

NoSQL? No, SQL!

[' Why Your Next Application

© Should be Written With XSLT

AN

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0 HE

v | talks

Start Freigeben Ansicht

/ ' C : - Alles auswahlen
- « Verschieben nach X Laschen ~ i . +
— — W

Nichts auswahlen
ff Kopieren E

=] Kopieren nach v “"E Umbenennen Neuer @
Ordner) 0o Auswahl umkehren
Zwischenablage Organisieren Neu Offnen Auswahlen

T > DieserPC » Windows (C:) » talks

3 Schnellzugriff

Desktop

10 Reasons Why we Love Forget JSF. Forget MVC. Impressive Fonts in Internet Explorer Tips and
Some APls and Why we Just use PHP.pptx Presentations.pptx Tricks.pptx
Hate Some Others.pptx

,Q«/L)

.

What's New in Ant Your Next Application
1.10.5.pptx Should be XSLT.pptx

6 Elemente 1 Element ausgewahlt (30,0 MB)

-

Y

Start Freigeben Ansicht

1 { izl : - HEHan il
= J | ha « Verschieben nach ~ 3 Laschen = =l ﬂ @ Vij 5 AR
= — [i = i Michts auswahlen
Kopieren ige i - = Meuer Eigenschaften
=| Kopieren nach IIUmhenennen o - & J'-'Auswahl umkehren
Zwischenablage Crganisieren MNeu Offnen Auswahlen
“ =2 =« I » Dieser PC » Windows (C:) » talks v talks" durchsuchen e

Schnellzugriff

11

Be n . T

[Desktop

Pz It E
10 Reasons Why we Lu:w.r Forget J5F. Forget MVC, Impressive Fonts in Internet Explorer Tips and
Some APls and Why we Just use PHP. pptx Presentations.pptx Tricks.pptx

Hate Some Others.pptx

XML
< XML >

What's Mew in Ant Your Mext Application
1.10.5.pptx Should be X5LT.pptx

6 Elemente 1 Elermnent ausgewihlt (30,0 ME) 1=C &=

NoSQL? No, SQL!

(. 10 Reasons Why we Love
: | Some APIs and Why we
Hate Some Others

Ng: & '] /

' f N ; . , >
YO e
"5 g -

AN

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0 HE

You KNOWw...

| renearsed these jokes
with my wife

g ’ Lukas Eder

Live footage of my wife, when | try to explain
my programming jokes to her

6 Retweets 32 Likes . 2 e . : ” 0 -,‘Q g

Q 3 1 6 O 22 il

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

R | Lukas Eder

Programmer art

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Good or bad?

dir = File(".");
(file : dir.list()) {
System.out.println(file);

}

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

=- b
Hi

Good or bad?

dir = File("C:/tmp");
(file : dir.list()) {
System.out.println(file);

}

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

=- b
Hi

Good or bad?

dir = File("C:/tmp");
(file : dir.list()) {

System.out.println(fgle);
}

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

AL.
aa

Good or bad?

Terrible idea:

‘ “ AUESOMEGIFS

Returning a null array

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Good or bad?

Ok OK OK

This was old |DK API.
We're doing better now.

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Good or bad?

Stream.of(1, 2, 3)

.skip(1)
.forEach(System.out: :println);

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

Good or bad?

Stream.of(1, 2, 3)
.skipUntil(t -> t == 2)

.forEach(System.out: :println);

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

Good or bad?

Stream.of(1, 2, 3)

.forEach(System.out: :println);

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

Good or bad?

Stream.of(1, 2, 3)

.skipWhile(t -> t < 2)
.forEach(System.out: :println);

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

Good or bad?

Stream.of(1, 2, 3)

.forEach(System.out: :println);

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

Good or bad?

Stream.of(1, 2, 3)

.dropWhile(t -> t < 2)
.forEach(System.out: :println);

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

Good or bad?

Terrible idea:

Inconsistent naming

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Good or bad?

$("input");

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

Good or bad?

$("input");

$("input").parent();

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

Good or bad?

$("input");

$("input").parent();

$("input").filter("[name]");

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

Good or bad?

$("input");
$("input").parent();

$("input").filter("[name]");

$("input[name]");

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

Good or bad?

$("input");

$("input").parent(); ‘§“\\
LN

5

$("input").filter("[name]");

$("input[name]");

$("input[name]”).map((i, e) => e.name);

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

Good or bad?

This feels great!

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Good or bad?

Sut why?

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Good or bad?

Not just apout APIs.
About languages too.

G O O d O r b a d ? . Fec?v.f.'_r_i_ri:n Tomassetti

M8\ Josh Long U215, 1, fowow ... @ | just read a preliminary version of "Effective
i © ", 4th edition.

oh $this-$FFS just use already It says "Just use

What's)
After the f (

features

Follow Y
y

tantly share code, notes,

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Good or bad?

But today is about
APIS.

User Experience

APIS are a crucial
part of the UX
(User Experience)

User Experience

LL Programs must be
written for people to
‘ead, and only
incidentally for
machines to execute

—Abelson & Sussman, "Structure and Interpretation of Computer Programs" , ,

User Experience

APIs must be
written for people to
‘ead, and only
incidentally for
machines to execute

—me, just no W , ,

1

User Experience

LL User experience (UX)
refers to a person's
emotions and attitudes
about using a particular
product, system or service

J)

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

https://en.wikipedia.org/wiki/User_experience

User Experience

LL User experience (UX)
refers to a developer's
emotions and attitudes
about using a particular
product, system or service

J)

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

https://en.wikipedia.org/wiki/User_experience

User Experience

We developers do
nave emotions

User Experience

(or mostly attitudes)

User Experience

Don't let them tell you
otherwise

/ Emotions

r ' are

illogical

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

https://en.wikipedia.org/wiki/User_experience

User Experience

N fact,

An anecdote about developer attitudes

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

User Experience

A Kotlin Programmer

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

User Experience

A Kotlin Programmer, an Intelli] user,

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

User Experience

A Kotlin Programmer, an Intelli] user,
and a Mac User

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

User Experience

A Kotlin Programmer, an Intelli] user,
and a Mac User went into a bar.

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

User Experience

A Kotlin Programmer, an Intelli] user,
and a Mac User went into a bar.

How do | know?

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

User Experience

A Kotlin Programmer, an Intelli] user,
and a Mac User went into a bar.

How do | know?

After 1 Minute

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

User Experience

A Kotlin Programmer, an Intelli] user,
and a Mac User went into a bar.

How do | know?

After 1T Minute, the whole f**king bar
knew.

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

User Experience

L L 'User experience'
encompasses all aspects of

the end-user's interaction

with the company, its
services, and its products.

J)

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

https://www.nngroup.com/articles/definition-user-experience/

User Experience

L L 'User experience'
encompasses all aspects of
the programmer's interaction
with the company, its
services, and its products.

J)

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

https://www.nngroup.com/articles/definition-user-experience/

Usability

‘ ‘ Usability is defined by 5 quality components:

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

https://www.nngroup.com/articles/usability-101-introduction-to-usability/

Usability

‘ ‘ Usability is defined by 5 quality components:

Learnability: How easy is it for users to accomplish basic
tasks the first time they encounter the design?

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

https://www.nngroup.com/articles/usability-101-introduction-to-usability/

Usability

1

Usability is defined by 5 quality components:

Learnability: How easy is it for users to accomplish basic
tasks the first time they encounter the design?

Efficiency: Once users have learned the design, how
quickly can they perform tasks?

J)

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

https://www.nngroup.com/articles/usability-101-introduction-to-usability/

Usability

Usability is defined by 5 quality components:

1

Learnability: How easy is it for users to accomplish basic
tasks the first time they encounter the design?

Efficiency: Once users have learned the design, how
quickly can they perform tasks?

Memorability: When users return to the design after a
period of not using it, how easily can they reestablish
proficiency?

J)

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

https://www.nngroup.com/articles/usability-101-introduction-to-usability/

Usability

Usability is defined by 5 quality components:

1

Learnability: How easy is it for users to accomplish basic
tasks the first time they encounter the design?

Efficiency: Once users have learned the design, how
quickly can they perform tasks?

Memorability: When users return to the design after a
period of not using it, how easily can they reestablish
proficiency?

Errors: How many errors do users make, how severe are
these errors, and how easily can they recover from the

errors? , ,

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

https://www.nngroup.com/articles/usability-101-introduction-to-usability/

Usability

1

Usability is defined by 5 quality components:

Learnability: How easy is it for users to accomplish basic
tasks the first time they encounter the design?

Efficiency: Once users have learned the design, how
quickly can they perform tasks?

Memorability: When users return to the design after a
period of not using it, how easily can they reestablish
proficiency?

Errors: How many errors do users make, how severe are
these errors, and how easily can they recover from the
errors?

Satisfaction: How pleasant is it to use the design? , ,

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

https://www.nngroup.com/articles/usability-101-introduction-to-usability/

AN Important
observation first

Prejudices

Usability is defined by 5 quality components:

Learnability: How easy is it for users to accomplish basic
tasks the first time they encounter the design?

Efficiency: Once users have learned the design, how
quickly can they perforpn tasks?

Memorability: Wheng8rs return to the design after a
period of not using ow easily can they reestablish

proficiency?
Errors: Ho
these ergg

rs do users make, how severe are
easily can they recover from the

These things aren't about technical details

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

https://www.nngroup.com/articles/usability-101-introduction-to-usability/

Prejudices — null

Apologies and retractions

Speaking at a software conference called QCon Londonz in 2009,
he apologised for inventing the null reference: 12

I call it my billion-dollar mistake. It was the

invention of the null reference in 1965.

But I couldn't resist the temptation to put in a null

reference, simply because it was so easy to

implement.

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

https://en.wikipedia.org/wiki/Tony_Hoare

Prejudices — null

Optional
* Optional<T> introduced in Java ¢
* Can be in one of two states:
ontains a non-null referencetoa T
Primitive specializations
Optionalint, OptionalLlong, OptionalDouble
Optional itself is a reference type, and can be null = DON’T

Rule #1: Never, ever, use null for an Optional variable or return value. h i D EVD%
BELGIUM

DEVOX

P »l o) 1:57/5842

Optional - The Mother of All Bikesheds by Stuart Marks
25,148 views il 342

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

https://www.youtube.com/watch?v=Ej0sss6cq14

Prejudices — null

Null is not bad per se

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Prejudices — null

Null is bad when it is
unexpected

... You still want some special «<absent» value

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Prejudices

P|cture byJeremy Segrot (CC BY 2 O) httos //vvvvvv ﬂ|ckr Com/ohotosﬂ 26337928@NOS/42791 980705

il S o AR AR AR

https://www.flickr.com/photos/126337928@N05/42791980705

Outline

10 Reasons Why we Love Some APIs and Why we Hate Some Others

1. Naming

2. Simplicity

3. Do One Thing
4. Types

5. Discoverability
6. Error Handling
/. Consistency

3. Convenience

9. Compatibility
10. Documentation

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Outline

10 Reasons Why we Love Some APIs and Why we Hate Some Others

1. Naming
2. Simplicity
3. Do One Thing

Colloguially NSDTDECCCD

/. Consistency
8. Convenience
9. Compatibility

10. Documentation D is silent

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Tnis is actually really
simple,

... and simplicity is hard as we'll soon see!

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

When you try to choose
a meaningful variable name.

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming — Ubiquitous Language

A language structured
around the domain model
and used by all team
members to connect all the
activities of the team with

the software.

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

https://en.wikipedia.org/wiki/Domain-driven_design

1. Naming — Why is it important?

= j".} e

i .
J 3 94 ‘1

o av @Vt |

o' » g “

lt" % !

; 1 "‘“‘% ;
". ”§ "\\M)DS“\ iy,

’)

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming — Don't do this

Stream<T> {

Stream<T> skip(long n);
Stream<T> limit(long maxSize);

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

1. Naming — Don't do this

Stream<T> {

Stream<T> skip(long n);
Stream<T> limit(long maxSize);

Stream<T> dropWhile(Predicate<? T> predicate) {}
Stream<T> takeWhile(Predicate<? T> predicate) {}

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

YOou KNnow Now tNis
nappens?

1. Naming

Fvery single time...

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming — Consistency

When
someone
else touches
my API...

@ | Am Devloper
E @iamdevioper

when you visit a site you handed over 6
months ago and the client made some
changes themselves

2162 Retweets 8852Lkes @M @@ L DS

QO 61 T 22k @ 83

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming — Can be fixed

t seems that the
«language» Nas
changed.

1. Naming — Can be fixed

This can be fixed.

.. but keep backwards compatibility in mina

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming — Tradeoffs

In an API, sometimes,
backwards compatibility is
more important than

g00d, CoNnsis

(ent names

1. Naming — Tradeoffs

.P: Roman Elizarov 5
:‘, @relizarov

Tradeoffs are constant and inevitable. We
trade convenience for performance,
trade consistency for compatibility, trade
ease of use for features.

11 Retweets 39 Likes @ ; 3@5@& @ |”il

Q 1 11 11 ¥ 30 M

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming — Consistency

Setter get it right the first
time.

And talk to each other!

1. Naming — Consistency

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

=- b
Hi

1. Naming — Consistency

Stream<T> {
<R> Stream<R> map(Function<? : R> mapper);
<R> Stream<R> flatMap(Function<? : Stream<? R>> mapper);

}

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BL.
g3 |

1. Naming — Consistency

Stream<T> {
<R> Stream<R> map(Function<? : R> mapper);
<R> Stream<R> flatMap(Function<? : Stream<? mapper) ;

}

Optional<T> {
<U> Optional<U> map(Function<? : U> mapper);
<U> Optional<U> flatMap(Function<? : Optional<? U>> mapper);

- That’s right.

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BL.
g3 |

1. Naming — Consistency

Stream<T> {
<R> Stream<R> map(Function<? : R> mapper);
<R> Stream<R> flatMap(Function<? : Stream<? R>> mapper);

}

Optional<T> {
<U> Optional<U> map(Function<? : U> mapper);
<U> Optional<U> flatMap(Function<? : Optional<? U>> mapper);

CompletionStage<T> {

<U> CompletionStage<U> ... (Function<? ! U> fn);
<U> CompletionStage<U> ... (Functiong<? : CompletionStage<U>> fn);

}

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BL.
g3 |

1. Naming — Consistency

Stream<T> {
<R> Stream<R> map(Function<? : R> mapper);
<R> Stream<R> flatMap(Function<? : Stream<? R>> mapper);

}

Optional<T> {
<U> Optional<U> map(Function<? : U> mapper);
<U> Optional<U> flatMap(Function<? : Optional<? U>> mapper);

CompletionStage<T> {

<U> CompletionStage<U> thenApply(Function<? : Uu> fn);
<U> CompletionStage<U> thenCompose(Function<? : CompletionStage<U>> fn);

} OMENTALITY

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0 HE

thenCompose

(Function=? super T,? extends

11 :1Hr »d with the same value as the

When this st

result as the argument, returning : er CompletionStage. When r_.11.:r_. s
completes normally, the CompletionStage returned by this method is cc
with the same value.

To ensure progress, the supplied function must arrange eventual completion of its
result.

analogous to Optional.flatMap and Stream. flatMap
See the CompletionStage documentation for rules covering ptional completion.

Type Parameters:

U - the type of the returned CompletionStage's 1

Parameters:

Tn - the function to use to compute another CompletionStage

Returns:

the new CompletionStage

1. Naming — Examples from jO0OQ

(AUTHOR.FIRST NAME, AUTHOR.LAST NAME, count())
(AUTHOR)
(BOOK) .on (AUTHOR. ID. eq(BOOK . AUTHOR_ID))

(BOOK . LANGUAGE . eq("DE"))
(BOOK . PUBLISHED.gt(date("2008-01-01")))

(AUTHOR.FIRST NAME, AUTHOR.LAST_NAME)
(count().gt(5))
(AUTHOR.LAST_NAME. (). @)
(2)
(1)
()

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

1. Naming — EX

Very obvious method names

(AUTHOR.FIRST NAME, AUTHOR.LAST NAME, count())
(AUTHOR)
(BOOK) . on (AUTHOR . ID.eq(BOOK.AUTHOR_ID))
(BOOK . LANGUAGE . eq("DE"))
(BOOK . PUBLISHED.gt(date("2008-01-01")))
(AUTHOR.FIRST NAME, AUTHOR.LAST_ NAME)
(count().gt(5))
(AUTHOR . LAST_NAME.zsc (). @)
(2)
(1)
()

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

=- b
HL

1. Naming — Wonderful AP

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming — Examples from jOOQ

Yet

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming — Examples from jO0OQ

Field<T> { ... }
DSL {
Field<String> substring(Field<String> str, ...) { ...

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

1. Naming — Examples from jO0OQ

Field<T> { ... }
DSL {
Field<String> substring(Field<String> str, ...) { ...

ctx.createTable("my table™)
.column("my column", VARCHAR(10))
.execute();

What now. Field or Column?

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

1. Naming — Interpretation

Bad naming in their API

Bad naming in my API
nsu‘ﬁT’ﬁ'nua

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming — Examples from jO0OQ

Condition { ... }

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

1. Naming — Examples from jO0OQ

Condition { ... }

Predicate { ... }

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

1. Naming — Examples from jO0OQ

Me, every day,
with this idea

Condition { ... }

Predicate { ... }

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

1. Naming — Why not?

Changing the APl is easy.

1. Naming — Why not?

But you have to:

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming — Why not?

But you have to:

- Change the docs (please use HTTP 301 Redirect and
don't create dead links!)

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming — Why not?

But you have to:

- Change the docs (please use HTTP 301 Redirect and
don't create dead links!)

- Don't forget «external doc» like Stack Overflow

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming — Why not?

But you have to:

- Change the docs (please use HTTP 301 Redirect and
don't create dead links!)

- Don't forget «external doc» like Stack Overflow
- Write good release notes / upgrade notes

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming — Why not?

But you have to:

- Change the docs (please use HTTP 301 Redirect and
don't create dead links!)

- Don't forget «external doc» like Stack Overflow
- Write good release notes / upgrade notes

- Keep the old name around for backwards
compatibility

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming — Why not?

But you have to:

- Change the docs (please use HTTP 301 Re
don't create dead links!)

- Don't forget «external doc» like Stack Overflo
- Write good release notes / upgrade notes

- Keep the old name around for backwards
compatibility

Is it worth it?

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming — Do this (JSR-310)

LocalDate {
LocalDate now() {}
LocalDate parse(CharSequence text) {}
LocalDate of(year, month, dayOfMonth) {}

LocalTime {
LocalTime now() {}
LocalTime parse(CharSequence text) {}
LocalDate of(hour, minute) {}

Instant {
Instant now() {}
Instant parse(CharSequence text) {}
Instant ofEpochSecond(epochSecond) {}

BAL.
aa

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

«now» is very obvious -310)

«parse» too

LocalDa.e {

LocalDate now()

LocalDate parse(CharSequence text) {}

LocalDate of(year, month, dayOfMonth) {}

LocalTil \

LocalTime {}

LocalTime "harSequence text) {}

LocalDate our, minute) {}
Insta

Create a value «of» its parts

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming — Do this (JSR-310)

LocalDate {
LocalDateTime atStartOfDay() {}
LocalDateTime atTime(hour, minute) {}

get(TemporalField field) {}
getDayOfMonth() {}
Month getMonth() {}

isAfter(ChronoLocalDate other) {}
isBefore(ChronoLocalDate other) {}

LocalDate minusDays(daysToSubtract) {}
LocalDate minusMonths(monthsToSubtract) {}

LocalDate withDayOfMonth(dayOfMonth) {}
LocalDate withMonth(month) {}

BAL.
ad

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

«at» creates a more precise value

«get» extracts a part

Lo late {
LocalDateTime acs>tartOfDay,; s -
LocalDateTime atTime(' . minute) {}

get(Te~,uralField field) {

getDayOfMonth() {) «iS» runs a check

Month getMonth() {}

isAfter(Chrr--__Caivate other) {}
isBefore(ChronoLocalDat - ~*---' °°

«minus» and «plus»

LocalDate minusDays(daysTo . .
LocalDate minusMonths(ro— ad ﬂth M et| C
LocalDate withDayOfMonth(AavnFManth) 1

LocalDate withMonth(

«with» replaces a part

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

1. Naming — Do this (JSR-310) | «startOfDay»

LocalDate {

LocalDateTime atStartOfDay() {} ((d ayOﬂ\/l @) ﬂth »

LocalDateTime atTime(hour,

get(TemporalFielu tield) {}

getDay0fMonth() {} «d ayOﬂ\/I onth»

Month getMonth() {}

isAfter(ChronoLocalDate other) {}
isBefore(ChronoLocalDate other)

LocalDate minusDays(daysToSubtrac’s {}
LocalDate mint/ Months(monthsToSu/_ract) {}

LocalDate wit nth(dayOfMonth) {}
LocalDate wid month) {}

«day» |= «dayOfMonth>

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

Better get it right
from the beginning!

2. Simplicity

Simplicity

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

2. Simplicity — Technical View

€L | didn't have
time to write a
snhort letter, so
| wrote a long
one instead.
J)

—Mark Twain /

https://en.wikipedia.org/wiki/Mark_Twain

2. Simplicity — Manager Version

“‘did

ﬁ

0 thi
who this is for, so
everyone

h

t have"

—Not Mark Twain /

CCec
instead.

‘me

k abou

t

J)

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

https://en.wikipedia.org/wiki/Mark_Twain

€L it is pointless
to do with
more what
can be done
with fewer.

—William of Ockham / ! :

2. Simplicity — Spiritual View

https://en.wikiquote.org/wiki/William_of_Ockham

2. Simplicity — Spiritual View

“ The more you
have, the more
yOu are occupied.
The less you have,
the more free you
are

—Mother Teresa / ! :

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

https://en.wikipedia.org/wiki/Mother_Teresa

2. Simplicity

Wny the spiritual
context?

2. Simplicity — How not to be simple

JavaCompiler
Tool, OptionChecker {

CompilationTask getTask(
Writer out,
JavaFileManager fileManager,
DiagnosticListener<? JavaFileObject> listener,

Iterable<String> options,
Iterable<String> classes,
Iterable<? JavaFileObject> compilationUnits

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

2. Simplicity

This causes existential
angst in me

2. Simplicity

CROWN

=- b
Hi

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

2. Simplicity = How not to by
6 Parameters

JavaCompiler
Tool, OptionChecker {

CompilationTask getTask(
Writer out,
JavaFileManager fileMan
DiagnosticListener<?

Iterable<String> options,

Iterable<String> classes,

Iterable<? JavaFileObject> compilationUnits

Stringly typed

. .agubject> listener,

Difficult to build types

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

2. Simplicity — Why is it important

None of these things
are innerently pad.

2. Simplicity — Why is it important

The implementation
Works very well.

2. Simplicity — Why is it important

But we are
NUMans

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

2. Simplicity — Why is it important

We can only keep so
many things in our
neadas

2. Simplicity — Why is it important

Complicated APIs are
frustrating,

2. Simplicity — See also convenience

Class<?> myClass = Reflect.compile(
"com.example.MyClass",

package com.example;
public class MyClass {

¥

) -type();

BAL.
aa

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

2. Simplicity — This isn't news

Another remarkable passage

The conclusion of Wheeler's 1952 paper

“The prime objectives to be borne in mind when
constructing sub-routine libraries are simplicity of use,
correctness of codes and accuracy of description. All
complexities should—if possible—be buried out of sight.

”

Filmed at
New York 2018

Brought to you by

p 19:28/47:04

—

Josh Bloch

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

https://www.infoq.com/presentations/history-api

2. Simplicity — How to be simple

This is really difficult

2. Simplicity — How to be simple

Some things are
«ODVIOUS»

.. like low coupling

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

2. Simplicity — How to be simple

But simplicity is a lot of work.

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

2. Simplicity — How to be simple

But simplicity is a lot of work.

Simplicity emerges from very careful design.

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

2. Simplicity — How to be simple

But simplicity is a lot of work.
Simplicity emerges from very careful design.

And tons of iterations.

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

2. Simplicity — How to be simple

Simplicity is like
obscenity

«| kKnow it when | see it»

-- United States Supreme Court Justice Potter Stewart

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

3. Do One Thing

DOTADIW

Do One Thing and Do It Well.

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

3. Do One Thing

Eric Raymond's 17 Unix Rules

Build modular programs

Write readable programs

Use composition

Separate mechanisms from policy

Write simple programs

Write small programs

Write transparent programs

Write robust programs

9. Make data complicated when required, not the program
10. Build on potential users' expected knowledge

11. Avoid unnecessary output

12. Write programs which fail in a way easy to diagnose

13. Value developer time over machine time

14. Write abstract programs that generate code instead of writing code by hand
15. Prototype software before polishing it

16. Write flexible and open programs

17. Make the program and protocols extensible.

G0 Sl oy Ui LRI =

License CC BY-SA 2.0

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

https://en.wikipedia.org/wiki/Eric_S._Raymond#/media/File:Eric_S_Raymond_portrait.jpg
https://en.wikipedia.org/wiki/Eric_S._Raymond#/media/File:Eric_S_Raymond_portrait.jpg

3. Do One Thing

1.

on

11.
12.

Eric Raymond's 17 Unix Rules

Build modular programs

Use composition

Write simple programs
Write small programs
Write transparent programs

Avoid unnecessary output
Write programs which fail in a way easy to diagnose

Do One Thing

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

https://en.wikipedia.org/wiki/Eric_S._Raymond#/media/File:Eric_S_Raymond_portrait.jpg
https://en.wikipedia.org/wiki/Eric_S._Raymond#/media/File:Eric_S_Raymond_portrait.jpg

3. Do One Thing

You cannot implement
simplicity without Do One
Thing.

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

https://www.amazon.co.uk/Imagination-Intelligence-Cognitive-Educational-Movements/dp/B07DL4WX2H

4. Types — Typesafety

Type safety is one of
those bikesheds

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Types — Typesafety

Great APIs can exist
without type safety

... but | doubt they exist without types

4. Types — Typesafety

S .filter(selector) version added: 1.0

selector
Type: Selector
A string containing a selector expression to maich the current set of elements against.

% filter(function) version added: 1.0

function
Type: Function(Integer index, Element element) == Boolean
A function used as a test for each element in the set. this is the current DOM element.

S .filter(elements) version added: 1.4

elements
Type: Element
One or more DOM elements to match the current set of elements against.

% .filter(selection) version added: 1.4

selection
Type: jQuery,
An existing JQuery cbject to match the current set of elements against.

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Types — Typesafety Iypes are in the docs

S .filter(selector) version added: 1.0

selector
Type: Selector

A string containing a selector expression to match the curren Il elements against.

% filter(function) version added: 1.0

function
Type: Function(Integer index, Element element) == Boolean
A function used as a test for each element in the set. this is the current DOM element.

S .filter(elements) version added: 1.4

elements
Type: Element
One or more DOM elements to match the current set of elements against.

% .filter(selection) version added: 1.4

selection
Type: jQuery,
An existing JQuery cbject to match the current set of elements against.

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Types — Advantages

You should design types
regardless if you type
check them.

4. Types — Advantages

L ikewise there are no
«schemaless» DBMS.

4. Types — Advantages

There are only
«Schema-on-read» and

«SChema-on-write»

D

SMS.

4. Types — Advantages

Types have a few decisive
advantages

4. Types — Advantages

1. They (may) have a name

2. They simplify your design (if done well)
3. They do one thing

4. Theyre types and thus type safe
5. They help discover the AP]

6. They describe errors

/. They can be applied consistently
8. They |lead to better convenience
9. They can be versioned

10. They can be documented

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Types — Recognise the outline of this talk?

10 Reasons Why we Love Some APIs and Why we Hate Some Others

1. Naming

2. Simplicity

3. Do One Thing
4. Types

5. Discoverability
6. Error Handling
/. Consistency

3. Convenience

9. Compatibility
10. Documentation

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

INn a way, this talk is about types

and Why we Hate Some Others

1. Naming

2. Simplicity

3. Do One Thing
4. Types

5. Discoverability
6. Error Handling
/. Consistency

3. Convenience

9. Compatibility
10. Documentation

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Types — How do we do types?

Some prefer nominal types

J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

https://docs.spring.io/spring-security/site/docs/4.2.12.BUILD-SNAPSHOT/apidocs/org/springframework/security/web/authentication/preauth/j2ee/J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource.html

/ T\II"\QC: —.'\I—If'\\l\l do we do types’?

efer nominal types

J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource
AuthenticationDetailsSource<HttpServletRequest,
PreAuthenticatedGrantedAuthoritiesWebAuthenticationDetails>

}

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

https://docs.spring.io/spring-security/site/docs/4.2.12.BUILD-SNAPSHOT/apidocs/org/springframework/security/web/authentication/preauth/j2ee/J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource.html

4. Types — How do we do types?

Some prefer structural types

Mono<CollectionModel<EntityModel<Employee>>> all() { ... }

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

https://spring.io/blog/2019/03/05/spring-hateoas-1-0-m1-released

‘)* | v * ypes?
- !

\ {

| \ L Ctural types
WE NEED TOGO DEEPER

Mono<CollectionModel<EntityModel<Employee>>> all() { ... }

Are you thinking what I'm thinking?

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

=- b
Hi

https://spring.io/blog/2019/03/05/spring-hateoas-1-0-m1-released

4. Types — How do we do types?

Some prefer structural types

Mono<Publisher<Optional<CollectionModel<Stream<EntityModel<Try<
Employee
>»>>>>> all() { ... }

Make no mistake: Not a merge conflicts

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

https://spring.io/blog/2019/03/05/spring-hateoas-1-0-m1-released

4. Types — How do we do types?

Some people add syntax sugar.

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Types — How do we do types?

Some people add syntax sugar.

Some people add syntax vinegar.

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Types — How do we do types?

S0 easy to make fun of
otnhers.

4. Types — How do we do types?

org.jooq.impl;

DSL {
<T1, T2, T3, T4, T5, Te6, T7, T8, T9, Ti0, T11l, T12,
T13, Ti14, T15, T16, T17, T18, T19, T20, T21, T22> Row22<T1l, T2,
T3, T4, T5, T6, T7, T8, T9, Tle, Ti11, T12, T13, T14, T15, Ti6,
T17, T18, T19, T20, T21, T22> row(T1l t1, T2 t2, T3 t3, T4 t4,

T5 t5, T6 t6, T7 t7, T8 t8, T9 t9, T10 tile, Til t1l, T12 t12,
T13 t13, T14 t14, T15 t15, T16 t16, T17 t17, T18 t18, T19 t19,
T20 t20, T21 t21, T22 t22) {

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

4. Types — How do we do types?

org.jooq.impl;

DSL {
<T1, T2, T3, T4, T5, Te, T7, T8, T9, T10, T11l, T12,
T13, T14, T15, Ti16, T17, T18, T19, T20, T21, T22> Row22<T1l, T2,
T3, T4, T5, T6, T7, T8, T9, Tle, Ti11, T12, T13, T14, T15, Ti6,
T17, T18, T19, T20, T21, T22> row(Tl t1, T2 t2, T3 t3, T4 t4,

T5 t5, T6 t6, T7 t7, T8 t8, T9 t9, T10 ti1e, Til t1l, T12 t12,
T13 t13, T14 t14, T15 t15, T16 t16, T17 t17, T18 t18, T19 t19,
T20 t20, T21 t21, T22 t22) {

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

AL.
aa

4. Types — How do we do tvpes?

g | Lukas Eder

So, this happened.

(default-compile) on project

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0 HE

4. Types — How do we do types?

org.jooq;

Row22<T1, T2, T3, T4, T5, T6, T7, T8, T9, Tie, T1ii,
T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22> Row {

Condition eqg(QuantifiedSelect<? Record22<T1, T2, T3, T4, T5,
Te, T7, T8, T9, Tie, Ti1, T12, T13, Ti4, T15, Ti6, T17, T18, T19,
T20, T21, T22>> select);

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Types — How do we do types?

Condition condition = row(1, "Lukas", "Eder").eq(any(
select(
SPEAKER.ID,
SPEAKER.FIRST_NAME,

SPEAKER.LAST_NAME

)
.from(SPEAKER)

));

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

4. Types — How do we do types?

Condition condition = row(1, "Lukas", "Eder"). any (
select(
SPEAKER.ID,
SPEAKER.FIRST_ NAME

)
.from(SPEAKER)

));

Compilation error

™

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0 HE

4. Types — How do we do types?

Whnat's my point?

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Types — How do we do types?

Types are semantic

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Types — How do we do types?

Types convey meaning

4. Types — How do we do types?

Types self-document

4. Types — How do we do types?

This works both with
nominal gnd structural

typing

4. Types — How do we do types?

This works both with
static and dynamic

typing

4. Types — Bad example

Counter example

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Types — Bad example

java.sql;

Connection A
Statement createStatement(

resultSetType,
resultSetConcurrency,

resultSetHoldability
SQLException;

These things are defined in... ResultSet ¢ege) * ~4—v

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

4. Types — Much better

java.sql;

ResultSetType { ... }
ResultSetConcurrency {
ResultSetHoldability {

Connection {
Statement createStatement(
ResultSetType resultSetType,
ResultSetConcurrency resultSetConcurrency,
ResultSetHoldability resultSetHoldability
) SQLException;

}

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

4. Types — Bad example: stringly typed

You know what else is
stringly typed?

4. Types — Bad example: stringly typed

@Query("SELECT * FROM user")

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

5. Discoverability

> .
Picture by Valentin Antonucci (Pexels License) https://www.pexels.com/photo/person-holding-compass-691637/

T Ty, i S T =

https://www.pexels.com/photo/person-holding-compass-691637/

5. Discoverability

Good question. Closed, obviously

stack overflow

How do you define a good or bad API1? [closed]

You don't have to read the documentation to use it correctly.
The sign of an awesome API.
37 ”

answered Jan 22 '09 at 14:12

ﬂ Cuibblesome
2K » 10 =52 » 94

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Discoverability

DO your users have to
RTFM (read the docs)?

5. Discoverability

4] Streams.java 3

1 import java.util.stream.Stream;
2

} public class Streams {

public static void main(String[] args) {
Stream.ofml, 2, 3@;

¥

—

[0

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Discoverability

Another obviously great
AP

5. Discoverability

4

C
2
o

—

D WD 0D =

=
VT N

4] SQLjava 23
1= import static org.jooq.impl.DSL.*;
2 import static org.jooqg.demo.sakila.Tables.¥;

import org.jooq.DSLContext;
import org.jooq.impl.DSL;

public class 5SQL {
public static void main(String[] args) {
try (DSLContext ctx = DSL.using("jdbc:h2:mem:test”, "sa", "")) [

[

et
—

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Discoverability

Some people like reading docs.

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Discoverability

Some people like reading docs.

Others like navigating the API.

... can your APl accommodate both?

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Discoverability

An APl should have a very
small set of entry points

5. Discoverability — JPA good part

emTx((EntityManager em) -> {
List<Film> films = em
.createNativeQuery("SELECT * FROM film", Film.
.getResultlList();

(Film film : films)
System.out.println(film.actors.size());

})s

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

0.

APl can be discovered from EntityManager

emTx((EntityManager e. -> {
List<Film> films = em
.createNativeQuery("SELECT * FROM film", Film.
.getResultlList();

(Film film : films)
System.out.println(film.actors.size());

})s

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Discoverability — JPA good part

emTx((EntityManager em) -> {
List<Film> films = em
.createNativeQuery("SELECT * FROM f , Film,
.getResultlList();

(Film film : films)
System.out.println(film.actors.size());

})s

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Discoverability = JPA good part

emTx((EntityManager em) -> {
List<Film> films = em
.createNativeQuery("SELECT * FROM film", Film.
.getResultlList();

(Film film : films)

System.out.println(film.actors.size());

})s

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Discoverability

emTx(Consumer<EntityManager> consumer) {
consumer.accept(Tool.entityManager(dataSource));

In a way, EntityManager = DataSource

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0 'ﬁ'

aa

5. Discoverability — Bad examples (|€ae

3

emTx(Consumer<EntityManager> consumer) {
LocalContainerEntityManagerFactoryBean bean = LocalContainerEntityManagerFactoryBean();
HibernateJpaVendorAdapter adapter = HibernateJpaVendorAdapter();
adapter.setDatabasePlatform("org.hibernate.dialect.Oraclel2cDialect");

bean.setDataSource(datasource);
bean.setPackagesToScan("com.examples.entities™);
bean.setJpaVendorAdapter(adapter);
bean.setPersistenceUnitName("test");
bean.setPersistenceProviderClass(HibernatePersistenceProvider.);
bean.afterPropertiesSet();

EntityManagerFactory emf = bean.getObject();
EntityManager em = emf.createEntityManager();

em.getTransaction().begin();

consumer.accept(em);
em.getTransaction().commit();

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

i B
Hi

5. Discoverability — Bad examples (IMO)

emTx(Consumer<EntityManager> consumer) {

LocalContainerEntityManagerFactoryBean bean = new LocalContainerEntityManagerFactoryBean();
HibernateJpaVendorAdapter adapter = HibernateJpaVendorAdapter(";
adapter.setDatabasePlatform("org.hibernate.dialect.Oraclel2cDialec

bean.setDataSource(datasource);
bean.setPackagesToScan("com.examples.entities™);
bean.setJpaVendorAdapter(adapter);
bean.setPersistenceUnitName("test");
bean.setPersistenceProviderClass(HibernatePersistenceProvider.
bean.afterPropertiesSet();

EntityManagerFactory emf = bean.getObject();
EntityManager em = emf.createEntityManager();

em.getTransaction().!

consumer.accept(em);
em.getTransaction().

‘AbstractEntityManagerFactoryBean - o ringframework.orm.jpa’ -
v EDC A tEnt nagerfFac

LocalEntityManagerFactoryBean

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BL
HE

5. Discoverability — Bad examples (IMO)

emTx(Consumer<EntityManager> consumer) {

LocalContainerEntityManagerFactoryBean bean = LocalContainerEntityManagerFactoryBean();
HibernateJpaVendorAdapter adapter = new HibernateJpaVendorAdapter();
adapter.setDatabasePlatform("org.hibernate.dialect.Oraclel2cDialect");

bean.
bean.
bean.
bean.
bean.
bean.

setDataSource(datasource);
setPackagesToScan("com.examples.entities");
setJpaVendorAdapter(adapter);

setPersistenceUnitName("test");
setPersistenceProviderClass(HibernatePersistenceProvider.class);
afterPropertiesSet();

EntityManagerFactory emf = bean.getObject();
EntityManager em = emf.createEntityManager();

em.getTransaction().begin();

consumer.accept(em);
em.getTransaction().commit();

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Discoverability — Bad examples (IMO)

emTx(Consumer<EntityManager> consumer) {

LocalContainerEntityManagerFactoryBean bean = LocalContainerEntityManagerFactoryBean();
HibernateJpaVendorAdapter adapter = HibernateJpaVendorAdapter();
adapter.setDatabasePlatform("org.hibernate.dialect.Oraclel2cDialect");

bean.
bean.
bean.
bean.
bean.
bean.

setDataSource(datasource);
setPackagesToScan("com.examples.entities");
setJpaVendorAdapter(adapter);

setPersistenceUnitName("test");
setPersistenceProviderClass(HibernatePersistenceProvider.);
afterPropertiesSet();

EntityManagerFactory emf = Wan.getObject();
EntityManager em = emf.crea tityManager();

em.getTransaction().begin();

consumer.accept(em);
em.getTransaction().commit();

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Discoverability — Bad examples (IMO)

emTx(Consumer<EntityManager> consumer) {

LocalContainerEntityManagerFactoryBean bean = LocalContainerEntityManagerFactoryBean();
HibernateJpaVendorAdapter adapter = HibernateJpaVendorAdapter();
adapter.setDatabasePlatform("org.hibernate.dialect.Oraclel2cDialect");

bean.
bean.
bean.
bean.
bean.
bean.

setDataSource(datasource);
setPackagesToScan("com.examples.entities");
setJpaVendorAdapter(adapter);

setPersistenceUnitName("test");
setPersistenceProviderClass(HibernatePersistenceProvider.);
afterPropertiesSet();

EntityManagerFactory emf = bean.getObject();
EntityManager em = emf.createEntityManager();

em.getTransaction().begin();

consumer.accept(em);
em.getTransaction().commit();

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

. Discoverability

|'have noids

A ~

7
o .
.'...-.)

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Discoverability

How long do you think it took
me to discover this?

5. Discoverability

Do | have confidence that I'm
doing it right?

5. Discoverability

| sure hope Olli will not be
mad at me for quoting this ©

5. Discoverability

L
Q
=]

Lukas Eder @lukaseder - Feb 26 "
: 8 So. The correct way to fix someone else's Spring Boot setup is to just try random

annotations until it works, right?

Q 17 1 11 T ao I

/4 Oliver Drotbohm W& .. 4 ™
i R X Follow | o~

L d
L H L o -

Replying to @lukaseder

Alternatively, | have applied the "knowing
what you're doing" principle successfully
before. ‘&

ni- QOOVOO2SO

QO 1 1l) 20 4

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Discoverability

Lukas Eder @lukaseder - Feb 26 “
- | So. The correct way to fix someone else's Spring Boot setup is to just try random

annotations until it works, right?

Q 17 1 11 O 90 il
. . Lo @ .
£y Oliver Drotbohm W& (\
® eodrotbonm (_Follow)~
Replying to @lukaseder

Alternatively, | have applied the "knowing
what you're doing" principle successfully

before. &

Copyright (c) 2009-2019 by Data Geeker

5. Discoverability

| admit: | don't know what I'm
doing.

...and | don't feel bad about it

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Discoverability

DOCS are great.

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Discoverability

DOCS are great.
Discoverability is better.

6. Error Handling

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

6. Error Handling

(Exception e) {

/. Consistency

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

/. Consistency

Just kidding...

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

6. Error Handling

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

=- b
Hi

6 Err ORA-06550: line 3, column 1:
) PLS-00103: Encountered the symbol "END" when expecting one of the following:

(begin case declare exit for goto if loop mod null pragma

raise return select update while with <an identifier>

<a double-quoted delimited-identifier> <a bind variable> <<

continue close current delete fetch lock insert open rollback

savepoint set sql execute commit forall merge pipe purge

json_exists json _value json _query json _object json_array
06550. 00000 - "line %s, column %s:\n%s"
*Cause: Usually a PL/SQL compilation error.
*Action:

&«

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

6. Error Handling

How about...

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

6. Error Handling

ORA-06550: line 3, column 1:
PLS-00103: block cannot be empty. At least one statement must be provided.

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

6. Error Handling

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

=- b
Hi

6. Error Handling

Eric Raymond's 17 Unix Rules

Build modular programs

Write readable programs

Use composition

Separate mechanisms from policy

Write simple programs

Write small programs

Write transparent programs

Write robust programs

9. Make data complicated when required, not the program
10. Build on potential users' expected knowledge

11. Avoid unnecessary output

12. Write programs which fail in a way easy to diagnose

13. Value developer time over machine time

14. Write abstract programs that generate code instead of writing code by hand
15. Prototype software before polishing it

16. Write flexible and open programs

17. Make the program and protocols extensible.

G0 Sl oy Ui LRI =

License CC BY-SA 2.0

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

https://en.wikipedia.org/wiki/Eric_S._Raymond#/media/File:Eric_S_Raymond_portrait.jpg
https://en.wikipedia.org/wiki/Eric_S._Raymond#/media/File:Eric_S_Raymond_portrait.jpg

6. Error Handling

Eric Raymond's 17 Unix Rules

7. Write transparent programs
8. Write robust programs

12. Write programs which fail in a way easy to diagnose
13. Value developer time over machine time

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

https://en.wikipedia.org/wiki/Eric_S._Raymond#/media/File:Eric_S_Raymond_portrait.jpg
https://en.wikipedia.org/wiki/Eric_S._Raymond#/media/File:Eric_S_Raymond_portrait.jpg

6. Error Handling

A '\,"“‘w——n %
1R yﬁ > Za 7 -
- ,fj o

P|cture byJeremy Segrot (CC BY 2 O) httos //vvvvvv ﬂ|ckr Com/ohotosﬂ 26337928@NOS/42791 980705

»!‘ /~, T ff oA, "‘—‘ P 2

-

https://www.flickr.com/photos/126337928@N05/42791980705

6. Error Handling

routine(...);

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

6. Error Handling

routine(...);

err = routine(...

(err > 0) {

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

6. Error Handling

routine(...)
IllegalAccessException,
IllegalArgumentException,
InvocationTargetException

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

6. Error Handling

routine(...)
IllegalAccessException,
IllegalArgumentException,
InvocationTargetException

{

routine(...);

(InvocationTargetException ignore) {}
(IllegalArgumentException yolo) {}
(IllegalAccessException heh) {

System.exit(-1);

BAL.
aa

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

6. Error Handling

Either<Void, Error> routine(...);

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

6. Error Handling

Either<Void, Error> routine(...);

Error error = routine(...)
.filter(r ->)
.get()
.flatMap(r -> Either.right(r))
.fold(1 -> , P =>r);

(error I=) {

BAL.
aa

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

6. Error Handling

Mostly irrelevant

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

6. Error Handling

Be consistent anc

return

meaningful errors. The caller
should know what to do.

6. Error Handling

Types (Exceptions, Try monad, Either monad, etc.)
are petter than Strings / ints (error codes)

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

/. Consistency

1

Getting an audience is hard.
Sustaining an audience is
hard. It demands a
consistency of thought, of
purpose, and of action over a
long period of time.

J))

(Image: Bundesarchiv, Bild 183-1988-0719-38 / Uhlemann, Thomas / CC-BY-SA 3.0)

—Bruce Springsteen

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

/. Consistency

‘ ‘ Usability is defined by 5 quality components:

Efficiency: Once users have learned the design, how
quickly can they perform tasks?

Memorability: When users return to the design after a
period of not using it, how easily can they reestablish
proficiency?

J)

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

https://www.nngroup.com/articles/usability-101-introduction-to-usability/

/. Consistency

MyRepository {
Customer[] getCustomers();
List<Customer> getCustomersList();
Stream<Customer> getCustomersByName(String name);

Optional<Customer> getCustomerById(Integer id);

Customer getCustomerBySocialSecurityNumber(String no);

Customer getAnyCustomerByName(String name)
ObjectNotFoundException;

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

/. Consistency

MyRepository {
Customer[] getCustomers();
List<Customer> getCustomersList();

Stream<Customer> getCustomersByName(String name);
Optional<Customer> getCustomerById(Integer id);
Customer getCustomerBySocialSecurityNumber(String no);
Customer getAnyCustomerByName(String name)
ObjectNotFoundException;

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

/. Consistency

MyRepository {
"SELECT * FROM customers™
Customer[] getCustomers();
List<Customer> getCustomersList();

Stream<Customer> getCustomersByName(String name);
Optional<Customer> getCustomerByld(Integer id);

Customer getCustomerBySocialSecurityNumber(String no);
Customer getAnyCustomerByName(String name)
ObjectNotFoundException;

BAL.
aa

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

/. Consistency

({1234, 81371, 617837})
(because=)
MyRepository {
("SELECT * FROM customers")
Customer [] getCustomers();
List< Customer> getCustomersList();

Stream< Customer> getCustomersByName (String name);
Optional« Customer> getCustomerById(Integer id);

Customer getCustomerBySocialSecurityNumber(String no);
Customer getAnyCustomerByName(String name)
ObjectNotFoundException;

BAL.
aa

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

/. Consistency

({1234, 81371, 617837})
(because= YCEEED

MyRepository {
("SELECT * FROM customers"™)
Customer []1 getCustomers();
List< Customer> getCustomersList();

Stream< Customer> getCustomersByName (String name);
Optional< Customer> getCustomerById(Integer id);

Customer getCustomerBySocialSecurityNumber (String no);
Customer getAnyCustomerByName (String name)
ObjectNotFoundException;

BL.
g3 |

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

/. Consistency

RECYCLING THESAMEHUMORIIN A
DIFFERENT/WAY

vevo
memegenerator.net

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Customer[] ghg
List<Customel

Stream<Custc A PRl f_g name) ;
Optional<Cus E | e SEESsRSaRE - id)
Customer getfH T @A IESSESSS RS - (String no);
Customer get B e SEESSSSaR)

Obj@EZad - st s

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

AL.
aa

/. Consistency

List vs Stream vs Array

MyRepositor/

Customer[] getCustomers(),

List<Customer> getCustomersList();

Stream<Customer> getCustomersByName(String name);
Optional<Customer> getCustomerById(Integer id);
Customer getCustomerBySocialSecurityNumber(String no);
Customer getAnyCustomerByName(String name)
ObjectNotFoundException;

Optional vs Null vs Exception

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

/. Consistency

All choices are fine (don't bikeshed)

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

/. Consistency

All choices are fine (don't bikeshed)

.. but pick only one

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

/. Consistency

array_search ($needle, $haystack)

strpos ($haystack, $needle)

str_replace ($search, $replace, $subject)

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

/. Consistenc\E Ve ire not absolutely fluent,
you have to look this up in the
docs every time!

array_search ($needle, $haystack)

strpos ($haystack, $needle)

str_replace ($search, $replace, $subje

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

=- b
HL

/. Consistency

array_filter ($array, $callback)

array_map ($callback, $array)

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0 HE

/. Consistency

Why consistency?

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

/. Consistency

've already mentioned JSR-
310 as a good example for
consistent naming and typing

/. Consistency

Consistency is at the core
of usability

/. Consistency All of these are affected!

Usability is defined by 5 g y components:

Learnability: How easy is it for users to accomplish basic
tasks the first time they encounter the design?

Efficiency: Once users have learned the design, how
quickly can they perform tasks?

Memorability: When users return to the design after a
period of not using it, how easily can they reestablish
proficiency?

Errors: How many errors do users make, how severe are
these errors, and how easily can they recover from the
errors?

Satisfaction: How pleasant is it to use the design? , ,

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

https://www.nngroup.com/articles/usability-101-introduction-to-usability/

8. Convenlence

. Brian Goetz & m 9
@BrianGoetz

Replying to @shs96c @martinfowler @dmadic

Key APl design questions to ask yourself:
"what abstractions am | asking the users to
understand before they can use this API? Do
those abstractions serve the *user*, or just the
API?" Too often it is the latter.

3:20 PM - 3 Mar 2019

31 Retweets 84 Likes T @ 'a @ o¢ i, eg

Q 3 1 3 ¥ &)

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Convenlence

 Brian Goetz @ m
A
@BrianGoetz
Replying to @alvrod @shs96c and 2 others

For example, look at the JMS API, and look at
how many things you have to instantiate (e.g.,
Topic, Session) to just send a message. Do
you feel these are serving your code, or the
framework?

5:10 PM - 3 Mar 2019 from Dublin City, Ireland

2 Retweets 15 Likes a ‘ 0 1 .e gf‘ 1‘ ’

Q 13 1 2 O 15 9

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Convenlence

InputStream is = ...
OutputStream os = ...

[] buffer = [1024];

length;
((length = is.read(buffer)) > -1) {
baos.write(buffer, 0, length);

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

8. Convenience

9 (1) major releases later...

8. Convenlence

InputStream {

transferTo(OutputStream out) IOException {

transferred = 0;

[] buffer = [DEFAULT BUFFER_SIZE];

read;
((read = this.read(buffer, ©, DEFAULT BUFFER _SIZE)) »>= 0) {

out.write(buffer, 0, read);
transferred += read;

transferred;

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BL.

aa

8. Convenlence

trans
transfer,

[] buffer
read;
((read
out.write
transferr

transt

AL.
aa

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Convenience

Convenience is the most
underrated API feature

.. and language feature!

8. Convenience — Dogfooding

How O
achieve
convenience’

... by dogfooding

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Convenience — Dogfooding

Use your own API all the
time.

... by eating your own «dog food»

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Convenience — Dogfooding

Me, when | use my own AP|

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0 HE

8. Convenience — Dogfooding

Me, when | use my any API

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0 HE

8. Convenience — Dogfooding

But at least | can fix my own

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Convenience — Dogfooding

Advantages:

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Convenience — Dogfooding

Advantages:

— Better objective quality

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Lukas Eder
@lukaseder

Querying the dictionary views from the jOOQ
code generator is a lot of fun. Definitely helps
dogfooding.

You don't want to see the source of the two
CTEs at the top.

.with(argzwithsiblings)
.with(recordTypes)
-select(
. OMNER,
inline("").as("type_pkg").
C. TYPE_NNNE,
€. ELEM_TYPE_OWNER,
inline("") .a5("elen_type_okg™),
C.ELEM_TYPE_NAVE,
€.LENGTH.av](BigDecinal . ZERD) . a5 (c. LENGTH)
€, PRECISION.nvi(8iglecinal . ZERD) . as(c . PRECISION),
€. SCALE. nv1(BigDecimal . ZERD) . as (. SCALE))
from(c)
.where(c.OWNER. in(getInputSchesata()))
.and(c.COLL_TYPE.in(“VARYING ARRAY", “TABLE"))
Lunien(
isase()

/ Tsplesentation that werks with Oracle i8¢ and mere

ELEM_TYPE_PACKAGE,
JELEM_TYPE_NAVE,
LENGTH, avi(BigDecinal, 2ER0),
P PRECISION, vl (8igDecimal, 2ER0),
SCALE.nv1(BigDecinal . ZERD))
from(pc)
here(pc, OWNER. in(getInputSchenata()))

plementat t works Oracle 12c and

Can this be done more nlc
Field(“regexp_replace({0}, "*(.*HAL(*2)\W.(.")$", "\\1')", SQUDataType.VARCHAR, QUALIFIER)
fleld("regexp_replace({0}, "*(.*2)\\.(.*2)\\.(.")$', '\\2')", SQLDataType.VARCHAR, QUALIFIER)
.as("“type_pkg®),
Field{"regexp_raplace({8}, "~ "N 0T20N(7)8Y, 137", SQLDAtAType. VARCHAR, QUALTFIER)
.os (<. TYPE_NANE),
when(a.DATA_TYPE. in(dataTypes).and(a. TYPE_OMNER. istiull()), =.CWNER)
.otheruise(n. TYPE_OWER) .5 (c.ELEN_TYPE_OWNER),
when(n.DATA_TYPE. in(dataTypes).and(a. TYPE_OWNER. LsMull()), a.PACKAGE_NAME)
Jotherwise(nv(2(s, TYPE_SUBNAME, a.TYPE_NANE, inline(null, a.TYPE_NAME))) .as("elem _type pkg"),
when(a .0ATA_TYPE. in(dataTypes).and(a. TYPL_OWNER.isMull()), substring(QUALIFIER, field("instr("', 1, 2) + 1%, int.class, QUALIFIER)).concat(UNDERSCORE).concat(n. ARGUMENT NAME))
.otherwise(coalesce(a. TYPE_SUBHANE, o.TYPE_WAME, 2.DATA_TYPE))
2.DATA_LEWGTH .nv1(BigDecimal.ZERO)
DATA_PRECTSTON .nv1(BigDecinal.ZFRO) ~83(<.PRECISION),
2. DATA_SCALE .nv1(Bigbecinal. ZERD) .a3(c.SCALE))
.from(recoratybes.as(2))

orderBy(1, 2)

2:25 PM - 13 Sep 2018

8. Convenience — Dogfooding

Advantages:

— Better objective quality
— Better subjective quality

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Convenience — Dogfooding

Advantages:
g Lukas Eder

Hmm, how could #jO0Q have missed this so
far? ResultQuery should extend Iterable!

— B github.com/jJO0Q/jO0Q/issu...

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Convenience — Dogfooding

record : ctx. (ACTOR.FIRST _NAME, ACTOR.LAST NAME)
(ACTOR)
(ACTOR.ID)

() {

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

8. Convenience — Dog gairin
This gets on my nerves!

record : ctx. (// OR.FIRST_NAME, ACTOR.LAST NAME)
(A(/ OR)
(ACTOR.ID)

() {

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

=- b
Hi

8. Convenience — Dogfooding

record : ctx. (ACTOR.FIRST _NAME, ACTOR.LAST NAME)
(ACTOR)
(ACTOR.ID)) {

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

. o
[V N P N I\AA--CAAAI--AA.

8. Conven

record : ctx.select(ACTOR.FIRST _NAME, ACTOR.LAST_ NAME)
. from(ACTOR)
.orderBy(ACTOR.ID)) {

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Convenience — Dogfooding

record ACTOR.FIRST _NAME, ACTOR.LAST NAME
ACTOR
ACTOR.ID)

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

8. Convenience

Convenience Is not a
game changer

8. Convenience

Convenience does not
solve «the big problems»

8. Convenience

BUt convenience makes
people happy

8. Convenience

Happy people wil
recommend your AP

8. Convenience — In the Java language

(Statement s = connection.createStatement()) {

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

8. Convenience — In the Java language

(Statement s = connection.createStatement()) {

Statement s = 5

{

= connection.createStatement();

{
(s !=)

s.close();

(SQLException ignore) {}

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

9. Compatibility

Or in short:

You can only lose

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

9. Compatibility — Don't be like Python

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

=- b
Hi

9. Compatibility — Don't be like Python

> print ("hi") > print ("hi")

> print "hi" > print "hi"

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

9. Compatibility — Don't be like Python

Little is gained from such
incompatible changes

9. Compatibility — The other extreme

java.lang;

Boolean {
getBoolean(String name) {

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

9. Compatibility — The other extreme

java.lang;

Boolean {
getBoolean(String name) {

result = false;

{

result = parseBoolean(System.getProperty(name) |

(.0 o

result;

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0 HE

9. Compatibility — The other extreme

These things are bad
pbecause of their lack of
consistency

9. Compatibility — The other extreme

Why are they not
deprecated and
removed?

9. Compatibility — The other extreme

We need
more
Marie

Kondo in
the |DK

| JAVA.UTILCALENDAR

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

9. Compatibility — Be pragmatic

5e pragmatic

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

9. Compatibility — A Trick

THE EXPERT’S VOICE* IN JAVA" TECHNOLOGY t‘f-«“ o

u\\" N 1 .

Practical

Keep o]fe API Design
A D ‘ t 1L Confessions of a Java™ Framework Architect
eSS

around!

Jaroslav Tulach

Founder of e NelBeans™ Fattrm

Apress-

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

http://wiki.apidesign.org/wiki/Never_update_tests

9. Compatibility — A Collection of Tricks

(ECLIPSE

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

https://wiki.eclipse.org/Evolving_Java-based_APIs

9. Compatibility — A Collection of Tricks

(ECLIPSE

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

https://wiki.eclipse.org/Evolving_Java-based_APIs
https://wiki.eclipse.org/Evolving_Java-based_APIs_2

9. Compatibility — A Collection of Tricks

(ECLIPSE

Fvolving URLS, too

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

https://wiki.eclipse.org/Evolving_Java-based_APIs
https://wiki.eclipse.org/Evolving_Java-based_APIs_2
https://wiki.eclipse.org/Evolving_Java-based_APIs_3

10. Documentation

How developers feel
about documentation

10. Documentation

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

10. Documentation

Just like testing

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

10. Documentati{\We do that at the end, maybe

=

Fequirerments

specification 1

Implernentation

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

10. Documentation

Customer {

String getFirstName() { ... }

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

10. Documentatic

Architect:

| «Document Your
Codell»

String getFirstName() { ... }

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

=- b
HL

10. Documentation

Customer {

String getFirstName() { ... }

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

BAL.
aa

10. Documentation

Documentation is the
dual of discoverability

10. Documentation

Discoverability:

| don't know what | need.
APl, what do you have to offer?

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

10. Documentation

Jocumentation:

| need this thing.
APl, do you happen to support it?

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Overview

10 Reasons Why we Love Some APIs and Why we Hate Some Others

1. Naming

2. Simplicity

3. Do One Thing
4. Types

5. Discoverability
6. Error Handling
/. Consistency

3. Convenience

9. Compatibility
10. Documentation

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Overview

10 Reasons Why we Love Some APIs and Why we Hate Some Others

1. Naming
2. Simplicity
3. Do One Thing

Remember: NSDTDECCCD

/. Consistency
8. Convenience
9. Compatibility

10. Documentation D is silent

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Overview

Design for humans

Programmers are humans too

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Overview

HOW TO INSULT A DEVELOPER

geek & poke

Want
Droof?

B
..\\\;,,\“ }

Geek and Poke. Licensed CC-BY-3.0.

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

http://geek-and-poke.com/geekandpoke/2013/6/14/insulting-made-easy

Overview

Usability is defined by 5 quality components:

Learnability: How easy is it for users to accomplish basic
tasks the first time they encounter the design?

Efficiency: Once users have learned the design, how
quickly can they perform tasks?

Memorability: When users return to the design after a
period of not using it, how easily can they reestablish
proficiency?

Errors: How many errors do users make, how severe are
these errors, and how easily can they recover from the
errors?

Satisfaction: How pleasant is it to use the design? , ,

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

https://www.nngroup.com/articles/usability-101-introduction-to-usability/

Thank you

Check out our trainings:

Coordinates
- Blog: (excellent Java SQL content)
o Twitter: / (more lame jokes)

E-Mail:
Bank account: CH57 8148 7000 OSQL AWSM 7/

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

http://www.jooq.org/training
http://blog.jooq.org/
https://twitter.com/JavaOOQ
https://twitter.com/lukaseder
mailto:lukas.eder@datageekery.com

