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To Summarize

« MACHINE LEARNING PIPE
« WHERE SUBSCRIBER CAN WORK SLOW OR FAST

 THIS SHOULD WORK STABLY
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Back-end

+ SPRING FRAMEWORK 5
. PROJECT REACTOR 3

. PROTOCOL BUFFER (a.k.a PROTOBUF)
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Front-end

PHASER 3
REACTOR-JS
TYPESCRIPT

PROTOCOL BUFFER (a.k.a PROTOBUF)
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Why HTTP?

 PLAIN AND SIMPLE

« USED FOR MANY YEARS



@RestController
@RequestMapping("/http")
public class HttpGameController A

@PostMapping("/start")
public Mono<Config> start(
@RequestBody Nickname nickname,
@CookieValue('"uuid") String uuid
) 1
return gameService.start(nickname)
.subscriberContext(Context.of("uuid", UUID.fromString(uuid)));



@RestController
@RequestMapping("/http")
public class HttpGameController A

@PostMapping("/start")
public Mono<Config> start(
@RequestBody Nickname nickname,
@CookieValue("uuid") String uuid
) 1
return gameService.start(nickname)
.subscriberContext(Context.of("uuid", UUID.fromString(uuid)));
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Why NOT HTTP?

TEXT MESSAGE OVERHEAD
INEFFICIENT RESOURCE USAGE
SLOW PERFORMANCE
COMMUNICATION RIGIDITY

LACK OF PROPER FLOW CONTROL



HTTP FLOW CONTROL




HTTP FI OW C.ONTROI
Retry logic

Timeouts

Circuit breaking
Thundering herds
Cascading failure

Configuration
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REACTIVE-STREAMS

interface Publisher<T> {
vold subscribe (Subscriper<? super T> s);

J

interface Subscriber<T> {
vold onSubscribe (Subscriptiqgn s) ;
vold onNext (T t) ; ?
vold onError (Throwable
vold onComplete () ;

interface Subscription
vold request (long n);
vold cancel () ;



REACTIVE-STREAMS

1nterface Subscri;er<T> {
vold onSubscribe (Subscriptiqgn s) ;

interface Subscription
vold request (long n) ;
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PROTOCOLS

e JL 1A X
« HTTP/2

« WEBSOCKET

o 277
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* MAINTAINABILITY

e Frameworks

o Community/Adoption



 MAINTAINABILITY
e Frameworks

o Community/Adoption

« STABILITY

e Can work OK in unpredicted cases



 MAINTAINABILITY
e Frameworks
o Community/Adoption

o

e Can work OK in unpredicted cases

* PERFORMANCE
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* NO OVERHEAD ~ TCP

 HIGH-PERFORMANCE
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« COMPLEX DEVELOPMENT

 REINVENT APPLICATION PROTOCOL
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SOCKET.IO
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Why Socket.|O?

« MOST POPULAR IN JS WORLD
 TOPIC BASED BINARY/TEXT MESSAGING

 JAVA SERVER BUILT ON TOP OF NETTY
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Why Not Socket.|O

final SocketIOServer server = new SocketIOServer(configuration);

context.addApplicationListener(event —> {
if (event instanceof ContextClosedEvent || event instanceof
ContextStoppedEvent || event instanceof ApplicationFailedEvent) A
server.stop();
}

F);
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final SocketIOServer server = new SocketIOServer(configuration);



Why Not Socket.lO

context.addApplicationListener(event —> {
if (event instanceof ContextClosedEvent || event instanceof
ContextStoppedEvent || event instanceof ApplicationFailedEvent) A
server.stop();
}

F);
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* NO INTEGRATION WITH SPRING

. JS (CALLBACKS) CODE STYLE



Why Not Socket.lO

server.addConnectListener(client —> {}):
server.addDisconnectListener(client — {}):

server.addEventListener('start", bytel[].class,
(client, data, ackSender) —> {});

server.addEventListener (" locate", bytel].class,
(client, data, ackRequest) —-> {});

server.addEventListener('"streamMetricsSnapshots", bytel].class,
(client, data, ackSender) —> {});



Why Not Socket.|O

. NO INTEGRATION WITH SPRING
. JS (CALLBACKS) CODE STYLE

* NOACCESS TO BYTEBUF



Why Not Socket.|O

server.addEventListener( byte[].class,
(client, data, ackSender) —> {});

server.addEventListener( byte[].class,
(client, data, ackRequest) —-> {});

server.addEventListener( byte[].class,
(client, data, ackSender) —> {});
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 REALLY GOOD AT JS
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Why gRPC?

grpc performance vs rest

QQ Bce L) KapTuHku Bugeo Hosoctu ) Mokynkm  : Ewé  Hactponikn  VIHCTpyMEHTHI

PeaynbraTtoB: npumepHo 166 000 (0,46 cek.)

Coser. o ITOMY 3arpocCy Bbl MOXeETE HaUTU cauTbl Ha PYCCKOM A3bIKe. YKasaTtb
npeanoyvTuTeribHble A3blKWU OJ14 pe3yribTaToB NOUCKa MOXXHO B pa3ferie HaCTpOIZKVI.

gRPC is roughly 7 times faster than REST when
receiving data & roughly 10 times faster than REST I |
when sending data for this specific payload. This is Il II I‘
mainly due to the tight packing of the Protocol Buffers =1 —nn BEED BEEY BEEE
and the use of HTTP/2 by gRPC. 2anp. 2019

Evaluating Performance of REST vs. gRPC - Ruwan Fernando ...
https://medium.com > evaluating-performance-of-rest-vs-grpc-1b8bdf0Ob22da
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Why gRPC?

v Il src
> I @types
e BUILT ON > -ger?erated
¥ I®= main
v Bm proto
e EASY TO g config.proto

g8 extra.proto
& location.proto
g map.proto
g player.proto
g point.proto
g score.proto
g service.proto
g size.proto
B8 speed.proto
& tile.proto

» I resources



Why gRPC?

« RUIIT ON TOP OF HTTP/?
service GameService {

rpc start (Nickname) returns (Config) {}
}

service PlayerService {
roc locate(stream Location) returns (google.protobuf.Empty) {}

rpc players(google.protobuf.Empty) returns (stream Player) {}



Why gRPC?

« RUIIT ON TOP OF HTTP/?
service GameService {

rpc start (Nickname) returns (Config) {}
}



Why gRPC?

e BLINTONTOPOF HTTP/?2

service PlayerService {
roc locate(stream Location) returns (google.protobuf.Empty) {}

rpc players(google.protobuf.Empty) returns (stream Player) {}



Why gRPC?

e BLINTONTOPOF HTTP/?2

stream Location

stream Player



Why gRPC?

 BUILT ON TOP OF HTTP/2
« EASY TO BUILD API WITH PROTOBUF

« GOOD DEVELOPMENT EXPERIENCE



\AMhvir ~nDDCMD

protobuf {
protoc {
artifact = 'com.google.protobuf:protoc’
« BUILT ( ’
plugins {
. EASY1 9rPc { |
artifact = "1o0.grpc:protoc—gen—-grpc—java"
}
« GOOD }

generateProtoTasks {
ofSourceSet('main')*.plugins {
grpc {}
}

}
}



Why gRPC?

> I @types
e BUILT ON Vv [l generated
v Im main
> I grpce
. EASYTO - b v
Vv I reactorGRpc
v B org.coinen.pacman
® ReactorExtrasServiceGrpc
B ReactorGameServiceGrpc
® ReactorLocationServiceGrpc
® ReactorMapServiceGrpc
1 ReactorPlayerServiceGrpc
® ReactorScoreServiceGrpc
B ReactorSetupServiceGrpce

* GOOD Dt
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EASY TO BUILD APl WITH PROTOBUF
GOOD DEVELOPMENT EXPERIENCE
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Why gRPC?

 BUILT ON TOP OF HTTP/2

@GRpcService
public class GrpcPlayerController extends ReactorPlayerServiceGrpc.PlayerServiceImplBase A

@Override
public Flux<Player> players(Mono<Empty> message) {
return playerService
.players()
.onBackpressureBuffer()
. subscriberContext(Context.of("uuid", CONTEXT UUID KEY.get()));



Why gRPC?

 BUILT ON TOP OF HTTP/2

@GRpcService



Why gRPC?

BUILT ON TOP OF HTTP/2

EASY TO BUILD APl WITH PROTOBUF
GOOD DEVELOPMENT EXPERIENCE
SEAMLESS INTEGRATION WITH SPRING

GOOGLE SAYS IT IS SUPER STABLE



BUI

EAS

GO

SE/

GO

Why gRPC?

google about grpc reliability E 9 Q

Q Bece [4) KapTuHkm (2] HoBocTM [*] Bugeo 8 Kaprbi : Ewé  Hactpoiku  UHcTpyme

PesyneraTtoB: npumepHo 76 400 (0,45 cek.)

gRPC along with protocol buffers enables loose coupling, engineering velocity, higher
reliability and ease of operations. ... As a high performance, open-source RPC
framework, gRPC features multiple language bindings (C++, Java, Go, Node, Ruby,
Python and C# across Linux, Windows and Mac). 23 aer. 2016 .

gRPC - Google Cloud

https://cloud.google.com » blog » products » gcp » grpc-a-true-internet-scale...




1S.gd/rgrpc


https://is.gd/rgrpc

Why I'm still lagging”
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Hypertext Transfer Protocol Version 2 (HTTP/2)
draft-ietf-httpbis-http2-latest

Abstract

This specification describes an optimized expression of the semantics of the Hypertext Transfer
Protocol (HTTP), referred to as HT TP version 2 (HTTP/2). HTTP/2 enables a more efficient use of
network resources and a reduced perception of latency by introducing header field compression and
allowing multiple concurrent exchanges on the same connection. It also introduces unsolicited push of
representations from servers to clients.

This specification is an alternative to, but does not obsolete, the HTTP/1.1 message syntax. HT TP's
existing semantics remain unchanged.




LIMITATIONS

8. HTTP Message Exchanges

HTTP/2 is intended to be as compatible as possible with current uses of HTTP. This means that, from

the application perspective, the features of the protocol are largely unchanged. To achieve this, all
request and response semantics are preserved, although the syntax of conveying those semantics has

changed.

Thus, the specification and requirements of HTTP/1.1 Semantics and Content [RFC7231], Conditional
Requests [RFC7232], Range Requests [RFC7233], Caching [RFC7234], and Authentication [RFC7235]
are applicable to HTTP/2. Selected portions of HTTP/1.1 Message Syntax and Routing [RFC7230],

such as the HTTP and HTTPS URI schemes, are also applicable in HTTP/2, but the expression of
those semantics for this protocol are defined in the sections below.




LIMITATIONS

8.2.1 Push Requests

Server push is semantically equivalent to a server responding to a request; however, in this case, that
request is also sent by the server, as a PUSH_PROMISE frame.

The PUSH_PROMISE frame includes a header block that contains a complete set of request header
fields that the server attributes to the request. It is not possible to push a response to a request that
iIncludes a request body.

Pushed responses are always associated with an explicit request from the client. The
PUSH_PROMISE frames sent by the server are sent on that explicit request's stream. The
PUSH_PROMISE frame also includes a promised stream identifier, chosen from the stream identifiers
available to the server (see Section 5.1.1).
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GRPC SUBSCRIBER

new CallStreamObserver<>() {
@Override
oublic void onNext(Object value) {
. request(5);
}



GRPC SUBSCRIBER

. request(5);



gRPC PUBLISHER

if (observer.isReady()) {
observer.onNext (message) ;
}



gRPC PUBLISHER

observer.isReady()



Simplify implementation of back-pressure in StreamObserver-based stub #1549
) jhump opened this issue on Mar 14, 2016 - 28 comments
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ejona86 2 days ago » edited ~ Member

In normal use, | can see cases where isReady returns false, and I'm using a similar approach to
@stephenh to block. However, in an inprocess test server, | never see isReady returning false; instead,
onNext appears to block. That makes it impossible to test the code using the inprocess test server.

@ulfjack, if you are using directExecutor() then the client and server share a single thread, which makes
the tests deterministic. Simply remove at least one of the calls that specify directExecutor() and
onNext () willthen be processed asynchronously. Edit: You should remove the call configuring the channel.

I'm also concerned about race conditions where the server thread checks isReady and then goes to sleep,
but the callback comes in between the isReady call and actually going to sleep. | think that can't happen if
both synchronize on the same external object

The race totally seems possible. | don't see how any locking in gRPC could prevent it; if you added a sleep(1
minute) between the two parts, it seems obviously racy.

the APl does not actually specify how isReady and onReady are internally synchronized.

The only guarantee is that if isReady() returns false (thereis no guarantee that your application has
observed it yet) there will be an onReady() callback at some point when isReady() == true . Basically, "no
need to poll; we'll tell you when it changes."

Note that it does not imply the converse: "spurious” onReady() callbacks are possible, so it is possible for
isReady() == false withinthe onReady() callback. This is due to races between gRPC delivering a
callback and the application writing more data. (So it was ready again, but it became non-ready by the time

onReady() was called.)
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Buffer Pools Direct Mappec
Direct )

Memory Used: 939,574 181 8 Total Capacity: 939,574 182 8
Count 61
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CloudNative JVM Setup

e -XmMs 256m
e -Xmx 19

e -XX:MaxDirectMemorySize=1g



6] 1.g.n.NettyServerTransp«
port faliled
R
java.lang.OutQfMemoryError: I
at java.base/java.ni
.Java:175) ~[na:nal
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Summary

* Everything is either SLOW, HARD to implement or LACKS browser support
 Flow control is far from needed

* Do you want to waste your time in searching how to solve the problems???
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Netflix case study on gRPC

* Reactive Streaming Service Networking with Ryland
Degnan
(ex Netflix Edge Platform)

https://bit.ly/2FUVHGS
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Peer-to-peer

Client can implement request handler

CLIENT SERVER

E STREAM BLUE
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Notable Features

o LEASING - GIVE CAPACITY TO CLIENTS, AVOID CIRCUIT BREAKERS
(CONCEPT IS BUILT-IN IN THE PROTOCOL)

+ RESUMABILITY - RESUME STREAMS IF CONNECTION HAS LOST
(MOBILE CONNECTIVITY CASE)

« FRAGMENTATION - SPLIT LARGE PAYLOADS INTO SMALLER
CHUNKS

114
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RPC API

generated

= main
proto
73 config.proto
73 extra.proto
% location.proto
3 map.proto
73 player.proto
73 point.proto
7% score.proto
73 service.proto
73 size.proto
73 speed.proto
73 tile.proto




RPC API

implementation 'i1o.rsocket.rpc:rsocket-rpc—core'



RPC API

generatedFilesBaseDir = "${projectDir}/src/generated”

protoc {
artifact = 'com.google.protobuf:protoc'

J

plugins
rsocketRpc {
artifact = "io.rsocket.rpc:rsocket-rpc-protobuf"

J
J

generateProtoTasks {
ofSourceSet ('main') *.plugins {
rsocketRpc {}
}



RPC API

plugins {
rsocketRpc {
artifact = "io.rsocket.rpc:rsocket-rpc-protobuf"

J
J

generateProtoTasks {
ofSourceSet ('main') *.plugins {
rsocketRpc {}
}



RPC API

ExtrasServiceServer
GameService
GameServiceClient
GameServiceServer
LocationService
LocationServiceClient
LocationServiceServer
MapService
MapServiceClient
MapServiceServer
PlayerService
PlayerServiceClient

PlayerServiceServer
ScoreService
ScoreServiceClient
ScoreServiceServer
SetupService
SetupServiceClient
SetupServiceServer



SPRING-MESSAGING

implementation 'org.springframework.boot:spring-boot-starter-rsocket'



SPRING-MESSAGING

server .port=3000
spring.rsocket.server. transport=websocket



SPRING-MESSAGING

dController
dMessageMapping (“‘my.route.name”)
public class ExtrasController {

dMessageMapping (“handle.extras”)
public Flux<Extra> extras() {
return extrasService.extras /() ;

}



SPRING-MESSAGING

AController

dMessageMapping ("my.route.name”)

@MessageMapping (“handle.ex:

cras’)



SPRING-MESSAGING

public Flux<Extra> extras () {
return extrasService.extras () ;

}






RPC-style Messaging
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SIMPLICITY IN DEVELOPMENT
EFFICIENT RESOURCE USAGE
HIGH PERFORMANCE

HIGH FLEXIBILITY

EFFECTIVE RELIABILITY



Disadvantages



Disadvantages

 STILLUNDER DEVELOPMENT



Disadvantages

 STILLUNDER DEVELOPMENT

« NARROW ADOPTION (FOR NOW)
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Summary

EACH PROTOCOL HAS IT' S BENEFITS
SOCKET.IO IS THE BEST IN JS WORLD
gRPC PERFORMS REALLY WELL FOR SERVER
BUT REACTIVE IS ABOUT RESILIENCY

WHERE RSOCKET COVERS MOST OF CLOUD NATIVE USE CASES
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