit () ;
} catch (Exception e) {
tx.rollback() ;
}finally {
}

return result;

Same pattern works for Security and other aspects

almost all aspects can be rewritten to function call with lambdas

You do not have to write your own:

create. transaction(configuration -> {
AuthorRecord author =
DSL.using(configuration)
.insertInto (AUTHOR, AUTHOR.FIRST NAME, AUTHOR.LAST_NAME)
.values ("George", "Orwell")
.returning ()
.fetchOne () ;

DSL.using(configuration)
.insertInto (BOOK, BOOK.AUTHOR_ID, BOOK.TITLE)
.values (author.getId (), "1984")
.values (author.getId(), "Animal Farm")
.execute() ;

// Implicit commit executed here

});

JOOQ Transaction handling

But not all aspects should be rewritten to functions:

e diagnostic,
* metrics

Are perfect example of aspects that are not very efficient if written in a
functional way (noise)

WE DO NOT REALLY NEED
BEANS

WE DO NOT REALLY NEED
ASPECTS

IS SPRING USEFUL AT ALL?

SPRING IS DEAD LONG LIVE...

SPRING

class WisniaServer ({
fun start() {
val route = router {
GET ("/hello", handle(::printHello))
GET ("/helloUser", secure (handle(::printlHelloForUser)))

}

val httpHandler = RouterFunctions.toHttpHandler (route)
val adapter = ReactorHttpHandlerAdapter (httpHandler)
val server = HttpServer

.create()

.host("localhost")

.port (8080)

.handle (adapter)

.bindNow ()
println ("press enter")
readLine ()
server .disposeNow ()

Spring WebFlux (without beans)

SPRING WEBFLUX

WebFramework
Non-Blocking
supports blocking
Functional(*)

Nice API

No beans needed

No spring context needed
No aspect needed

Simple testing

void testProcessingSuccessful () {
var result = WebTestClient.bindToRouterFunction (router)
.configureClient () . responseTimeout (Duration.of (defaultTimeout, ChronoUnit.SEC
.build()
.post () .uri("/orders/process/$path")
.exchange ()
.expectBody () . returnResult () . responseBody () . toString ()

assertThat(result, is("ok"))

WebFlux can be mixed with classic spring (beans)

although this is magic

Standard WebFlux with Reactor is a total (hard) new thing to learn

Actually more Spring modules can be used in a clean way - without
beans and spring context

WHAT ABOUT JAKARTA EE?

| valued it for being well documented consistent server framework

Great for year 2000

Then it started to be more Springy than Spring

| think only in Java EE projects you will see @PostConstruct

Most of applications servers can work as embedded now!

It is 2020, please DO NOT use standalone application servers

e problems with classpath, classloaders
e problems with jvm versions

* noise in logs

e tough to test (arquillian)

e configuration issues

e jvm params hell

Make jar not war

Make jar not ear

Need containers?

We have plenty of them already

BLOWN EGG PATTERN

my-app-core:
services, business logic, tests - clean java
my-app-ee:
java-ee wrapper: jax-rs, datasources etc.

@Path (" /order")
public class Orders {
QPersistenceContext
final EntityManager em;
QGET
@Produces (MediaType .APPLICATION JSON)
public List<String> showOrders () ({
return new OrdersService (em) .listOrders() ;

}

Same pattern applies for Spring

JAKARTA EE IS FAR AWAY FROM
INITIAL IDEA

Initially:

e better CORBA,

e remoting,

o distributed transactions support,

e resource (RAM) friendly (more apps on a single JVM)

Today: Single application on a single application server that is not
using any distributed transactions

SOLUTIONS

Bill G flicker image (https://www.flickr.com/photos/billerr/1814657036)

https://www.flickr.com/photos/billerr/1814657036

Bill G flicker image (https://www.flickr.com/photos/billerr/1814657036)
Baby steps

https://www.flickr.com/photos/billerr/1814657036

STEP 1

e Drop application servers

e Make Jar not War

(Spring Boot is good for a start)

STEP 2

Hold your Beans
Use Beans where really needed

(example -> only Jax-RS annotations and @Controllers)

Use only constructors for DI

STEP 2

Hold your Beans
Use Beans where really needed

(example -> only Jax-RS annotations and @Controllers)

Use only constructors for DI

STEP 3

(fun starts)
Drop JPA
Try: JOOQ, QueryDSL, JDBI and alternatives

STEP 4

Learn altrernative web/rest frameworks

akka-http
Sparkjava
javalin
ktor

STEP 5

Try functional programming

Transaction is a monad

STEP 5

Try functional programming

Transaction is a monad

Monad —> -

class Transaction<A> (private wval action : (Handle) -> A) {
fun run(dbi : Jdbi) : A = dbi.withHandle<A, RuntimeException>(action)

fun map (£: (A)->B) = Transaction {hande ->
f (action (hande))

}

fun flatMap(f£: (A)->Transaction) = Transaction {handle ->
f (action (handle)) .action (handle)
}

companion object {
fun <T> pure (obj:T) = Transaction ({
obj
}

Experiment (future)

Instead of writing:

class Hasiok {
@Resource
val jdbcConnection: Connection

@Transactional

@Secure

@Cacheable

@QRetryable

fun £(p:P) {
//code

}

You may write this:

class Hasiok {
private val £ = {jdbcConnection:Connection ->
{p: P >
//code
}
}

val enterprisyF = Nee.pure (
secure
.and (retryable)
.and (cacheable)
.and (transactional) , f)

OPINION

Spring is battle tested has great docs - no other platforms in a JVM
world is close to that (Akka, Lagom, ZIO etc) v

Every java developers knows Spring or Java EE on a shallow level v
Java developers are unaware of bean associated complexity v

We can still benefit from / use Spring and Java EE - while minimising
use of Beans v

Thank you
@jarek000000

Sources:

Adam Warski 2017 - The Case against annotations

Tomer Gabel - Slaying sacred cows
https://sites.google.com/site/unclebobconsultinglic/blogs-by-robert-
martin/dependency-injection-inversion

From Spring Boot Apps to Functional Kotlin Nicolas Frankel
https://www.youtube.com/watch?v=f6a78mCrSeE

https://sites.google.com/site/unclebobconsultingllc/blogs-by-robert-martin/dependency-injection-inversion
https://www.youtube.com/watch?v=f6a78mCrSeE

