MULTIPLAYER
PAC-MAN WITH RSOCKET

C----

| -
- u

MULTIPLAYER
PAC-MAN WITH RSOCKET

C----

| -
- u

Oleh Dokuka

WORK FOR NETIFI
REACTIVE GEEK
REACTOR 3 CONTRIBUTOR

RSOCKET PROJECT TEAM MEMBER

BOOKS AUTHOR

Bl @OlehDokuka

Hands-0|.1
Reactive

Programming

in Spring 5

 DEFINE PROBLEM

Agenda

 DEFINE PROBLEM

« COMPARE PROTOCOLS

Agenda

 DEFINE PROBLEM

« COMPARE PROTOCOLS

« HAVE FUN

Agenda

DEFINE PROBLEM
COMPARE PROTOCOLS
HAVE FUN

DEFINE THE BEST PROTOCOL

MULTIPLAYER

REQUIREMENTS

MULTIPLAYER

REQUIREMENTS

Step 0: Load

Step 0: Load

Step O:

Step O:

Step 1:

¢

¢

* o o * ¢ o
¢

* o

® ¢ 6 6 6 6 6 O O O 0 O 0 0

*

B ¢ ¢ ¢ ¢ 00

G o o0 00

® ¢ 6 6 6 6 6 O O O 0 o

® 6 6 6 6 O O O O o

Step 1:

* 6 o

* 6 ¢ o

¢

¢

* o o * ¢ o
¢

* o

® ¢ 6 6 6 6 6 O O O 0 O 0 0

*

B * ¢ ¢ 06 00

C ¢ o0 00

4
*
¢
® ¢ 6 6 6 6 6 O O O 0 o

Lol

® ¢ 6 6 6 6 O O ¢ o

*
¢
¢

*® 6 o6 o

¢

¢

* o o * ¢ o
¢

* o

® ¢ 6 6 6 6 6 O O O 0 O 0 0

*

B * ¢ ¢ 06 00

C ¢ o0 00

4
*
¢
® ¢ 6 6 6 6 6 O O O 0 o

Lol

® ¢ 6 6 6 6 O O ¢ o

*
¢
¢

*® 6 o6 o

Step 2

® 6 ¢ o0 o

¢
¢

® ¢ 6 6 6 O 6 O ¢ o

® 6 6 6 o o

¢
¢
*
*
*
*
L 4

® 6 6 6 O o

o o000 &

Lol

® ¢ 6 6 ¢ 0 o
\ 4
* ¢ o
® o o

¢
¢
\ 4
* o

® ¢ 6 6 6 6 6 O O O O O o

¢

¢

* o o * ¢ o
¢

* o

® ¢ 6 6 6 6 6 O O O 0 O 0 0

*

Step 3:

B ¢ ¢ ¢ 06 06 00
.
.
.
C e+ o
— ¢ o
. LR R
.
.
.
.
.
b
£

® 6 6 6 6 O O O O o

* 6 o

* 6 ¢ o

¢

¢

* o o * ¢ o
¢

* o

® ¢ 6 6 6 6 6 O O O 0 O 0 0

*

Step 3:

B ¢ ¢ ¢ 06 06 00
.
.
.
C e+ o
— ¢ o
. LR R
.
.
.
.
.
b
£

® 6 6 6 6 O O O O o

* 6 o

* 6 ¢ o

¢

¢

* o o * ¢ o
¢

* o

A

® 6 6 6 6 6 6 O O 0 0 0]

A
-

4

*

C o000
[JR%
- .
* 0

Step 3:

*
¢
¢

* 6 ¢ o

Po o o066 06060606000

® 6 6 6 6 O O O O o

¢

¢

* o o * ¢ o
¢

* o

*

0000000000000006)

Step 3:

* o0
.

.

.

G o o000 o
L * *

. * o0
.

.

.

.

.

A

® 6 6 6 6 O O O O o

*
¢
¢

* 6 ¢ o

¢

¢

* o o * ¢ o
¢

* o

*

0000000000000006)

Step 3:

* o0
.

.

.

G o o000 o
L * *

. * o0
.

.

.

.

.

A

® 6 6 6 6 O O O O o

*
¢
¢

* 6 ¢ o

¢

¢

* o o * ¢ o
¢

* o

® ¢ 6 0600000 090 +9

G oo 00

Lol

® 6 6 6 6 O 0 o

* & o

¢

¢

Step 3:

® ¢ 6 6 6 6 6 O O O 0 o

a A g

¢

* ¢ o

*® 6 o6 o

Scoreboard

100. Player 1

88.
380.

75.
68.
30.

7. Player 7

»

D

»

»

D

ayer 3
ayer 5
ayer 2
ayer 6
ayer 4

¢

¢

* o o * ¢ o
¢

* o

® ¢ 6 0600000 090 +9

G oo 00

Lol

® 6 6 6 6 O 0 o

4
4

* o0
.
BPoe o e060606 060606000

¢

Step 3:

¢

* ¢ o

*® 6 o6 o

Scoreboard

100. Player 1

88.
380.
/5.
68.
30.

»

D

»

»

D

ayer 3
ayer 5

ayer 2
ayer 6
ayer 4
7. Player 7

ATTENTION'

still about mic

¢

¢

¢ o * ¢ o
¢

* o

¢ BGe o oo
.

.

.

. C oo 00
* -
* 0

.

.

.

.

.

¢ Lol

.

*

® 6 6 6 6 O 0 o

4
4

* & o
¢

PG ¢ ¢ ¢ 6060606006000

¢

Real Enterprise

* & o

® 6 ¢ o

Scoreboard

100. Player 1

88.
380.

75.
68.
30.

7. Player 7

»

D

»

»

D

ayer 3
ayer 5
ayer 2
ayer 6
ayer 4

L R 2

*

[

¢ BGe oo
.

.

.

. C oo 00
. —
* 0

.

.

.

.

.

& L o

.

.

L IR 2NN 2R 2N JNR 2NN 2N 4

L 4

*

.
PO oo ¢060606000600

* ¢ o0

* 6 o o

Scoreboard

Real Enterprise

100. Player 1
88. Player 3
80. Player 5

68. Player 6
30. Player 4
7. Player 7

L 2R 4

O e o 00

[TR A

*

(44

0 000606060000 000+9

L IR 2N 2R JNE JNR JNR JER 2

* ¢ o
L 4

PEC oo oe60606 0600000

*

* ¢ o

* & o o

Scoreboard

Real Enterprise

100. Player 1
88. Player 3
80. Player 5

68. Player 6
30. Player 4

7. Player 7

L 2R 4

O e o 00

[TR A

*

(44

0 000606060000 000+9

L IR 2N 2R JNE JNR JNR JER 2

* ¢ o
L 4

PEC oo oe60606 0600000

*

* ¢ o

* & o o

Scoreboard

Real Enterprise

100. Player 1
88. Player 3
80. Player 5

68. Player 6
30. Player 4

7. Player 7

L 2R 4

O e o 00

[TR A

*

(44

0 000606060000 000+9

L IR 2N 2R JNE JNR JNR JER 2

* ¢ o
L 4

PEC oo oe60606 0600000

*

* ¢ o

* & o o

Scoreboard

Real Enterprise

100. Player 1
88. Player 3
80. Player 5

68. Player 6
30. Player 4

7. Player 7

L 2R 4

O e o 00

[TR A

*

(44

0 000606060000 000+9

L IR 2N 2R JNE JNR JNR JER 2

* ¢ o
L 4

PEC oo oe60606 0600000

*

* ¢ o

* & o o

Scoreboard

Real Enterprise

100. Player 1
88. Player 3
80. Player 5

68. Player 6
30. Player 4

7. Player 7

L 2R 4

O e o 00

[TR A

*

(44

0 000606060000 000+9

L IR 2N 2R JNE JNR JNR JER 2

* ¢ o
L 4

PEC oo oe60606 0600000

*

* ¢ o

* & o o

Scoreboard

Real Enterprise

100. Player 1
88. Player 3
80. Player 5

68. Player 6
30. Player 4

7. Player 7

L 2R 4

O e o 00

[TR A

*

(44

0 000606060000 000+9

L IR 2N 2R JNE JNR JNR JER 2

* ¢ o
L 4

PEC oo oe60606 0600000

*

* ¢ o

* & o o

Scoreboard

Real Enterprise

100. Player 1
88. Player 3
80. Player 5

68. Player 6
30. Player 4

7. Player 7

o

¢ BOCo oo
.

.

.

. [TR A
. -
* o0

.

.

.

.

.

¢ L o

.

.

L IR 2N 2R JNE JNR JNR JER 2

*

* ¢ o
L 4

PEC oo oe60606 0600000

*

* ¢ o

* & o o

Scoreboard

Real Enterprise

— Elastic Storage

100. Player 1
88. Player 3
80. Player 5

68. Player 6
30. Player 4

7. Player 7

L 2R 4

o

¢ BOCo oo
.

.

.

. [TR A
. -
* 0

.

.

.

.

.

& (44

.

.

L IR 2N 2R JNE JNR JNR JER 2

*

* o o
L 4

PO oo oe060606060000

L 4

* ¢ o0

* & o o

Scoreboard

Real Enterprise

%

100. Player 1
88. Player 3
80. Player 5
75. Player 2
68. Player 6
30. Player 4

7. Player 7

7

L 2R 4

o

¢ BOCo oo
.

.

.

. [TR A
. -
* 0

.

.

.

.

.

& (44

.

.

L IR 2N 2R JNE JNR JNR JER 2

*

* o o
L 4

PO oo oe060606060000

L 4

* ¢ o0

* & o o

Scoreboard

Real Enterprise

%

100. Player 1
88. Player 3
80. Player 5
75. Player 2
68. Player 6
30. Player 4

7. Player 7

7

L 2R 4

o

¢ BOCo oo
.

.

.

. [TR A
. -
* 0

.

.

.

.

.

& (44

.

.

L IR 2N 2R JNE JNR JNR JER 2

*

* o o
L 4

PO oo oe060606060000

L 4

* ¢ o0

* & o o

Scoreboard

Real Enterprise

%

100. Player 1
88. Player 3
80. Player 5
75. Player 2
68. Player 6
30. Player 4

7. Player 7

7

L 2R 4

o

¢ BOCo oo
.

.

.

. [TR A
. -
* 0

.

.

.

.

.

& (44

.

.

L IR 2N 2R JNE JNR JNR JER 2

*

* o o
L 4

PO oo oe060606060000

L 4

* ¢ o0

* & o o

Scoreboard

Real Enterprise

%

100. Player 1
88. Player 3
80. Player 5
75. Player 2
68. Player 6
30. Player 4

7. Player 7

7

L 2R 4

o

¢ BOCo oo
.

.

.

. [TR A
. -
* 0

.

.

.

.

.

& (44

.

.

L IR 2N 2R JNE JNR JNR JER 2

*

* o o
L 4

PO oo oe060606060000

L 4

* ¢ o0

* & o o

Scoreboard

Real Enterprise

%

100. Player 1
88. Player 3
80. Player 5
75. Player 2
68. Player 6
30. Player 4

7. Player 7

7

L 2R 4

o

¢ BOCo oo
.

.

.

. [TR A
. -
* 0

.

.

.

.

.

& (44

.

.

L IR 2N 2R JNE JNR JNR JER 2

*

* o o
L 4

PO oo oe060606060000

L 4

* ¢ o0

* & o o

Scoreboard

Real Enterprise

%

100. Player 1
88. Player 3
80. Player 5
75. Player 2
68. Player 6
30. Player 4

7. Player 7

7

L 2R 4

o

¢ BOCo oo
.

.

.

. [TR A
. -
* 0

.

.

.

.

.

& (44

.

.

L IR 2N 2R JNE JNR JNR JER 2

*

* o o
L 4

PO oo oe060606060000

L 4

* ¢ o0

* & o o

Scoreboard

Real Enterprise

%

100. Player 1
88. Player 3
80. Player 5
75. Player 2
68. Player 6
30. Player 4

7. Player 7

7

To Summarize

To Summarize

« SERVER PUSH

To Summarize

« SERVER PUSH

 PLAIN REQUEST-RESPONSE

To Summarize

« SERVER PUSH
 PLAIN REQUEST-RESPONSE

 CLIENT-SIDE STREAMING

To Summarize

SERVER PUSH
PLAIN REQUEST-RESPONSE
CLIENT-SIDE STREAMING

SERVER-SIDE STREAMING

To Summarize

To Summarize

« MACHINE LEARNING PIPE

To Summarize

« MACHINE LEARNING PIPE

« WHERE SUBSCRIBER CAN WORK SLOW OR FAST

To Summarize

« MACHINE LEARNING PIPE
« WHERE SUBSCRIBER CAN WORK SLOW OR FAST

 THIS SHOULD WORK STABLY

Back-end

Back-end

 SPRING FRAMEWORK 5

Back-end

 SPRING FRAMEWORK 5

. PROJECT REACTOR 3

Back-end

+ SPRING FRAMEWORK 5
. PROJECT REACTOR 3

. PROTOCOL BUFFER (a.k.a PROTOBUF)

Front-end

Front-end

* PHASER 3

Front-end

* PHASER 3

« REACTOR-JS

Front-end

* PHASER 3
« REACTOR-JS

 TYPESCRIPT

Front-end

PHASER 3
REACTOR-JS
TYPESCRIPT

PROTOCOL BUFFER (a.k.a PROTOBUF)

OLD HTTP WAY

Y T

OLD HTTP WAY

Y T

Why HTTP?

Why HTTP?

 PLAIN AND SIMPLE

Why HTTP?

 PLAIN AND SIMPLE

« USED FOR MANY YEARS

@RestController
@RequestMapping("/http")
public class HttpGameController A

@PostMapping("/start")
public Mono<Config> start(
@RequestBody Nickname nickname,
@CookieValue('"uuid") String uuid
) 1
return gameService.start(nickname)
.subscriberContext(Context.of("uuid", UUID.fromString(uuid)));

@RestController
@RequestMapping("/http")
public class HttpGameController A

@PostMapping("/start")
public Mono<Config> start(
@RequestBody Nickname nickname,
@CookieValue("uuid") String uuid
) 1
return gameService.start(nickname)
.subscriberContext(Context.of("uuid", UUID.fromString(uuid)));

1S.gd/webflux

https://is.gd/webflux

Why NOT HTTP?

Why NOT HTTP?

 TEXT MESSAGE OVERHEAD

Why NOT HTTP?

 TEXT MESSAGE OVERHEAD

* INEFFICIENT RESOURCE USAGE

Why NOT HTTP?

 TEXT MESSAGE OVERHEAD
* INEFFICIENT RESOURCE USAGE

« SLOW PERFORMANCE

Why NOT HTTP?

 TEXT MESSAGE OVERHEAD
* INEFFICIENT RESOURCE USAGE
« SLOW PERFORMANCE

« COMMUNICATION RIGIDITY

Why NOT HTTP?

TEXT MESSAGE OVERHEAD
INEFFICIENT RESOURCE USAGE
SLOW PERFORMANCE
COMMUNICATION RIGIDITY

LACK OF PROPER FLOW CONTROL

HTTP FLOW CONTROL

HTTP FI OW C.ONTROI
Retry logic

Timeouts

Circuit breaking
Thundering herds
Cascading failure

Configuration

We need Backpressure

o

<

2

REACTIVE-STREAMS

interface Publisher<T> {
vold subscribe (Subscriper<? super T> s);

J

interface Subscriber<T> {
vold onSubscribe (Subscriptiqgn s) ;
vold onNext (T t) ; ?
vold onError (Throwable
vold onComplete () ;

interface Subscription
vold request (long n);
vold cancel () ;

REACTIVE-STREAMS

1nterface Subscri;er<T> {
vold onSubscribe (Subscriptiqgn s) ;

interface Subscription
vold request (long n) ;

PROTOCOLS

PROTOCOLS

PROTOCOLS

e HITP/1.x

PROTOCOLS

PROTOCOLS

i =1 H =75 S S—

. HTTP/2

PROTOCOLS

i =1 H =75 S S—

. HTTP/2

. TCP

PROTOCOLS

e JL 1A X
« HTTP/2

« WEBSOCKET

PROTOCOLS

e JL 1A X
« HTTP/2

« WEBSOCKET

o 277

COMPARISON

* MAINTAINABILITY

e Frameworks

o Community/Adoption

 MAINTAINABILITY
e Frameworks

o Community/Adoption

« STABILITY

e Can work OK in unpredicted cases

 MAINTAINABILITY
e Frameworks
o Community/Adoption

o

e Can work OK in unpredicted cases

* PERFORMANCE

WEBSOCKET
/
HITTP2

P 228N

WEBSOCKET
/
HITTP2

P 228N

WEBSOCKET

32, 9 W

Why WebSocket?

Why WebSocket?

* NO OVERHEAD ~ TCP

Why WebSocket?

* NO OVERHEAD ~ TCP

 HIGH-PERFORMANCE

Why NOT WebSocket?

Why NOT WebSocket?

« COMPLEX DEVELOPMENT

Why NOT WebSocket?

« COMPLEX DEVELOPMENT

 REINVENT APPLICATION PROTOCOL

Existing Solutions

Existing Solutions

 SOCKJS + STOMP

Existing Solutions

 SOCKJS + STOMP

« SOCKET.IO

SOCKET.IO

Why Socket.|O?

Why Socket.|O?

« MOST POPULAR IN JS WORLD

Why Socket.|O?

« MOST POPULAR IN JS WORLD

 TOPIC BASED BINARY/TEXT MESSAGING

Why Socket.|O?

« MOST POPULAR IN JS WORLD
 TOPIC BASED BINARY/TEXT MESSAGING

 JAVA SERVER BUILT ON TOP OF NETTY

IS.gd/socketio

https://is.gd/socketio

Why Not Socket.lO

Why Not Socket.lO

* NO INTEGRATION WITH SPRING

Why Not Socket.|O

final SocketIOServer server = new SocketIOServer(configuration);

context.addApplicationListener(event —> {
if (event instanceof ContextClosedEvent || event instanceof
ContextStoppedEvent || event instanceof ApplicationFailedEvent) A
server.stop();
}

F);

Why Not Socket.|O

final SocketIOServer server = new SocketIOServer(configuration);

Why Not Socket.lO

context.addApplicationListener(event —> {
if (event instanceof ContextClosedEvent || event instanceof
ContextStoppedEvent || event instanceof ApplicationFailedEvent) A
server.stop();
}

F);

Why Not Socket.|O

* NO INTEGRATION WITH SPRING

. JS (CALLBACKS) CODE STYLE

Why Not Socket.lO

server.addConnectListener(client —> {}):
server.addDisconnectListener(client — {}):

server.addEventListener('start", bytel[].class,
(client, data, ackSender) —> {});

server.addEventListener (" locate", bytel].class,
(client, data, ackRequest) —-> {});

server.addEventListener('"streamMetricsSnapshots", bytel].class,
(client, data, ackSender) —> {});

Why Not Socket.|O

. NO INTEGRATION WITH SPRING
. JS (CALLBACKS) CODE STYLE

* NOACCESS TO BYTEBUF

Why Not Socket.|O

server.addEventListener(byte[].class,
(client, data, ackSender) —> {});

server.addEventListener(byte[].class,
(client, data, ackRequest) —-> {});

server.addEventListener(byte[].class,
(client, data, ackSender) —> {});

Where it IS good

Where it IS good

 REALLY GOOD AT JS

Why gRPC?

Why gRPC?

 BUILT ON TOP OF HTTP/2

Why gRPC?

grpc performance vs rest

QQ Bce L) KapTuHku Bugeo Hosoctu) Mokynkm : Ewé Hactponikn VIHCTpyMEHTHI

PeaynbraTtoB: npumepHo 166 000 (0,46 cek.)

Coser. o ITOMY 3arpocCy Bbl MOXeETE HaUTU cauTbl Ha PYCCKOM A3bIKe. YKasaTtb
npeanoyvTuTeribHble A3blKWU OJ14 pe3yribTaToB NOUCKa MOXXHO B pa3ferie HaCTpOIZKVI.

gRPC is roughly 7 times faster than REST when
receiving data & roughly 10 times faster than REST I |
when sending data for this specific payload. This is Il II I‘
mainly due to the tight packing of the Protocol Buffers =1 —nn BEED BEEY BEEE
and the use of HTTP/2 by gRPC. 2anp. 2019

Evaluating Performance of REST vs. gRPC - Ruwan Fernando ...
https://medium.com > evaluating-performance-of-rest-vs-grpc-1b8bdf0Ob22da

Why gRPC?

 BUILT ON TOP OF HTTP/2

« EASY TO BUILD API WITH PROTOBUF

Why gRPC?

v Il src
> I @types
e BUILT ON > -ger?erated
¥ I®= main
v Bm proto
e EASY TO g config.proto

g8 extra.proto
& location.proto
g map.proto
g player.proto
g point.proto
g score.proto
g service.proto
g size.proto
B8 speed.proto
& tile.proto

» I resources

Why gRPC?

« RUIIT ON TOP OF HTTP/?
service GameService {

rpc start (Nickname) returns (Config) {}
}

service PlayerService {
roc locate(stream Location) returns (google.protobuf.Empty) {}

rpc players(google.protobuf.Empty) returns (stream Player) {}

Why gRPC?

« RUIIT ON TOP OF HTTP/?
service GameService {

rpc start (Nickname) returns (Config) {}
}

Why gRPC?

e BLINTONTOPOF HTTP/?2

service PlayerService {
roc locate(stream Location) returns (google.protobuf.Empty) {}

rpc players(google.protobuf.Empty) returns (stream Player) {}

Why gRPC?

e BLINTONTOPOF HTTP/?2

stream Location

stream Player

Why gRPC?

 BUILT ON TOP OF HTTP/2
« EASY TO BUILD API WITH PROTOBUF

« GOOD DEVELOPMENT EXPERIENCE

\AMhvir ~nDDCMD

protobuf {
protoc {
artifact = 'com.google.protobuf:protoc’
« BUILT (’
plugins {
. EASY1 9rPc { |
artifact = "1o0.grpc:protoc—gen—-grpc—java"
}
« GOOD }

generateProtoTasks {
ofSourceSet('main')*.plugins {
grpc {}
}

}
}

Why gRPC?

> I @types
e BUILT ON Vv [l generated
v Im main
> I grpce
. EASYTO - b v
Vv I reactorGRpc
v B org.coinen.pacman
® ReactorExtrasServiceGrpc
B ReactorGameServiceGrpc
® ReactorLocationServiceGrpc
® ReactorMapServiceGrpc
1 ReactorPlayerServiceGrpc
® ReactorScoreServiceGrpc
B ReactorSetupServiceGrpce

* GOOD Dt

Why gRPC?

BUILT ON TOP OF HTTP/2
EASY TO BUILD APl WITH PROTOBUF
GOOD DEVELOPMENT EXPERIENCE

SEAMLESS INTEGRATION WITH SPRING

Why gRPC?

 BUILT ON TOP OF HTTP/2

@GRpcService
public class GrpcPlayerController extends ReactorPlayerServiceGrpc.PlayerServiceImplBase A

@Override
public Flux<Player> players(Mono<Empty> message) {
return playerService
.players()
.onBackpressureBuffer()
. subscriberContext(Context.of("uuid", CONTEXT UUID KEY.get()));

Why gRPC?

 BUILT ON TOP OF HTTP/2

@GRpcService

Why gRPC?

BUILT ON TOP OF HTTP/2

EASY TO BUILD APl WITH PROTOBUF
GOOD DEVELOPMENT EXPERIENCE
SEAMLESS INTEGRATION WITH SPRING

GOOGLE SAYS IT IS SUPER STABLE

BUI

EAS

GO

SE/

GO

Why gRPC?

google about grpc reliability E 9 Q

Q Bece [4) KapTuHkm (2] HoBocTM [*] Bugeo 8 Kaprbi : Ewé Hactpoiku UHcTpyme

PesyneraTtoB: npumepHo 76 400 (0,45 cek.)

gRPC along with protocol buffers enables loose coupling, engineering velocity, higher
reliability and ease of operations. ... As a high performance, open-source RPC
framework, gRPC features multiple language bindings (C++, Java, Go, Node, Ruby,
Python and C# across Linux, Windows and Mac). 23 aer. 2016 .

gRPC - Google Cloud

https://cloud.google.com » blog » products » gcp » grpc-a-true-internet-scale...

1S.gd/rgrpc

https://is.gd/rgrpc

Why I'm still lagging”

LIMITATIONS

LIMITATIONS

Hypertext Transfer Protocol Version 2 (HTTP/2)
draft-ietf-httpbis-http2-latest

Abstract

This specification describes an optimized expression of the semantics of the Hypertext Transfer
Protocol (HTTP), referred to as HT TP version 2 (HTTP/2). HTTP/2 enables a more efficient use of
network resources and a reduced perception of latency by introducing header field compression and
allowing multiple concurrent exchanges on the same connection. It also introduces unsolicited push of
representations from servers to clients.

This specification is an alternative to, but does not obsolete, the HTTP/1.1 message syntax. HT TP's
existing semantics remain unchanged.

LIMITATIONS

8. HTTP Message Exchanges

HTTP/2 is intended to be as compatible as possible with current uses of HTTP. This means that, from

the application perspective, the features of the protocol are largely unchanged. To achieve this, all
request and response semantics are preserved, although the syntax of conveying those semantics has

changed.

Thus, the specification and requirements of HTTP/1.1 Semantics and Content [RFC7231], Conditional
Requests [RFC7232], Range Requests [RFC7233], Caching [RFC7234], and Authentication [RFC7235]
are applicable to HTTP/2. Selected portions of HTTP/1.1 Message Syntax and Routing [RFC7230],

such as the HTTP and HTTPS URI schemes, are also applicable in HTTP/2, but the expression of
those semantics for this protocol are defined in the sections below.

LIMITATIONS

8.2.1 Push Requests

Server push is semantically equivalent to a server responding to a request; however, in this case, that
request is also sent by the server, as a PUSH_PROMISE frame.

The PUSH_PROMISE frame includes a header block that contains a complete set of request header
fields that the server attributes to the request. It is not possible to push a response to a request that
iIncludes a request body.

Pushed responses are always associated with an explicit request from the client. The
PUSH_PROMISE frames sent by the server are sent on that explicit request's stream. The
PUSH_PROMISE frame also includes a promised stream identifier, chosen from the stream identifiers
available to the server (see Section 5.1.1).

¢

¢

* 6 o

* o

¢ o

® ¢ 6 6 6 6 6 O O O O O 0 0

¢

B o ¢ ¢ 06 00

C o o0 00

4
® ¢ 6 6 O O 6 ¢ ¢ O 0

Lol

® ¢ 6 6 6 6 O O ¢ o

2
2
¢

® & ¢ o

HTTP/2

¢

¢

* 6 o

* o

¢ o

® ¢ 6 6 6 6 6 O O O O O 0 0

¢

B o ¢ ¢ 06 00

C o o0 00

4
® ¢ 6 6 O O 6 ¢ ¢ O 0

Lol

® ¢ 6 6 6 6 O O ¢ o

2
2
¢

® & ¢ o

HTTP/2

¢

¢

* 6 o

* o

¢ o

® ¢ 6 6 6 6 6 O O O O O 0 0

¢

B o ¢ ¢ 06 00

C o o0 00

4
® ¢ 6 6 O O 6 ¢ ¢ O 0

Lol

® ¢ 6 6 6 6 O O ¢ o

2
2
¢

® & ¢ o

GRPC-WEB

©
D
=
G
-

¢

¢

* 6 o

* o

¢ o

o K o ¢ 0 0 0 00
. .
. .
. .
. G o o0 060 o
. — ¢ o
* 0 ¢ o0
. .
. .
. .
. .
. .
Y 3 Lol 5

. 2%
.

® 6 6 6 6 6 O 6 O O

¢ & o

® & ¢ o

HTTP/1.x

HTTP/2

¢

¢

* 6 o

* o

¢ o

o K o ¢ 0 0 0 00
. .
. .
. .
. G o o0 060 o
. — ¢ o
* 0 ¢ o0
. .
. .
. .
. .
. .
Y 3 Lol 5

. 2%
.

® 6 6 6 6 6 O 6 O O

¢ & o

® & ¢ o

HTTP/1.x

HTTP/2

¢

¢

* 6 o

* o

¢ o

*® 6 ¢ o

C oo 00

¢

Lol

® ¢ 6 6 6 6 6 O O O O O 0 0

® & 6 6 6 6 O o

2

¢

2

¢

® ¢ 6 6 O O 6 ¢ ¢ O 0

¢ & o

® & ¢ o

STATIC
CONNECTION 2

—ee
STATIC

CONNECTION 1

HTTP/1.x

HTTP/2

¢

¢

* 6 o

* o

¢ o

*® 6 ¢ o

C oo 00

¢

Lol

® ¢ 6 6 6 6 6 O O O O O 0 0

® & 6 6 6 6 O o

2

¢

2

¢

® ¢ 6 6 O O 6 ¢ ¢ O 0

¢ & o

® & ¢ o

STATIC
CONNECTION 2

—ee
STATIC

CONNECTION 1

HTTP/1.x

HTTP/2

“WE HAVE BACKPRESSURE CONTROL”

—gRPC

GRPC SUBSCRIBER

new CallStreamObserver<>() {
@Override
oublic void onNext(Object value) {
. request(5);
}

GRPC SUBSCRIBER

. request(5);

gRPC PUBLISHER

if (observer.isReady()) {
observer.onNext (message) ;
}

gRPC PUBLISHER

observer.isReady()

Simplify implementation of back-pressure in StreamObserver-based stub #1549
) jhump opened this issue on Mar 14, 2016 - 28 comments

I N £ Yo o em
|||||“||"—,-n.-_., 1
| AT

ejona86 2 days ago » edited ~ Member

In normal use, | can see cases where isReady returns false, and I'm using a similar approach to
@stephenh to block. However, in an inprocess test server, | never see isReady returning false; instead,
onNext appears to block. That makes it impossible to test the code using the inprocess test server.

@ulfjack, if you are using directExecutor() then the client and server share a single thread, which makes
the tests deterministic. Simply remove at least one of the calls that specify directExecutor() and
onNext () willthen be processed asynchronously. Edit: You should remove the call configuring the channel.

I'm also concerned about race conditions where the server thread checks isReady and then goes to sleep,
but the callback comes in between the isReady call and actually going to sleep. | think that can't happen if
both synchronize on the same external object

The race totally seems possible. | don't see how any locking in gRPC could prevent it; if you added a sleep(1
minute) between the two parts, it seems obviously racy.

the APl does not actually specify how isReady and onReady are internally synchronized.

The only guarantee is that if isReady() returns false (thereis no guarantee that your application has
observed it yet) there will be an onReady() callback at some point when isReady() == true . Basically, "no
need to poll; we'll tell you when it changes."

Note that it does not imply the converse: "spurious” onReady() callbacks are possible, so it is possible for
isReady() == false withinthe onReady() callback. This is due to races between gRPC delivering a
callback and the application writing more data. (So it was ready again, but it became non-ready by the time

onReady() was called.)

Simplify implementation of back-pressure in StreamObserver-based stub #1549
) jhump opened this issue on Mar 14, 2016 - 28 comments

'-..*;._.:' Lﬁf.:' vpen

ejona86 2 days ago e edited ~ Member

In normal use, | can see cases where isReady returns false, and I'm using a similar approach to
@stephenh to block. However, in an inprocess test server, | never see isReady returning false; instead,
onNext appears to block. That makes it impossible to test the code using the inprocess test server.

@ulfjack, if you are using directExecutor() then the client and server share a single thread, which makes
the tests deterministic. Simply remove at least one of the calls that specify directExecutor() and
onNext () will then be processed asynchronously. Edit: You should remove the call configuring the channel.

I'm also concerned about race conditions where the server thread checks isReady and then goes to sleep,
but the callback comes in between the isReady call and actually going to sleep. | think that can't happen if
both synchronize on the same external object

The race totally seems possible. | don't see how any locking in gRPC could prevent it; if you added a sleep(1
minute) between the two parts, it seems obviously racy.

the API does not actually specify how isReady and onReady are internally synchronized.

The only guarantee is that if isReady() returns false (thereis no guarantee that your application has
observed it yet) there will be an onReady() callback at some point when isReady() == true . Basically, "no
need to poll; we'll tell you when it changes.”

Note that it does not imply the converse: "spurious” onReady() callbacks are possible, so it is possible for

isReady() == false withinthe onReady() callback. Thisis due to races between gRPC delivering a
callback and the application writing more data. (So it was ready again, but it became non-ready by the time
onReady() was called.)

Simplify implementation of back-pressure in StreamObserver-based stub #1549
) jhump opened this issue on Mar 14, 2016 - 28 comments

'-..*;._.:' Lﬁf.:' vpen

ejona86 2 days ago e edited ~ Member

In normal use, | can see cases where isReady returns false, and I'm using a similar approach to
@stephenh to block. However, in an inprocess test server, | never see isReady returning false; instead,
onNext appears to block. That makes it impossible to test the code using the inprocess test server.

@ulfjack, if you are using directExecutor() then the client and server share a single thread, which makes
the tests deterministic. Simply remove at least one of the calls that specify directExecutor() and
onNext () will then be processed asynchronously. Edit: You should remove the call configuring the channel.

I'm also concerned about race conditions where the server thread checks isReady and then goes to sleep,
but the callback comes in between the isReady call and actually going to sleep. | think that can't happen if
both synchronize on the same external object

The race totally seems possible. | don't see how any locking in gRPC could prevent it; if you added a sleep(1
minute) between the two parts, it seems obviously racy.

the API does not actually specify how isReady and onReady are internally synchronized.

The only guarantee is that if isReady() returns false (thereis no guarantee that your application has
observed it yet) there will be an onReady() callback at some point when isReady() == true . Basically, "no
need to poll; we'll tell you when it changes.”

Note that it does not imply the converse: "spurious” onReady() callbacks are possible, so it is possible for

isReady() == false withinthe onReady() callback. Thisis due to races between gRPC delivering a
callback and the application writing more data. (So it was ready again, but it became non-ready by the time
onReady() was called.)

Simplify implementation of back-pressure in StreamObserver-based stub #1549
) jhump opened this issue on Mar 14, 2016 - 28 comments

'-..*;._.:' Lﬁf.:' vpen

ejona86 2 days ago e edited ~ Member

In normal use, | can see cases where isReady returns false, and I'm using a similar approach to
@stephenh to block. However, in an inprocess test server, | never see isReady returning false; instead,
onNext appears to block. That makes it impossible to test the code using the inprocess test server.

@ulfjack, if you are using directExecutor() then the client and server share a single thread, which makes
the tests deterministic. Simply remove at least one of the calls that specify directExecutor() and
onNext () will then be processed asynchronously. Edit: You should remove the call configuring the channel.

I'm also concerned about race conditions where the server thread checks isReady and then goes to sleep,
but the callback comes in between the isReady call and actually going to sleep. | think that can't happen if
both synchronize on the same external object

The race totally seems possible. | don't see how any locking in gRPC could prevent it; if you added a sleep(1
minute) between the two parts, it seems obviously racy.

the API does not actually specify how isReady and onReady are internally synchronized.

The only guarantee is that if isReady() returns false (thereis no guarantee that your application has
observed it yet) there will be an onReady() callback at some point when isReady() == true . Basically, "no
need to poll; we'll tell you when it changes.”

Note that it does not imply the converse: "spurious” onReady() callbacks are possible, so it is possible for

isReady() == false withinthe onReady() callback. Thisis due to races between gRPC delivering a
callback and the application writing more data. (So it was ready again, but it became non-ready by the time
onReady() was called.)

Simplify implementation of back-pressure in StreamObserver-based stub #1549
) jhump opened this issue on Mar 14, 2016 - 28 comments

'-..*;._.:' Lﬁf.:' vpen

ejona86 2 days ago e edited ~ Member

In normal use, | can see cases where isReady returns false, and I'm using a similar approach to
@stephenh to block. However, in an inprocess test server, | never see isReady returning false; instead,
onNext appears to block. That makes it impossible to test the code using the inprocess test server.

@ulfjack, if you are using directExecutor() then the client and server share a single thread, which makes
the tests deterministic. Simply remove at least one of the calls that specify directExecutor() and
onNext () will then be processed asynchronously. Edit: You should remove the call configuring the channel.

I'm also concerned about race conditions where the server thread checks isReady and then goes to sleep,
but the callback comes in between the isReady call and actually going to sleep. | think that can't happen if
both synchronize on the same external object

The race totally seems possible. | don't see how any locking in gRPC could prevent it; if you added a sleep(1
minute) between the two parts, it seems obviously racy.

the API does not actually specify how isReady and onReady are internally synchronized.

The only guarantee is that if isReady() returns false (thereis no guarantee that your application has
observed it yet) there will be an onReady() callback at some point when isReady() == true . Basically, "no
need to poll; we'll tell you when it changes.”

Note that it does not imply the converse: "spurious” onReady() callbacks are possible, so it is possible for

isReady() == false withinthe onReady() callback. Thisis due to races between gRPC delivering a
callback and the application writing more data. (So it was ready again, but it became non-ready by the time
onReady() was called.)

L Hiu. e o, 1 wdll SE€ cases Where iIsReady returns false, and I'm using a similar ¢
vstephenh to block. However, in an inprocess test server, | never see isReady retu
)nNext appears to block. That makes it impossible to test the code using the inproc

Julfjack, if you are using directExecutor() thenthe client and server share a single
ne tests deterministic. Simply remove at least one of the calls that specify directExecut
onNext () will then be processed asynchronously. Edit: You should remove the call configi

I'm also concerned about race conditions where the server thread checks isReady and then
but the callback comes in between the isReady call and actually going to sleep. | think that cal
both synchronize on the same external object

The race totally seems possible. | don't see how any locking in gRPC could prevent it; if you added a sleep(1
minute) between the two parts, it seems obviously racy.

the API does not actually specify how isReady and onReady are internally synchronized.

The only guarantee is that if isReady() returns false (thereis no guarantee that your application has
observed it yet) there will be an onReady() callback at some point when isReady() == true . Basically, "no
need to poll; we'll tell you when it changes.”

Note that it does not imply the converse: "spurious” onReady() callbacks are possible, so it is possible for

isReady() == false withinthe onReady() callback. Thisis due to races between gRPC delivering a
callback and the application writing more data. (So it was ready again, but it became non-ready by the time
onReady() was called.)

PUBLISHER

PUBLISHER

WHAT IF

PPPPPPPPP

WHAT IF

PUBLISHER ﬁ

PUBLISHER

WHAT IF

PUBLISHER

PUBLISHER ﬁ

PUBLISHER

PUBLISHER

PUBLISHER

PUBLISHER

PUBLISHER

WHAT IF

PUBLISHER

PUBLISHER

PUBLISHER

PUBLISHER

PUBLISHER

WHAT IF

PUBLISHER

PUBLISHER

PUBLISHER

PUBLISHER

PUBLISHER

WHAT IF

PUBLISHER

PUBLISHER

PUBLISHER

PUBLISHER

PUBLISHER

WHAT IF

THAT MAY
OVERPRODUCE

S
C
enario

"

Scenario

M M " '
@00
; = 31 K n ol = ol = il

et et et et

[F |F L [F

Scenario

Scenario

Scenario

" :EI

CSCenar 1o

(=]
o 4
':'|.

5
E

:.q)?.
https: “youtu. be "KxA 1xUrGbcY Els‘

CSCenar 1o

(=]
o 4
':'|.

5
E

:.q)?.
https: “youtu. be "KxA 1xUrGbcY Els‘

SCenar 1o

https: ./ youtu. be /KxA ixUrGbcy [0

SCenar 1o

https: ./ youtu. be /KxA ixUrGbcy [0

CSCenar 1o

m :E

https: ./ youtu. be /KxA ixUrGbcy [0

CSCenar 1o

m :E

https: ./ youtu. be /KxA ixUrGbcy [0

gRPC Publisher

)
=
@«
>
c 80K
(1}
()]
=
e
=
£
S 60K
o
£
;I
3
|
3I 40K
©
=
q’I
]
5 20K
ml
(4]
e
9
()
g 0 | | |
14:42 14:43 14:44 14:45 14:46 14:47 14:48 14:49 14:50 14:51 14:52 14:53 14:54 14:55 14:56
gRPC Subscribet
Q
=
©
>I
S 80K
Q
E
5
Q.
=
S 60K
o
=
i
©
c
q’I
S 40K
'UI
c
Q
I
:
g 20K
Ol
g
o
ml
(2]
’% 0
= 14:42 14:43 14:44 14:45 14:46 14:47 14:48 14:49 14:50 14:51 14:52 14:53 14:54 14:55 14:56

gRPC Subsecribet

nmietricsogrpcsseyvercend! tocend! theoughputinsean vvalee

14:42

14:43

14:44

14:45

14:46

14:47

14:48

14:49

14:50

14:51

14:52

14:53

14:54

14:55

14:56

gRPC Subkichibet

nietriesagppcsseveercand! to cond treouginpiinssan vealse

14:42

14:43

14:44

14:45

14:46

14:47

14:48

14:49

14:50

14:51

14:52

14:53

14:54

14:55

14:56

gRPC Subkichibet

nietriesagppcsseveercand! to cond treouginpiinssan vealse

14:42

14:43

14:44

14:45

14:46

14:47

14:48

14:49

14:50

14:51

14:52

14:53

14:54

14:55

14:56

gRPC Subkichibet

nietriesagppcsseveercand! to cond treouginpiinssan vealse

Subscriber

14:53

14:54

14:55

14:56

at— pr—

- game-server-0.0.1.jar (pid 95217)

Buffer Pools Direct Mappec
Direct)

Memory Used: 939,574 181 8 Total Capacity: 939,574 182 8
Count 61

750 MR 4
SO0 MB 4

250 MB 4

10 54 AM 10 56 AM 10 58 AM 1100 AM
& Memory Used B Total Capacity

CloudNative JVM Setup

e -XmMs 256m
e -Xmx 19

e -XX:MaxDirectMemorySize=1g

6] 1.g.n.NettyServerTransp«
port faliled
R
java.lang.OutQfMemoryError: I
at java.base/java.ni
.Java:175) ~[na:nal
at java.base/java.ni

(DirectByteBuffer.java:118) -
at java.base/java.nic

ol Total Capacity

“WE HAVE BACKPRESSURE CONTROL”

—gRPC

“YEAH... YOU HAVE... BUT... NOT REALLY”

—PRODUCTION

Summary

Summary

* Everything is either SLOW, HARD to implement or LACKS browser support

Summary

* Everything is either SLOW, HARD to implement or LACKS browser support

 Flow control is far from needed

Summary

* Everything is either SLOW, HARD to implement or LACKS browser support
 Flow control is far from needed

* Do you want to waste your time in searching how to solve the problems???

STREAM

STREAM

Netflix case study on gRPC

* Reactive Streaming Service Networking with Ryland
Degnan
(ex Netflix Edge Platform)

https://bit.ly/2FUVHGS

https://bit.ly/2FUvHG3

RSOCKET WAY

RSOCKET WAY

What is RSocket?

What is RSocket?

REACTIVE-STREAMS as
NETWORK PROTOCOL

S35
- b
=] S

IS.gd/rsocket

https://is.gd/rsocket

Multiplexed

Multiplexed

Multiplexed

Multiplexed

STREAM BLUE

Multiplexed

Multiplexed

Multiplexed

110 Project Reactor

Transport Agnostic

Transport Agnostic

WebSocket

Transport Agnostic

Transport Agnostic

Transport Agnostic

Backpressure

Reactive-Streams

Backpressure

Backpressure

Backpressure

Reactive-Streams

Backpressure

Reactive-Streams

Backpressure

Reactive-Streams

Backpressure

Peer-to-peer

EEEEEEEEEEEE

Peer-to-peer

EEEEEEEEEEEE

Peer-to-peer

EEEEEEEEEEEE

Peer-to-peer

Client can implement request handler

CLIENT SERVER

E STREAM BLUE

113

Notable Features

114

Notable Features

o LEASING - GIVE CAPACITY TO CLIENTS, AVOID CIRCUIT BREAKERS
(CONCEPT IS BUILT-IN IN THE PROTOCOL)

114

Notable Features

o LEASING - GIVE CAPACITY TO CLIENTS, AVOID CIRCUIT BREAKERS
(CONCEPT IS BUILT-IN IN THE PROTOCOL)

+ RESUMABILITY - RESUME STREAMS IF CONNECTION HAS LOST
(MOBILE CONNECTIVITY CASE)

114

Notable Features

o LEASING - GIVE CAPACITY TO CLIENTS, AVOID CIRCUIT BREAKERS
(CONCEPT IS BUILT-IN IN THE PROTOCOL)

+ RESUMABILITY - RESUME STREAMS IF CONNECTION HAS LOST
(MOBILE CONNECTIVITY CASE)

« FRAGMENTATION - SPLIT LARGE PAYLOADS INTO SMALLER
CHUNKS

114

SOME CODE

RPC API

generated

= main
proto
73 config.proto
73 extra.proto
% location.proto
3 map.proto
73 player.proto
73 point.proto
7% score.proto
73 service.proto
73 size.proto
73 speed.proto
73 tile.proto

RPC API

implementation 'i1o.rsocket.rpc:rsocket-rpc—core'

RPC API

generatedFilesBaseDir = "${projectDir}/src/generated”

protoc {
artifact = 'com.google.protobuf:protoc'

J

plugins
rsocketRpc {
artifact = "io.rsocket.rpc:rsocket-rpc-protobuf"

J
J

generateProtoTasks {
ofSourceSet ('main') *.plugins {
rsocketRpc {}
}

RPC API

plugins {
rsocketRpc {
artifact = "io.rsocket.rpc:rsocket-rpc-protobuf"

J
J

generateProtoTasks {
ofSourceSet ('main') *.plugins {
rsocketRpc {}
}

RPC API

ExtrasServiceServer
GameService
GameServiceClient
GameServiceServer
LocationService
LocationServiceClient
LocationServiceServer
MapService
MapServiceClient
MapServiceServer
PlayerService
PlayerServiceClient

PlayerServiceServer
ScoreService
ScoreServiceClient
ScoreServiceServer
SetupService
SetupServiceClient
SetupServiceServer

SPRING-MESSAGING

implementation 'org.springframework.boot:spring-boot-starter-rsocket'

SPRING-MESSAGING

server .port=3000
spring.rsocket.server. transport=websocket

SPRING-MESSAGING

dController
dMessageMapping (“‘my.route.name”)
public class ExtrasController {

dMessageMapping (“handle.extras”)
public Flux<Extra> extras() {
return extrasService.extras /() ;

}

SPRING-MESSAGING

AController

dMessageMapping ("my.route.name”)

@MessageMapping (“handle.ex:

cras’)

SPRING-MESSAGING

public Flux<Extra> extras () {
return extrasService.extras () ;

}

RPC-style Messaging

STRESS TEST

nario
e
Sc

i L

nario
e
Sc

i L

Scenario

51 O

Scenario

51 O

Scenario

Scenario

RSocket Publisher

350K

300K

250K

200K

150K

100K

50K

0
I I I I I I I I I I I I |)
15:23 15:23:30 15:24 15:24:30 15:25 15:25:30 15:26 15:26:30 15:27 15:27:30 15:28 15:28:30 15:29 15:29:30 15:30 15:30:30

game_rsocket_server_end_to_end_throughput.mean_value

RSocket Subscriber

300K

250K

200K

150K

100K

50K

0
15:23 15:23:30 15:24 15:24:30 15:25 15:25:30 15:26 15:26:30 15:27 15:27:30 15:28 15:28:30 15:29 15:29:30 15:30 15:30:30

metrics_rsocket_server_end_to_end_throughput.mean_va...

RSocket Sub&etiber

350K |

300K

250K

100K

O\

50K

| | | | | | | | | | | | |
15:23 15:23:30 15:24 15:24:30 15:25 15:25:30 15:26 15:26:30 15:27 15:27:30 15:28 15:28:30 15:29 15:29:30 15:30 15:30:30

g
|
o
|
.

RSocket Sub&etiber

350K

300K

250K

150K

100K

50K

0
| | | | | | | | | | | | . I
15:23 15:23:30 15:24 15:24:30 15:25 15:25:30 15:26 15:26:30 15:27 15:27:30 15:28 15:28:30 15:29 15:29:30 15:30 15:30:30

|
E
1 o
§
|
:

Advantages

Advantages

 SIMPLICITY IN DEVELOPMENT

Advantages

 SIMPLICITY IN DEVELOPMENT

 EFFICIENT RESOURCE USAGE

Advantages

 SIMPLICITY IN DEVELOPMENT
 EFFICIENT RESOURCE USAGE

 HIGH PERFORMANCE

Advantages

SIMPLICITY IN DEVELOPMENT
EFFICIENT RESOURCE USAGE
HIGH PERFORMANCE

HIGH FLEXIBILITY

Advantages

SIMPLICITY IN DEVELOPMENT
EFFICIENT RESOURCE USAGE
HIGH PERFORMANCE

HIGH FLEXIBILITY

EFFECTIVE RELIABILITY

Disadvantages

Disadvantages

 STILLUNDER DEVELOPMENT

Disadvantages

 STILLUNDER DEVELOPMENT

« NARROW ADOPTION (FOR NOW)

Maintainers
NETFLIX - gn
netifi

PiVO to('ll (-) Alibaba Cloud

REACTIVE
FOUNDATION

HTTP 1.X

WEBSOCKET

GRPC(HTTP/2)

RSOCKET

Summary

ADOPTION
PERFORMANCE RELIABILITY /
COMUNITY
- -
M

)

m

|
|
b
“m
4

;
:
i

DEVELOPERS EXP

Summary

Summary

« EACH PROTOCOL HAS IT'S BENEFITS

Summary

« EACH PROTOCOL HAS IT'S BENEFITS

« SOCKET.IO IS THE BEST IN JS WORLD

Summary

« EACH PROTOCOL HAS IT'S BENEFITS
« SOCKET.IO IS THE BEST IN JS WORLD

 gRPC PERFORMS REALLY WELL FOR SERVER

Summary

EACH PROTOCOL HAS IT' S BENEFITS
SOCKET.IO IS THE BEST IN JS WORLD
gRPC PERFORMS REALLY WELL FOR SERVER

BUT REACTIVE IS ABOUT RESILIENCY

Summary

EACH PROTOCOL HAS IT' S BENEFITS
SOCKET.IO IS THE BEST IN JS WORLD
gRPC PERFORMS REALLY WELL FOR SERVER
BUT REACTIVE IS ABOUT RESILIENCY

WHERE RSOCKET COVERS MOST OF CLOUD NATIVE USE CASES

Resources

g @QOlehDokuka
@netifi inc

Resources

m @QOlehDokuka
@netifi inc

« COMMUNITY -> https://community.netifi.com

https://community.netifi.com
https://bit.ly/2Fku9VC
https://bit.ly/2OiUmrD
https://bit.ly/2JvDFdJ

Resources

@QOlehDokuka

@netifi inc

« COMMUNITY -> https://community.netifi.com

* VIDEO CHANNEL -> https://bit.ly/2Fku9VG

https://community.netifi.com
https://bit.ly/2Fku9VC
https://bit.ly/2OiUmrD
https://bit.ly/2JvDFdJ

Resources

@QOlehDokuka

@netifi Iinc

« COMMUNITY -> https://community.netifi.com

* VIDEO CHANNEL -> https://bit.ly/2Fku9VG

« RSOCKET IN SPRING -> https://bit.ly/20iUmrD

https://community.netifi.com
https://bit.ly/2Fku9VC
https://bit.ly/2OiUmrD
https://bit.ly/2JvDFdJ

Resources

@QOlehDokuka

@netifi Iinc

COMMUNITY -> https://community.netifi.com

VIDEO CHANNEL -> https://bit.ly/2Fku9VC

RSOCKET IN SPRING -> https://bit.ly/20iUmrD

CLOUD NATIVE RSOCKET -> https://bit.ly/2JvDFdJ

https://community.netifi.com
https://bit.ly/2Fku9VC
https://bit.ly/2OiUmrD
https://bit.ly/2JvDFdJ

Q&A

@QOlehDokuka

@netifi Iinc

