
SPRING, JAKARTA EE, CDI -SPRING, JAKARTA EE, CDI -
GOOD PARTSGOOD PARTS

JAREK RATAJSKIJAREK RATAJSKI
Software Developer, Wizard, AnarchitectSoftware Developer, Wizard, AnarchitectSoftware Developer, Wizard, Anarchitect

at Engenius GmbHat Engenius GmbHat Engenius GmbH

I WORK WITH JAVA EE SINCE ~2001I WORK WITH JAVA EE SINCE ~2001
WITH SPRING SINCE 2006WITH SPRING SINCE 2006

I remember EJB-OSS
and huge xmls in Spring

At the moment I am At the moment I am At the moment I am making my hands dirty in about 15 various Springmaking my hands dirty in about 15 various Springmaking my hands dirty in about 15 various Spring
and Java EE projectsand Java EE projectsand Java EE projects

I code for I code for I code for only fewonly fewonly few projects that are not projects that are not projects that are not SpringSpringSpring
or or or Java EEJava EEJava EE based based based

I code for I code for I code for only fewonly fewonly few projects that are not projects that are not projects that are not SpringSpringSpring
or or or Java EEJava EEJava EE based based based

including one very critical application (netty based)including one very critical application (netty based)including one very critical application (netty based)

PERSPECTIVEPERSPECTIVE
⚠ I like digging in production bugs:⚠ I like digging in production bugs:⚠ I like digging in production bugs:

PERSPECTIVEPERSPECTIVE
⚠ I like digging in production bugs:⚠ I like digging in production bugs:⚠ I like digging in production bugs:

Concurrency, security, performance, heisenbugs, leaksConcurrency, security, performance, heisenbugs, leaksConcurrency, security, performance, heisenbugs, leaks

PERSPECTIVEPERSPECTIVE
⚠ I like digging in production bugs:⚠ I like digging in production bugs:⚠ I like digging in production bugs:

Concurrency, security, performance, heisenbugs, leaksConcurrency, security, performance, heisenbugs, leaksConcurrency, security, performance, heisenbugs, leaks

Especially, not in my codeEspecially, not in my codeEspecially, not in my code

Safety:Safety:Safety:

not many pitfalls bugs
safe refactor (without bugs)
easy to test
meaningful (trustful) tests
easy to introduce new team members

SAFETYSAFETY
Type SystemType SystemType System

TestsTestsTests

Typical Typical Typical pitfallpitfallpitfall

Connection conn = ...
 conn.init();
 conn.read(); //remember to call init before read

Typical Typical Typical pitfallpitfallpitfall

It is easy to put warning into documentation

Connection conn = ...
 conn.init();
 conn.read(); //remember to call init before read

Typical Typical Typical pitfallpitfallpitfall

It is easy to put warning into documentation
It is easy to remember about it in a simple program

Connection conn = ...
 conn.init();
 conn.read(); //remember to call init before read

Typical Typical Typical pitfallpitfallpitfall

It is easy to put warning into documentation
It is easy to remember about it in a simple program
It is easy to forget ... when you have 8 developers working 8 hours a
day for few months

Connection conn = ...
 conn.init();
 conn.read(); //remember to call init before read

The problem: The problem: The problem: Java EE, SpringJava EE, SpringJava EE, Spring

introduce many introduce many introduce many pitfallspitfallspitfalls and they do harm to the code and and they do harm to the code and and they do harm to the code and
architecturearchitecturearchitecture

This talk is about this harm, how to avoid that, what is still good inThis talk is about this harm, how to avoid that, what is still good inThis talk is about this harm, how to avoid that, what is still good in
those platforms and what kind of alternatives we havethose platforms and what kind of alternatives we havethose platforms and what kind of alternatives we have

10 years ago my answer would be - you need to read books about10 years ago my answer would be - you need to read books about10 years ago my answer would be - you need to read books about
Spring, Java EE, before you use them.Spring, Java EE, before you use them.Spring, Java EE, before you use them.

BEANSBEANS

WHAT IS A WHAT IS A BeanBean??

Not the: Not the: Not the: JavaBeansJavaBeansJavaBeans

Not the: Not the: Not the: JavaBeansJavaBeansJavaBeans

This is a closed topic, This is a closed topic, This is a closed topic, we don't go we don't go we don't go there anymorethere anymorethere anymore

Not the: Not the: Not the: JavaBeansJavaBeansJavaBeans

This is a closed topic, This is a closed topic, This is a closed topic, we don't go we don't go we don't go there anymorethere anymorethere anymore

I hope you do not write many getters and setters in 2020I hope you do not write many getters and setters in 2020I hope you do not write many getters and setters in 2020

SPRING BEANS, JAVA EE BEANS, CDI BEANS, JSF,SPRING BEANS, JAVA EE BEANS, CDI BEANS, JSF,
JPA...JPA...

BEAN == MUTILATED, CRIPPLED CLASS(OBJECT) IN JAVABEAN == MUTILATED, CRIPPLED CLASS(OBJECT) IN JAVA

BEAN == MUTILATED, CRIPPLED CLASS(OBJECT) IN JAVABEAN == MUTILATED, CRIPPLED CLASS(OBJECT) IN JAVA

Looks like normal object, but does not behave (like) normalLooks like normal object, but does not behave (like) normalLooks like normal object, but does not behave (like) normal

BEAN == MUTILATED, CRIPPLED CLASS(OBJECT) IN JAVABEAN == MUTILATED, CRIPPLED CLASS(OBJECT) IN JAVA

Looks like normal object, but does not behave (like) normalLooks like normal object, but does not behave (like) normalLooks like normal object, but does not behave (like) normal

BEAN == MUTILATED, CRIPPLED CLASS(OBJECT) IN JAVABEAN == MUTILATED, CRIPPLED CLASS(OBJECT) IN JAVA

Looks like normal object, but does not behave (like) normalLooks like normal object, but does not behave (like) normalLooks like normal object, but does not behave (like) normal

Not instantiated by new

BEAN == MUTILATED, CRIPPLED CLASS(OBJECT) IN JAVABEAN == MUTILATED, CRIPPLED CLASS(OBJECT) IN JAVA

Looks like normal object, but does not behave (like) normalLooks like normal object, but does not behave (like) normalLooks like normal object, but does not behave (like) normal

Not instantiated by new

BEAN == MUTILATED, CRIPPLED CLASS(OBJECT) IN JAVABEAN == MUTILATED, CRIPPLED CLASS(OBJECT) IN JAVA

Looks like normal object, but does not behave (like) normalLooks like normal object, but does not behave (like) normalLooks like normal object, but does not behave (like) normal

Not instantiated by new
there are special rules, limitations, conventions on use

BEAN == MUTILATED, CRIPPLED CLASS(OBJECT) IN JAVABEAN == MUTILATED, CRIPPLED CLASS(OBJECT) IN JAVA

Looks like normal object, but does not behave (like) normalLooks like normal object, but does not behave (like) normalLooks like normal object, but does not behave (like) normal

Not instantiated by new
there are special rules, limitations, conventions on use

(pitfalls)(pitfalls)(pitfalls)

BEANS, BUT WHY DO WE HAVE BEANS, BUT WHY DO WE HAVE THEM?THEM?

INJECTIONSINJECTIONS

dependency injectiondependency injectiondependency injection - what is a DI? - what is a DI? - what is a DI?

WikipediaWikipediaWikipedia

In software engineering, dependency injection is aIn software engineering, dependency injection is aIn software engineering, dependency injection is a
technique whereby one object supplies thetechnique whereby one object supplies thetechnique whereby one object supplies the

dependencies of another object. A "dependency" isdependencies of another object. A "dependency" isdependencies of another object. A "dependency" is
an object that can be used, for example a service.an object that can be used, for example a service.an object that can be used, for example a service.
Instead of a client specifying which service it willInstead of a client specifying which service it willInstead of a client specifying which service it will

use, something tells the client what service to use.use, something tells the client what service to use.use, something tells the client what service to use.
The "injection" refers to the passing of a dependencyThe "injection" refers to the passing of a dependencyThe "injection" refers to the passing of a dependency
(a service) into the object (a client) that would use it.(a service) into the object (a client) that would use it.(a service) into the object (a client) that would use it.

The service is made part of the client's state.[1]The service is made part of the client's state.[1]The service is made part of the client's state.[1]
Passing the service to the client, rather thanPassing the service to the client, rather thanPassing the service to the client, rather than

allowing a client to build or �nd the service, is theallowing a client to build or �nd the service, is theallowing a client to build or �nd the service, is the
fundamental requirement of the pattern.fundamental requirement of the pattern.fundamental requirement of the pattern.

Passing the service to the client, rather thanPassing the service to the client, rather thanPassing the service to the client, rather than
allowing a client to build or �nd the service, is theallowing a client to build or �nd the service, is theallowing a client to build or �nd the service, is the

fundamental requirement of the pattern.fundamental requirement of the pattern.fundamental requirement of the pattern.

Do we have a Do we have a Do we have a dependency injectiondependency injectiondependency injection here? here? here?

class MyService {
 private final DbRepo db;
 public MyService() {
 this.db = new DbRepo("jdbc://url")
 }
}

Do we have a Do we have a Do we have a dependency injectiondependency injectiondependency injection here? here? here?

class MyService {
 private final DbRepo db;
 public MyService(DbRepo db) {
 this.db = db;
 }
}

MyService serviceProvider() {
 var db = new DbRepo("jdbc://url")
 return MyService(db)
}

https://sites.google.com/site/unclebobconsultingllc/blogs-by-robert-https://sites.google.com/site/unclebobconsultingllc/blogs-by-robert-https://sites.google.com/site/unclebobconsultingllc/blogs-by-robert-
martin/dependency-injection-inversionmartin/dependency-injection-inversionmartin/dependency-injection-inversion

Dependency Injection doesn’t require a framework;Dependency Injection doesn’t require a framework;Dependency Injection doesn’t require a framework;
it just requires that you invert your dependenciesit just requires that you invert your dependenciesit just requires that you invert your dependencies
and then construct and pass your arguments toand then construct and pass your arguments toand then construct and pass your arguments to

deeper layers.deeper layers.deeper layers.

https://sites.google.com/site/unclebobconsultingllc/blogs-by-robert-martin/dependency-injection-inversion

Framework (IoC container) lets you Framework (IoC container) lets you Framework (IoC container) lets you injectinjectinject at a at a at a small costsmall costsmall cost

Framework (IoC container) lets you Framework (IoC container) lets you Framework (IoC container) lets you injectinjectinject at a at a at a small costsmall costsmall cost

Framework (IoC container) lets you Framework (IoC container) lets you Framework (IoC container) lets you injectinjectinject at a at a at a small costsmall costsmall cost

It is in fact technical debt - you will pay laterIt is in fact technical debt - you will pay laterIt is in fact technical debt - you will pay later

Typical Spring (DI) application architecture Typical Spring (DI) application architecture Typical Spring (DI) application architecture (simpli�ed)(simpli�ed)(simpli�ed)

Repository in Controller - no problemRepository in Controller - no problemRepository in Controller - no problem

Repository in Controller - no problemRepository in Controller - no problemRepository in Controller - no problem

HttpRequest in Persistence layer - no problemHttpRequest in Persistence layer - no problemHttpRequest in Persistence layer - no problem

Repository in Controller - no problemRepository in Controller - no problemRepository in Controller - no problem

HttpRequest in Persistence layer - no problemHttpRequest in Persistence layer - no problemHttpRequest in Persistence layer - no problem

Injecting anything anywhere - no problemInjecting anything anywhere - no problemInjecting anything anywhere - no problem

Repository in Controller - no problemRepository in Controller - no problemRepository in Controller - no problem

HttpRequest in Persistence layer - no problemHttpRequest in Persistence layer - no problemHttpRequest in Persistence layer - no problem

Injecting anything anywhere - no problemInjecting anything anywhere - no problemInjecting anything anywhere - no problem

Bean transferred diseases - gratisBean transferred diseases - gratisBean transferred diseases - gratis

Only bad developers do thisOnly bad developers do thisOnly bad developers do this

Only bad developers do thisOnly bad developers do thisOnly bad developers do this

Only bad developers do thisOnly bad developers do thisOnly bad developers do this

oh, really?oh, really?oh, really?

It is like It is like It is like GO TOGO TOGO TO

Sooner or later someone will make a shortcut an hour before DEMOSooner or later someone will make a shortcut an hour before DEMOSooner or later someone will make a shortcut an hour before DEMO

An it will stay like that - An it will stay like that - An it will stay like that - foreverforeverforever

Because, the most important things in agile are:Because, the most important things in agile are:Because, the most important things in agile are:

Sooner or later someone will make a shortcut an hour before DEMOSooner or later someone will make a shortcut an hour before DEMOSooner or later someone will make a shortcut an hour before DEMO

An it will stay like that - An it will stay like that - An it will stay like that - foreverforeverforever

Because, the most important things in agile are:Because, the most important things in agile are:Because, the most important things in agile are:

VelocityVelocityVelocity and nice and nice and nice burndown chartsburndown chartsburndown charts

LOBOLOBO
Level of Beans obscurityLevel of Beans obscurityLevel of Beans obscurity

(same for Jakarta EE - (same for Jakarta EE - (same for Jakarta EE - CDI CDI CDI @Inject@Inject@Inject, EJB , EJB , EJB @EJB@EJB@EJB ...) ...) ...)

It is even It is even It is even pro containerspro containerspro containers argument ! argument ! argument !

Would you write all those hundreds of injectionsWould you write all those hundreds of injectionsWould you write all those hundreds of injections
manually?manually?manually?

SolutionSolutionSolution

Step 0Step 0Step 0

class A {
 @Autowired
 Xx;
 @Autowired
 Y y;
 @AUtowired
 Z z;
}

Step 1Step 1Step 1

((()))

class A {
 final X x;
 final Y y;
 final Z z;
 @Autowired
 A(X x, Y y, Z z) {
 this.x =x; this.y = y; this.z = z;
 }
}

http://olivergierke.de/2013/11/why-�eld-injection-is-evil/http://olivergierke.de/2013/11/why-�eld-injection-is-evil/http://olivergierke.de/2013/11/why-�eld-injection-is-evil/

http://olivergierke.de/2013/11/why-field-injection-is-evil/

Step 2Step 2Step 2

class A {
 final X x;
 final Y y;
 final Z z;
 //@Autowired
 A(X x, Y y, Z z) {
 this.x =x; this.y = y; this.z = z;
 }
}

Step 2Step 2Step 2

Notice, this still works in springNotice, this still works in springNotice, this still works in spring

class A {
 final X x;
 final Y y;
 final Z z;
 //@Autowired
 A(X x, Y y, Z z) {
 this.x =x; this.y = y; this.z = z;
 }
}

Step 3 - �nally without springStep 3 - �nally without springStep 3 - �nally without spring

class A {
 final X x;
 final Y y;
 final Z z;
 A(X x, Y y, Z z) {
 this.x =x; this.y = y; this.z = z;
 }
}

class ServicesConfiguration {
 A getA() {
 return new A(this.getX(),this.getY(), this.getZ());
 }
}

BACK TO CODING SCHOOL:BACK TO CODING SCHOOL:

BACK TO CODING SCHOOL:BACK TO CODING SCHOOL:
Sections of repeating Sections of repeating Sections of repeating newnewnew can be can be can be extracted to methodsextracted to methodsextracted to methods

BACK TO CODING SCHOOL:BACK TO CODING SCHOOL:
Sections of repeating Sections of repeating Sections of repeating newnewnew can be can be can be extracted to methodsextracted to methodsextracted to methods

Use factories / providersUse factories / providersUse factories / providers

BACK TO CODING SCHOOL:BACK TO CODING SCHOOL:
Sections of repeating Sections of repeating Sections of repeating newnewnew can be can be can be extracted to methodsextracted to methodsextracted to methods

Use factories / providersUse factories / providersUse factories / providers

Too many arguements in constructor? Split a class in two (or three) (!)Too many arguements in constructor? Split a class in two (or three) (!)Too many arguements in constructor? Split a class in two (or three) (!)

PLENTY OF "BEANS" HAVE EXACTLY ONEPLENTY OF "BEANS" HAVE EXACTLY ONE
IMPLEMENTATIONIMPLEMENTATION

PLENTY OF "BEANS" HAVE EXACTLY ONEPLENTY OF "BEANS" HAVE EXACTLY ONE
IMPLEMENTATIONIMPLEMENTATION

Services, Controllers...Services, Controllers...Services, Controllers...

PLENTY OF "BEANS" HAVE EXACTLY ONEPLENTY OF "BEANS" HAVE EXACTLY ONE
IMPLEMENTATIONIMPLEMENTATION

Services, Controllers...Services, Controllers...Services, Controllers...

You don't need to make everything injectable/con�gurableYou don't need to make everything injectable/con�gurableYou don't need to make everything injectable/con�gurable

EXAMPLE (IN KOTLIN + VAVR)EXAMPLE (IN KOTLIN + VAVR)
data class StonesModule(
 private val seq: DbSequence = DbSequence(),
 val stoneRepo: Lazy<StoneRepo> = Lazy.of { StoneRepo(seq) },
 val stoneService: Lazy<StoneService> = Lazy.of {StoneService
 val stoneRest: Lazy<StoneRest> = Lazy.of {StoneRest(stoneSer
) //this is Kotlin uber constructor

// somewhere else
val myModule = StoneRepo(stoneRepo = Lazy.of{MyRepo()})
val service = myModule.stoneService.get()

"MANUAL" DI VS FRAMEWORK"MANUAL" DI VS FRAMEWORK
Manual DI vs container IoC

small pain every day <--> no problem for months - then disaster

tree like structure <--> ball of mud (messy cake)

3 - 6 deps per class <--> 5 - 18 deps per class (LOBO)

Manual DIManual DIManual DI

THERE ARE BEANS WORSE THAN SINGLETONS....THERE ARE BEANS WORSE THAN SINGLETONS....

THERE ARE BEANS WORSE THAN SINGLETONS....THERE ARE BEANS WORSE THAN SINGLETONS....
Request scoped

THERE ARE BEANS WORSE THAN SINGLETONS....THERE ARE BEANS WORSE THAN SINGLETONS....
Request scoped
Session scoped

THERE ARE BEANS WORSE THAN SINGLETONS....THERE ARE BEANS WORSE THAN SINGLETONS....
Request scoped
Session scoped
ThreadLocal based

THERE ARE BEANS WORSE THAN SINGLETONS....THERE ARE BEANS WORSE THAN SINGLETONS....
Request scoped
Session scoped
ThreadLocal based

Those are in fact Those are in fact Those are in fact global variablesglobal variablesglobal variables

private C method1(A a, B b) {
 //uses a, b, and this. fields
 this.serviceX.method2(a); //does not use `b`

 this.serviceY.method3(b); //method does not use `a`
}

@Component
@Scope(value = WebApplicationContext.SCOPE_REQUEST, proxyMode = ScopedProxyMode.TARGET_CLASS)
class TrollService {
 public A getA() {
 return a;
 }
 public void setA(A a) {
 this.a = a;
 }
 private A a;
}

@Service
public class ServiceX {
 @Autowired
 private TrollService trollService;

 void method2(A a) {
 trollService.setA(a);
 }
}

In spring based projects this is In spring based projects this is In spring based projects this is normalnormalnormal

(especially in Spring batch)(especially in Spring batch)(especially in Spring batch)

Broken Broken Broken Local reasoningLocal reasoningLocal reasoning

OUTCOME:OUTCOME:
Many of small, reasonable changes Many of small, reasonable changes Many of small, reasonable changes can break your systemcan break your systemcan break your system

OUTCOME:OUTCOME:
Many of small, reasonable changes Many of small, reasonable changes Many of small, reasonable changes can break your systemcan break your systemcan break your system

and tests are still green (because they test only mocks)and tests are still green (because they test only mocks)and tests are still green (because they test only mocks)

OUTCOME:OUTCOME:
Many of small, reasonable changes Many of small, reasonable changes Many of small, reasonable changes can break your systemcan break your systemcan break your system

and tests are still green (because they test only mocks)and tests are still green (because they test only mocks)and tests are still green (because they test only mocks)

Sleep well, all your Sleep well, all your Sleep well, all your tests are greentests are greentests are green

Slaying Sacred Cows: Deconstructing Dependency InjectionSlaying Sacred Cows: Deconstructing Dependency InjectionSlaying Sacred Cows: Deconstructing Dependency Injection

Tomer GabelTomer GabelTomer Gabel

ASPECTSASPECTS

@Transactional@Transactional

When When When @Transactional@Transactional@Transactional does not work? does not work? does not work?

When When When @Transactional@Transactional@Transactional does not work? does not work? does not work?

private method

When When When @Transactional@Transactional@Transactional does not work? does not work? does not work?

private method
public, but this.call(...)

When When When @Transactional@Transactional@Transactional does not work? does not work? does not work?

private method
public, but this.call(...)
object instantiated with new

When When When @Transactional@Transactional@Transactional does not work? does not work? does not work?

private method
public, but this.call(...)
object instantiated with new
called in other thread (parallelStream(), future)

When When When @Transactional@Transactional@Transactional does not work? does not work? does not work?

private method
public, but this.call(...)
object instantiated with new
called in other thread (parallelStream(), future)
troll aspekt (@Trollsactional)

When When When @Transactional@Transactional@Transactional does not work? does not work? does not work?

private method
public, but this.call(...)
object instantiated with new
called in other thread (parallelStream(), future)
troll aspekt (@Trollsactional)
missing jar on server

ADD ADD JPA MAGIC ON TOP OF THATJPA MAGIC ON TOP OF THAT

yet another magic Beans
managed
detached
dirty check
proxy

ADD ADD TRANSACTION ISOLATION LEVEL ASSOCIATED ISSUESTRANSACTION ISOLATION LEVEL ASSOCIATED ISSUES

A.C.I.D.A.C.I.D.

Spring with Spring with Spring with @Transactional@Transactional@Transactional and and and JPA, and Database all togetherJPA, and Database all togetherJPA, and Database all together

If If If @Transactional@Transactional@Transactional does not work - where do you put a breakpoint? does not work - where do you put a breakpoint? does not work - where do you put a breakpoint?

All aspects induce similar problems:All aspects induce similar problems:All aspects induce similar problems:

@Secured
@RolesAllowed
@Cacheable
@Lock
...

All aspects induce similar problems:All aspects induce similar problems:All aspects induce similar problems:

@Secured
@RolesAllowed
@Cacheable
@Lock
...

Can your company accept that those aspects may be Can your company accept that those aspects may be Can your company accept that those aspects may be not active onnot active onnot active on
productionproductionproduction???

All aspects induce similar problems:All aspects induce similar problems:All aspects induce similar problems:

@Secured
@RolesAllowed
@Cacheable
@Lock
...

Can your company accept that those aspects may be Can your company accept that those aspects may be Can your company accept that those aspects may be not active onnot active onnot active on
productionproductionproduction???

after small refactoring ?after small refactoring ?after small refactoring ?

All aspects induce similar problems:All aspects induce similar problems:All aspects induce similar problems:

@Secured
@RolesAllowed
@Cacheable
@Lock
...

Can your company accept that those aspects may be Can your company accept that those aspects may be Can your company accept that those aspects may be not active onnot active onnot active on
productionproductionproduction???

after small refactoring ?after small refactoring ?after small refactoring ?

Those are just NOT Those are just NOT Those are just NOT edge casesedge casesedge cases

It happens more often than you thinkIt happens more often than you thinkIt happens more often than you think

Some of the problems (like async) are solved by another set ofSome of the problems (like async) are solved by another set ofSome of the problems (like async) are solved by another set of
annotationsannotationsannotations

@AspectJ,
@PostConstruct,
@EnableAsync,
@EnableScheduling,
@NoRepositoryBean

Bean based development - a gentle introductionBean based development - a gentle introductionBean based development - a gentle introduction

MAGIC IN CODEMAGIC IN CODE

MAGIC IN CODEMAGIC IN CODE
actually false (useless) de�nitionactually false (useless) de�nitionactually false (useless) de�nition

MAGIC IN CODEMAGIC IN CODE
actually false (useless) de�nitionactually false (useless) de�nitionactually false (useless) de�nition

THINGS, WE DO NOTTHINGS, WE DO NOT
UNDERSTANDUNDERSTAND

MAGIC IN MAGIC IN CODECODE

MAGIC IN MAGIC IN CODECODE
practical de�nition (v2.0 practical de�nition (v2.0 practical de�nition (v2.0 stable)stable)stable)

MAGIC IN MAGIC IN CODECODE
practical de�nition (v2.0 practical de�nition (v2.0 practical de�nition (v2.0 stable)stable)stable)

THINGS, THINGS, THAT DO NOTTHAT DO NOT
COMPOSE SAFELYCOMPOSE SAFELY

John de Goes (again)John de Goes (again)John de Goes (again)

Magic is a feature with non-compositionalMagic is a feature with non-compositionalMagic is a feature with non-compositional
semantics that succeeds in making the semantics that succeeds in making the semantics that succeeds in making the commoncommoncommon
case easy, at the cost of making the uncommoncase easy, at the cost of making the uncommoncase easy, at the cost of making the uncommon

cases surprising, impossible, or ridiculouslycases surprising, impossible, or ridiculouslycases surprising, impossible, or ridiculously
complex.complex.complex.

MAGIC ON THE JVMMAGIC ON THE JVM
Dynamic proxy
Thread local
Runtime re�ection
Instrumentation
bytecode manipulation
Stringly typed annotations

@Retryable
void myMethod () {

}

@Transactional
void myMethod () {

}

@Transactional
@Retryable
void myMethod () {

}

Is retry inside transaction or transaction inside retry?Is retry inside transaction or transaction inside retry?Is retry inside transaction or transaction inside retry?

@Transactional
@Retryable
void myMethod () {

}

Is retry inside transaction or transaction inside retry?Is retry inside transaction or transaction inside retry?Is retry inside transaction or transaction inside retry?

cache?, security? -> have funcache?, security? -> have funcache?, security? -> have fun

@Transactional
@Retryable
void myMethod () {

}

(hidden) cost of beans/aspect magic:(hidden) cost of beans/aspect magic:(hidden) cost of beans/aspect magic:

Heisenbugs
Paused development
Unrealistic tests (aspects are not covered)
Or Slow tests (with aspects)
Overmocking (aka Mocksturbation, ...sorry)
Fear of refactoring
classpath / classloader disasters (on application servers)
problem with new java versions (not in Spring)
ugly architecture with shortcuts

HOW WE DEFINE NEWHOW WE DEFINE NEW
ASPECTS?ASPECTS?

simpli�ed Transactional handlersimpli�ed Transactional handlersimpli�ed Transactional handler

@Around("@annotation(Trollsaction)")
public Object doInTransaction(ProceedingJoinPoint joinPoint) throws Throwable {
 Tx tx = startDBTransaction();
 Object result = null;
 try {
 result = joinPoint.proceed();
 tx.commit();
 } catch(Exception e){
 tx.rollback();
 }finally {
 }
 return result;
}

WHAT IF ARE NOT USINGWHAT IF ARE NOT USING
ASPECT?ASPECT?

public R doInTransaction(Supplier<R> inTransaction) {
 Tx tx = startDBTransaction();
 R result = null;
 try {
 result = inTransaction();
 tx.commit();
 } catch(Exception e){
 tx.rollback();
 }finally {
 }
 return result;
}

public R doInTransaction(Function<Transaction, R> inTransaction) {
 Tx tx = startDBTransaction();
 R result = null;
 try {
 result = inTransaction(tx);
 tx.commit();
 } catch(Exception e){
 tx.rollback();
 }finally {
 }
 return result;
}

Same pattern works for Security and other Same pattern works for Security and other Same pattern works for Security and other aspectsaspectsaspects

almost all aspects can be rewritten to function call with lambdasalmost all aspects can be rewritten to function call with lambdasalmost all aspects can be rewritten to function call with lambdas

You do not have to write your own:You do not have to write your own:You do not have to write your own:

JOOQ Transaction handlingJOOQ Transaction handlingJOOQ Transaction handling

create.transaction(configuration -> {
 AuthorRecord author =
 DSL.using(configuration)
 .insertInto(AUTHOR, AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME)
 .values("George", "Orwell")
 .returning()
 .fetchOne();

 DSL.using(configuration)
 .insertInto(BOOK, BOOK.AUTHOR_ID, BOOK.TITLE)
 .values(author.getId(), "1984")
 .values(author.getId(), "Animal Farm")
 .execute();

 // Implicit commit executed here
});

But not all aspects should be rewritten to functions:But not all aspects should be rewritten to functions:But not all aspects should be rewritten to functions:

diagnostic,
metrics

Are perfect example of aspects Are perfect example of aspects Are perfect example of aspects that are not very e�cient if written in athat are not very e�cient if written in athat are not very e�cient if written in a
functional way (noise)functional way (noise)functional way (noise)

WE DO NOT REALLY NEEDWE DO NOT REALLY NEED
BEANSBEANS

WE DO NOT REALLY NEEDWE DO NOT REALLY NEED
ASPECTSASPECTS

IS SPRING USEFUL AT ALL?IS SPRING USEFUL AT ALL?

SPRING IS DEAD LONG LIVE...SPRING IS DEAD LONG LIVE...
SPRINGSPRING

Spring WebFlux (without Spring WebFlux (without Spring WebFlux (without beans)beans)beans)

class WisniaServer {
 fun start() {
 val route = router {
 GET("/hello", handle(::printHello))
 GET("/helloUser", secure(handle(::printlHelloForUser)))
 }

 val httpHandler = RouterFunctions.toHttpHandler(route)
 val adapter = ReactorHttpHandlerAdapter(httpHandler)
 val server = HttpServer
 .create()
 .host("localhost")
 .port(8080)
 .handle(adapter)
 .bindNow()
 println("press enter")
 readLine()
 server.disposeNow()
 }
}

SPRING WEBFLUXSPRING WEBFLUX
WebFramework
Non-Blocking
supports blocking
Functional(*)

Nice APINice APINice API

No beans neededNo beans neededNo beans needed

No spring context needed

No aspect neededNo aspect neededNo aspect needed

Simple testingSimple testingSimple testing

 void testProcessingSuccessful() {
 var result = WebTestClient.bindToRouterFunction(router)
 .configureClient().responseTimeout(Duration.of(defaultTimeout, ChronoUnit.SEC
 .build()
 .post().uri("/orders/process/$path")
 .exchange()
 .expectBody().returnResult().responseBody().toString()

 assertThat(result, is("ok"))
}

WebFlux can be mixed with classic spring (beans)WebFlux can be mixed with classic spring (beans)WebFlux can be mixed with classic spring (beans)

although this is magicalthough this is magicalthough this is magic

Standard WebFlux with Reactor is a total (hard) new thing to learnStandard WebFlux with Reactor is a total (hard) new thing to learnStandard WebFlux with Reactor is a total (hard) new thing to learn

Actually more Spring modules can be used in a clean way - withoutActually more Spring modules can be used in a clean way - withoutActually more Spring modules can be used in a clean way - without
beans and spring contextbeans and spring contextbeans and spring context

WHAT ABOUT JAKARTA EE?WHAT ABOUT JAKARTA EE?

I valued it for being well documented consistent server frameworkI valued it for being well documented consistent server frameworkI valued it for being well documented consistent server framework

Great for year 2000Great for year 2000Great for year 2000

Then Then Then it started to be more Springy than Springit started to be more Springy than Springit started to be more Springy than Spring

I think only in Java EE projects you will see I think only in Java EE projects you will see I think only in Java EE projects you will see @PostConstruct@PostConstruct@PostConstruct

Most of applications servers can work as embedded now!Most of applications servers can work as embedded now!Most of applications servers can work as embedded now!

It is 2020, please It is 2020, please It is 2020, please DO NOTDO NOTDO NOT use standalone application servers use standalone application servers use standalone application servers

problems with classpath, classloaders
problems with jvm versions
noise in logs
tough to test (arquillian)
con�guration issues
jvm params hell

Make jar not warMake jar not warMake jar not war

Make jar not earMake jar not earMake jar not ear

Need containers?Need containers?Need containers?

We have plenty of them alreadyWe have plenty of them alreadyWe have plenty of them already

BLOWN EGG PATTERNBLOWN EGG PATTERN

my-app-core:
 services, business logic, tests - clean java
my-app-ee:
 java-ee wrapper: jax-rs, datasources etc.

 @Path("/order")
 public class Orders {
 @PersistenceContext
 final EntityManager em;
 @GET
 @Produces(MediaType.APPLICATION_JSON)
 public List<String> showOrders() {
 return new OrdersService(em).listOrders();
 }
}

Same pattern applies for SpringSame pattern applies for SpringSame pattern applies for Spring

JAKARTA EE IS FAR AWAY FROMJAKARTA EE IS FAR AWAY FROM
INITIAL IDEAINITIAL IDEA

Initially:Initially:Initially:

better CORBA,
remoting,
distributed transactions support,
resource (RAM) friendly (more apps on a single JVM)

Today: Single application on a single application server that is notToday: Single application on a single application server that is notToday: Single application on a single application server that is not
using any distributed transactionsusing any distributed transactionsusing any distributed transactions

SOLUTIONSSOLUTIONS

Bill G �icker image (Bill G �icker image (Bill G �icker image ()))https://www.�ickr.com/photos/billerr/1814657036https://www.�ickr.com/photos/billerr/1814657036https://www.�ickr.com/photos/billerr/1814657036

https://www.flickr.com/photos/billerr/1814657036

Bill G �icker image (Bill G �icker image (Bill G �icker image ()))

Baby stepsBaby stepsBaby steps

https://www.�ickr.com/photos/billerr/1814657036https://www.�ickr.com/photos/billerr/1814657036https://www.�ickr.com/photos/billerr/1814657036

https://www.flickr.com/photos/billerr/1814657036

STEP 1STEP 1

Drop application serversDrop application serversDrop application servers

Make Jar not WarMake Jar not WarMake Jar not War

(Spring Boot is good for a start)(Spring Boot is good for a start)(Spring Boot is good for a start)

STEP 2STEP 2

Hold your BeansHold your BeansHold your Beans

Use Beans where really neededUse Beans where really neededUse Beans where really needed

(example -> only (example -> only (example -> only Jax-RS annotations and Jax-RS annotations and Jax-RS annotations and @Controllers@Controllers@Controllers)))

Use only constructors for DIUse only constructors for DIUse only constructors for DI

STEP 2STEP 2

Hold your BeansHold your BeansHold your Beans

Use Beans where really neededUse Beans where really neededUse Beans where really needed

(example -> only (example -> only (example -> only Jax-RS annotations and Jax-RS annotations and Jax-RS annotations and @Controllers@Controllers@Controllers)))

Use only constructors for DIUse only constructors for DIUse only constructors for DI

STEP 3STEP 3
(fun starts)(fun starts)(fun starts)

Drop JPADrop JPADrop JPA

Try: Try: Try: JOOQ, QueryDSL, JDBI and alternativesJOOQ, QueryDSL, JDBI and alternativesJOOQ, QueryDSL, JDBI and alternatives

STEP 4STEP 4
Learn Learn Learn altrernative web/rest frameworksaltrernative web/rest frameworksaltrernative web/rest frameworks

akka-http
SparkJava
javalin
ktor
....

STEP 5STEP 5
Try functional programmingTry functional programmingTry functional programming

Transaction is a monadTransaction is a monadTransaction is a monad

STEP 5STEP 5
Try functional programmingTry functional programmingTry functional programming

Transaction is a monadTransaction is a monadTransaction is a monad

 class Transaction<A> (private val action : (Handle) -> A) {

 fun run(dbi : Jdbi) : A = dbi.withHandle<A, RuntimeException>(action)

 fun map (f: (A)->B) = Transaction {hande ->
 f(action(hande))
 }

 fun flatMap(f: (A)->Transaction) = Transaction {handle ->
 f(action(handle)).action(handle)
 }

 companion object {
 fun <T> pure (obj:T) = Transaction {
 obj
 }
 }
 }

Experiment (future)Experiment (future)Experiment (future)

Instead of writing:Instead of writing:Instead of writing:

You may write this:You may write this:You may write this:

class Hasiok {
 @Resource
 val jdbcConnection: Connection

 @Transactional
 @Secure
 @Cacheable
 @Retryable
 fun f(p:P) {
 //code
 }
}

class Hasiok {
 private val f = {jdbcConnection:Connection ->
 {p: P ->
 //code
 }
 }
 val enterprisyF = Nee.pure(
 secure
 .and(retryable)
 .and(cacheable)
 .and(transactional), f)
}

OPINIONOPINION
Spring is battle tested has great docs - no other platforms in a JVMSpring is battle tested has great docs - no other platforms in a JVMSpring is battle tested has great docs - no other platforms in a JVM
world is close to that (Akka, Lagom, ZIO etc) world is close to that (Akka, Lagom, ZIO etc) world is close to that (Akka, Lagom, ZIO etc) ✓✓✓

Every java developers knows Spring or Java EE on a shallow level ✓Every java developers knows Spring or Java EE on a shallow level ✓Every java developers knows Spring or Java EE on a shallow level ✓

Java developers are unaware of bean associated complexity ✓Java developers are unaware of bean associated complexity ✓Java developers are unaware of bean associated complexity ✓

We can still bene�t from / use Spring and We can still bene�t from / use Spring and We can still bene�t from / use Spring and Java EE - while minimisingJava EE - while minimisingJava EE - while minimising
use of Beans ✓use of Beans ✓use of Beans ✓

Thank youThank youThank you

@jarek000000@jarek000000@jarek000000

Sources:Sources:Sources:

Adam Warski 2017 - The Case against annotations
Tomer Gabel - Slaying sacred cows

From Spring Boot Apps to Functional Kotlin Nicolas Frankel

https://sites.google.com/site/unclebobconsultingllc/blogs-by-robert-
martin/dependency-injection-inversion

https://www.youtube.com/watch?v=f6a78mCrSeE

https://sites.google.com/site/unclebobconsultingllc/blogs-by-robert-martin/dependency-injection-inversion
https://www.youtube.com/watch?v=f6a78mCrSeE

