
http://www.deepcode.ai/

PRACTICAL STATIC PROGRAM
ANALYSIS

Frank Fischer / @cu_0xff

About me or us…

US

• Found 2016 / Spin off by ETH Zürich / DeepTech Startup

• People – see picture and in the room

ME

• For - like - ever in IT

• Worked for Microsoft, Google,
Deutsche Telekom…

• MSc IT & MSc Physics

Agenda

• Intro, some stats, and motivation

• Some theory refresher (semantic vs syntax, ML vs Symbolic AI, representing code
in graphs)

• Textual processing – the very basic tools and ML

• Linters and AST

• Event Graphs and Symbolic AI -> Demo

• Dos and Don'ts – how to build your tool stack

• Outlook – what to expect more

• Call to action

Motivator

This Photo by Unknown Author is licensed under CC BY-SA

Just to state the obvious…

GDP USA US$ 19,390,000,000,000

GDP Germany US$ 3,677,000,000,000

GDP Switzerland US$ 678,900,000,000

Damage due to Poor SW
Quality in the US/’18

US$ 2,840,000,000,000

https://worldbuilding.stackexchange.com/questions/56204/stunting-technological-growth-after-world-war-ii
https://creativecommons.org/licenses/by-sa/3.0/

Software Quality – What is it?

Functional
Suitability

•Functional
Completeness

•Functional
Correctness

•Functional
Appropriateness

Performance
Efficiency

•Time Behavior

•Resource Use

•Capacity

Compatibility

•Coexistance

•Interoperability

Usability

•Appropriateness
Recognizability

•Learnability

•User-error
Protection

•User-interface
Aesthetics

•Accessiblity

Reliability

•Maturity

•Availability

•Fault Tolerance

•Recoverability

Security

•Confidentiality

•Integrity

•Nonrepudiation

•Accountability

•Authenticity

Maintainability

•Modularity

•Reusability

•Analyzability

•Modifiability

•Testability

Portability

•Adaptability

•Installability

•Replaceability

The ISO/IEC Standard 25010:2011

This Photo by Unknown Author is licensed under CC BY-NC

https://www.flickr.com/photos/jstephenconn/2877830312
https://creativecommons.org/licenses/by-nc/3.0/

Code Quality Best Practices
Revision Control Git, svn, mercurial

Testing Unit/integration/UI/
penetration tests

Code Review Pull requests,
Phabricator, Gerrit

Static Analysis OUR FOCUS TODAY

Instrumentation /
Monitoring

Java.lang.instrument,
sqreen

Static Program Analysis:

Analysing software without actually running it.

Use of Static Program Analysis

Source: Snyk “JVM Ecosystem Report – 2018”

36% said NONE

Today’s Limitations

Performance

Inter-procedural or inter-file is
extremely resource intense

Quality

Recall versus Precision, types of bugs

Polyglot

Mix of languages, tools need to adapt

Linear Scaling of Rules

Handcrafting rules by experts scales
linearly at best

Expressiveness

Found issues need to be explanatory
and actionable

API Use

Ever changing libraries (if they would be
annotated ☺)

Refreshers

Theory Refresher – Part 1: Semantic, Syntax

What is a valid program? Syntax and
Semantic

Syntax: Correct in the sense of the
grammar

Semantic: Reflects the meaning

Typical Semantic Issues in Java:

Implicit Type Conversion, Precision,
Operator Overloading

public class testmain{

static Double p(Double x) { return x+x+x; }

public static void main(String args[]) {
if(p(0.1) == 0.3)

System.out.println("Same");
else

System.out.println("Not the same");
}

}

Theory Refresher – Part 2: Code in Graphs

Graphs serve as intermediate representations that expose different aspects (flow-sensitive, context-sensitive, path-sensitive)

Abstract Syntax Tree Control Flow Graph

Event Graph

class X {

public void main() {

Map<String, File> map = new HashMap<>();

map.put("key", someApi.getFile());

String name = map.get("key").getName();

}

}

Theory Refresher – Part 3: Symbolic vs Sub-symbolic AI

Symbolic Sub-Symbolic

Theory Refresher – Part 3: Symbolic vs Sub-symbolic AI

Symbolic AI Subsymbolic AI

Explicit symbolic programming
Inference, search algorithms
AI programming languages
Rules, Ontologies, Plans, Goals

Bayesian learning
Deep learning
Connectionism
Neural Nets/Backprop
LDA, SVM, HMM, PMF, alphabet soup…

Introspection more useful for coding
Easier to debug
Easier to explain
Easier to control
Not so Big Data
More useful for explaining people’s thought
Better for abstract problems

More robust against noise
Better performance
Less knowledge upfront
Easier to scale up
Big Data
More useful for connecting to neuroscience
Better for perceptual problems

Ontology

An ontology describes a structure for a body of knowledge. With the structure and similarities

between ontologies, you can generalize knowledge.

http://www.visualdataweb.de/webvowl/

http://www.visualdataweb.de/webvowl/

Static Program Analysis

Spectrum of Static Analysis Techniques

“shallow”

analyses

“deep”

analyses

Quality:

Precision

Recall

Performance:

Time

Memory

Textual processing – the very basic tools and ML

Treats Source Code as Text

• Simple API misuse, deprecated APIs

• Leaked Secrets, Authentication Tokens

Examples

• Simplest grep

• Microsoft Application Inspector

“shallow”

analyses

“deep”

analyses

Linters and AST

“shallow”

analyses

“deep”

analyses

Constructs Abstract Syntax Tree and runs Rule Sets

• Style violations

• Local Bug Patterns

• Mostly Language dependent

Examples

• PMD

• eslint

Linters and AST

“shallow”

analyses

“deep”

analyses

Constructs Abstract Syntax Tree and runs Rule Sets

• Style violations

• Local Bug Patterns

• Language dependent

Examples

• PMD

“UseEqualsToCompareStrings” Rule

If(com == “end”)

If(“end”.equals(com))

Linters and AST

“shallow”

analyses

“deep”

analyses

Constructs Abstract Syntax Tree and runs Rule Sets

• Style violations

• Local Bug Patterns

• Language dependent

Examples

• PMD

“UseEqualsToCompareStrings” Rule

void equalsIgnoreCase(String x, String y) {
Return x.toLowerCase() == y.toLowerCase(); }

Linters and AST -Medium

“shallow”

analyses

“deep”

analyses

Constructs Abstract Syntax Tree and runs Rule Sets

• Abstract Syntax Tree

• Symbol Table

• Resolve Names

• Type Propagation

• Dataflow Analysis

Examples

• Error Prone

Linters and AST - Medium

“shallow”

analyses

“deep”

analyses

Constructs Abstract Syntax Tree and runs Rule Sets

• Abstract Syntax Tree

• Symbol Table

• Resolve Names

• Type Propagation

• Dataflow Analysis

Examples

• Error Prone

“NullTernary” Rule

int x = flag ? foo : null;

Linters and AST - Medium

“shallow”

analyses

“deep”

analyses

Constructs Abstract Syntax Tree and runs Rule Sets

• Abstract Syntax Tree

• Symbol Table

• Resolve Names

• Type Propagation

• Dataflow Analysis

Examples

• Error Prone

“NullTernary” Rule

Integer y = null;
int x = flag ? foo : y;

Linters and AST - Medium

“shallow”

analyses

“deep”

analyses

Constructs Abstract Syntax Tree and runs Rule Sets

• Abstract Syntax Tree

• Symbol Table

• Resolve Names

• Type Propagation

• Dataflow Analysis

Examples

• Error Prone

“NullTernary” Rule

Integer y = someAPIFnWithNull();
int x = flag ? foo : y;

Intermediate Representations

“shallow”

analyses

“deep”

analyses

Constructs Abstract Syntax Tree and runs Rule Sets

• Interprocedural (generate context for each procedure)

Examples

• fbinfer

Infer Example

Towards Verification – Using Annotations

• Uber’s NullAway
(Data Flow Analysis / Checker Framework)

-> Annotations unlock the Semantic

-> Annotations are expensive 

static void log(Object x) {
System.out.println(x.toString());
}

static void foo() {
log(null);
}

static void log(@NotNull Object x) {
System.out.println(x.toString());
}

static void foo() {
log(null);
}

Overview Offerings

• Sonarqube

• Coverty

• Cobertura

• Snyk (Security)

• Checkmarx (Security)

• IntelliJ

• DiffBlue

• …

• Findbugs

• PMD

• Checkstyle

• Infer

• NullAway

• Semmle

• EMMA (Code coverage)

• …

How do these tools work? Constraint Based Analysis

• Build an intermediate representation
(e.g., a graph)

• Use logic programing to build knowledge
about the graph

• Use constraints („rules“) on the
knowledge (e.g. types need to match)

• See:
https://wiki.ifs.hsr.ch/SemProgAnTr/files/
ConstraintBasedAnalysis.pdf

https://wiki.ifs.hsr.ch/SemProgAnTr/files/ConstraintBasedAnalysis.pdf

Today’s Limitations

Performance

Inter-procedural or inter-file is
extremely resource intense

Quality

Recall versus Precision, types of bugs

Polyglot

Mix of languages, tools need to adapt

Linear Scaling of Rules

Handcrafting rules by experts scales
linearly at best

Expressiveness

Found issues need to be explanatory
and actionable

API Use

Ever changing libraries (if they would be
annotated ☺)

DeepCode’s Approach

Performance

Inter-procedural or inter-file is
extremely resource intense

Quality

Recall versus Precision, types of bugs

Polyglot

Mix of languages, tools need to adapt

Linear Scaling of Rules

Handcrafting rules by experts scales
linearly at best

Expressiveness

Found issues need to be explanatory
and actionable

API Use

Ever changing libraries (if they would be
annotated ☺)

Inhouse build constraint
solver using Datalog

Advanced Data Structures

DeepCode’s Approach

Performance

Inter-procedural or inter-file is
extremely resource intense

Quality

Recall versus Precision, types of bugs

Polyglot

Mix of languages, tools need to adapt

Linear Scaling of Rules

Handcrafting rules by experts scales
linearly at best

Expressiveness

Found issues need to be explanatory
and actionable

API Use

Ever changing libraries (if they would be
annotated ☺)

Semi-Supervised Learning
using Big Code

DeepCode’s Approach

Performance

Inter-procedural or inter-file is
extremely resource intense

Quality

Recall versus Precision, types of bugs

Polyglot

Mix of languages, tools need to adapt

Linear Scaling of Rules

Handcrafting rules by experts scales
linearly at best

Expressiveness

Found issues need to be explanatory
and actionable

API Use

Ever changing libraries (if they would be
annotated ☺)

Ontologies

Event Graphs and Symbolic AI and Ontologies

“shallow”

analyses

“deep”

analyses

Demo

• OWASP/Benchmark (https://github.com/OWASP/Benchmark)

• JFX (https://github.com/openjdk/jfx)

• JDK14 (https://github.com/openjdk/jdk14)

https://github.com/OWASP/Benchmark
https://github.com/openjdk/jfx
https://github.com/openjdk/jdk14

Dos and Don'ts – how to build your tool stack

• Success measure should be: Bug fixed not issues identified

• Shift left is good – but too much left hurts*
• Tools can break the development process (compiler errors)

• But developers are more likely to fix bugs when presented early

• The sieve gets finer to the right
• Apply Cheese Slice Model

• Integration into development process and developer workflow is key*
• IDE (Style+Tool Integration)

• Compiler

• Continuous Integration

• Use tools on legacy code bases
• Revisit legacy code (like 6 months, update libraries, run CI, maybe CD)

* According to Google ☺ https://cacm.acm.org/magazines/2018/4/226371-lessons-from-building-static-analysis-tools-at-google/fulltext

https://cacm.acm.org/magazines/2018/4/226371-lessons-from-building-static-analysis-tools-at-google/fulltext

Outlook – what to expect more

It seems you want to
develop 3D First

Person Shooter for
Arduino. Shall I help

you with that?

Outlook – what to expect more

• Generalization drives Polyglot

• DevOps

• Helpful
• Semantic: Reasoning of likely meaning/intention

• Expressiveness:
• Explain the reasons

• Find alternatives to current construction

• Find examples for unit tests, generate unit tests

• Rules scale exponential by using ML

• Combination of Static and Dynamic

• Combination of Static and Dynamic and Runtime

Call to Action

• If you use Static Program Analysis…
• Bravo!

• Revisit your toolstack and optimize

• If you are not using Static Program Analysis…
• It is ok, you are amongst friends

• Look into your projects, try some tools and see what fits you the most

• IntelliJ is a good start

Give us a try ☺ -> deepcode.ai <-

Thank you…

