
Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

NoSQL? No, SQL!

Why Your Next Application
Should be Written With XSLT

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

NoSQL? No, SQL!

10 Reasons Why we Love
Some APIs and Why we
Hate Some Others

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Jokes

You know...

I rehearsed these jokes
with my wife

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Jokes

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Jokes

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Good or bad?

var dir = new File(".");
for (var file : dir.list()) {
System.out.println(file);

}

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Good or bad?

var dir = new File("C:/tmp");
for (var file : dir.list()) {
System.out.println(file);

}

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Good or bad?

var dir = new File("C:/tmp");
for (var file : dir.list()) {
System.out.println(file);

}

NullPointerException = File does not exist

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Good or bad?

Terrible idea:

Returning a null array / collection

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Good or bad?

ok ok ok

This was old JDK API.
We’re doing better now.

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Good or bad?

Stream.of(1, 2, 3)
.skip(1)
.forEach(System.out::println);

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Good or bad?

Stream.of(1, 2, 3)
.skipUntil(t -> t == 2)
.forEach(System.out::println);

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Good or bad?

Stream.of(1, 2, 3)
// .skipUntil(t -> t == 2) Nope!

.forEach(System.out::println);

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Good or bad?

Stream.of(1, 2, 3)
// .skipUntil(t -> t == 2) Nope!

.skipWhile(t -> t < 2)

.forEach(System.out::println);

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Good or bad?

Stream.of(1, 2, 3)
// .skipUntil(t -> t == 2) Nope!
// .skipWhile(t -> t < 2) Nope!

.forEach(System.out::println);

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Good or bad?

Stream.of(1, 2, 3)
// .skipUntil(t -> t == 2) Nope!
// .skipWhile(t -> t < 2) Nope!

.dropWhile(t -> t < 2)

.forEach(System.out::println);

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Good or bad?

Terrible idea:

Inconsistent naming

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Good or bad?

// All input elements
$("input");

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Good or bad?

// All input elements
$("input");

// Where they’re contained
$("input").parent();

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Good or bad?

// All input elements
$("input");

// Where they’re contained
$("input").parent();

// Only if they have names
$("input").filter("[name]");

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Good or bad?

// All input elements
$("input");

// Where they’re contained
$("input").parent();

// Only if they have names
$("input").filter("[name]");

// Alternative
$("input[name]");

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Good or bad?

// All input elements
$("input");

// Where they’re contained
$("input").parent();

// Only if they have names
$("input").filter("[name]");

// Alternative
$("input[name]");

// Mapping / extracting information from contents
$("input[name]").map((i, e) => e.name);

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Good or bad?

This feels great!

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Good or bad?

But why?

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Good or bad?

Not just about APIs.
About languages too.

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Good or bad?

Not just APIs.
Languages too.

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Good or bad?

But today is about
APIs.

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

User Experience

APIs are a crucial
part of the UX

(User Experience)

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

User Experience

Programs must be
written for people to
read, and only
incidentally for
machines to execute

—Abelson & Sussman, "Structure and Interpretation of Computer Programs"

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Programs must be
written for people to
read, and only
incidentally for
machines to execute

User Experience

APIs

—me, just now

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

User Experience

User experience (UX)
refers to a person's
emotions and attitudes
about using a particular
product, system or service

https://en.wikipedia.org/wiki/User_experience

https://en.wikipedia.org/wiki/User_experience

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

User Experience

User experience (UX)
refers to a person's
emotions and attitudes
about using a particular
product, system or service

https://en.wikipedia.org/wiki/User_experience

developer’s

https://en.wikipedia.org/wiki/User_experience

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

User Experience

We developers do
have emotions

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

User Experience

(or mostly attitudes)

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

User Experience

Don’t let them tell you
otherwise

https://en.wikipedia.org/wiki/User_experience

https://en.wikipedia.org/wiki/User_experience

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

User Experience

In fact,

An anecdote about developer attitudes

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

User Experience

A Kotlin Programmer

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

User Experience

A Kotlin Programmer, an IntelliJ user,

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

User Experience

A Kotlin Programmer, an IntelliJ user,
and a Mac User

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

User Experience

A Kotlin Programmer, an IntelliJ user,
and a Mac User went into a bar.

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

User Experience

A Kotlin Programmer, an IntelliJ user,
and a Mac User went into a bar.

How do I know?

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

User Experience

A Kotlin Programmer, an IntelliJ user,
and a Mac User went into a bar.

How do I know?

After 1 Minute

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

User Experience

A Kotlin Programmer, an IntelliJ user,
and a Mac User went into a bar.

How do I know?

After 1 Minute, the whole f**king bar
knew.

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

User Experience

"User experience"
encompasses all aspects of
the end-user's interaction
with the company, its
services, and its products.

https://www.nngroup.com/articles/definition-user-experience/

https://www.nngroup.com/articles/definition-user-experience/

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

User Experience

"User experience"
encompasses all aspects of
the end-user's interaction
with the company, its
services, and its products.

https://www.nngroup.com/articles/definition-user-experience/

programmer’s

https://www.nngroup.com/articles/definition-user-experience/

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Usability

Usability is defined by 5 quality components:

https://www.nngroup.com/articles/usability-101-introduction-to-usability/

https://www.nngroup.com/articles/usability-101-introduction-to-usability/

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Usability

Usability is defined by 5 quality components:

Learnability: How easy is it for users to accomplish basic
tasks the first time they encounter the design?

https://www.nngroup.com/articles/usability-101-introduction-to-usability/

https://www.nngroup.com/articles/usability-101-introduction-to-usability/

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Usability

Usability is defined by 5 quality components:

Learnability: How easy is it for users to accomplish basic
tasks the first time they encounter the design?

Efficiency: Once users have learned the design, how
quickly can they perform tasks?

https://www.nngroup.com/articles/usability-101-introduction-to-usability/

https://www.nngroup.com/articles/usability-101-introduction-to-usability/

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Usability

Usability is defined by 5 quality components:

Learnability: How easy is it for users to accomplish basic
tasks the first time they encounter the design?

Efficiency: Once users have learned the design, how
quickly can they perform tasks?

Memorability: When users return to the design after a
period of not using it, how easily can they reestablish
proficiency?

https://www.nngroup.com/articles/usability-101-introduction-to-usability/

https://www.nngroup.com/articles/usability-101-introduction-to-usability/

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Usability

Usability is defined by 5 quality components:

Learnability: How easy is it for users to accomplish basic
tasks the first time they encounter the design?

Efficiency: Once users have learned the design, how
quickly can they perform tasks?

Memorability: When users return to the design after a
period of not using it, how easily can they reestablish
proficiency?

Errors: How many errors do users make, how severe are
these errors, and how easily can they recover from the
errors?

https://www.nngroup.com/articles/usability-101-introduction-to-usability/

https://www.nngroup.com/articles/usability-101-introduction-to-usability/

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Usability

Usability is defined by 5 quality components:

Learnability: How easy is it for users to accomplish basic
tasks the first time they encounter the design?

Efficiency: Once users have learned the design, how
quickly can they perform tasks?

Memorability: When users return to the design after a
period of not using it, how easily can they reestablish
proficiency?

Errors: How many errors do users make, how severe are
these errors, and how easily can they recover from the
errors?

Satisfaction: How pleasant is it to use the design?
https://www.nngroup.com/articles/usability-101-introduction-to-usability/

https://www.nngroup.com/articles/usability-101-introduction-to-usability/

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Prejudices

An important
observation first

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Prejudices

Usability is defined by 5 quality components:

Learnability: How easy is it for users to accomplish basic
tasks the first time they encounter the design?

Efficiency: Once users have learned the design, how
quickly can they perform tasks?

Memorability: When users return to the design after a
period of not using it, how easily can they reestablish
proficiency?

Errors: How many errors do users make, how severe are
these errors, and how easily can they recover from the
errors?

Satisfaction: How pleasant is it to use the design?
https://www.nngroup.com/articles/usability-101-introduction-to-usability/These things aren’t about technical details

https://www.nngroup.com/articles/usability-101-introduction-to-usability/

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Prejudices – null

https://en.wikipedia.org/wiki/Tony_Hoare

https://en.wikipedia.org/wiki/Tony_Hoare

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Prejudices – null

https://www.youtube.com/watch?v=Ej0sss6cq14

https://www.youtube.com/watch?v=Ej0sss6cq14

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Prejudices – null

Null is not bad per se

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Prejudices – null

Null is bad when it is
unexpected

... You still want some special «absent» value

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Prejudices

Let’s not bikeshed

Picture by Jeremy Segrot (CC BY 2.0) https://www.flickr.com/photos/126337928@N05/42791980705

https://www.flickr.com/photos/126337928@N05/42791980705

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Outline

10 Reasons Why we Love Some APIs and Why we Hate Some Others

1. Naming

2. Simplicity

3. Do One Thing

4. Types

5. Discoverability

6. Error Handling

7. Consistency

8. Convenience

9. Compatibility

10. Documentation

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Outline

10 Reasons Why we Love Some APIs and Why we Hate Some Others

1. Naming

2. Simplicity

3. Do One Thing

4. Types

5. Discoverability

6. Error Handling

7. Consistency

8. Convenience

9. Compatibility

10. Documentation

Colloquially NSDTDECCCD

D is silent

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming

This is actually really
simple.

... and simplicity is hard as we’ll soon see!

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming – Ubiquitous Language

https://en.wikipedia.org/wiki/Domain-driven_design

Ubiquitous Language

A language structured
around the domain model
and used by all team
members to connect all the
activities of the team with
the software.

https://en.wikipedia.org/wiki/Domain-driven_design

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming – Why is it important?

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming – Don’t do this

public interface Stream<T> {

// Looks like Informix :-)
// SELECT SKIP 10 LIMIT 10 * FROM my_table
Stream<T> skip(long n);
Stream<T> limit(long maxSize);

}

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming – Don’t do this

public interface Stream<T> {

// Looks like Informix :-)
// SELECT SKIP 10 LIMIT 10 * FROM my_table
Stream<T> skip(long n);
Stream<T> limit(long maxSize);

// These have been added in Java 9
// They follow Scala naming conventions
default Stream<T> dropWhile(Predicate<? super T> predicate) {}
default Stream<T> takeWhile(Predicate<? super T> predicate) {}
..

}

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming

You know how this
happens?

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming

Every single time...

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming – Consistency

When
someone

else touches
my API...

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming – Can be fixed

It seems that the
«language» has

changed.

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming – Can be fixed

This can be fixed.

... but keep backwards compatibility in mind

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming – Tradeoffs

In an API, sometimes,
backwards compatibility is

more important than
good, consistent names

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming – Tradeoffs

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming – Consistency

Better get it right the first
time.

And talk to each other!

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming – Consistency

// Some monadic JDK types

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming – Consistency

// Some monadic JDK types
public interface Stream<T> {
<R> Stream<R> map(Function<? super T, ? extends R> mapper);
<R> Stream<R> flatMap(Function<? super T, ? extends Stream<? extends R>> mapper);

}

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming – Consistency

// Some monadic JDK types
public interface Stream<T> {
<R> Stream<R> map(Function<? super T, ? extends R> mapper);
<R> Stream<R> flatMap(Function<? super T, ? extends Stream<? extends R>> mapper);

}

public final class Optional<T> {
public <U> Optional<U> map(Function<? super T, ? extends U> mapper);
public <U> Optional<U> flatMap(Function<? super T, ? extends Optional<? extends U>> mapper);

}

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming – Consistency

// Some monadic JDK types
public interface Stream<T> {
<R> Stream<R> map(Function<? super T, ? extends R> mapper);
<R> Stream<R> flatMap(Function<? super T, ? extends Stream<? extends R>> mapper);

}

public final class Optional<T> {
public <U> Optional<U> map(Function<? super T, ? extends U> mapper);
public <U> Optional<U> flatMap(Function<? super T, ? extends Optional<? extends U>> mapper);

}

public interface CompletionStage<T> {
<U> CompletionStage<U> ... (Function<? super T, ? extends U> fn);
<U> CompletionStage<U> ... (Function<? super T, ? extends CompletionStage<U>> fn);

}

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming – Consistency

// Some monadic JDK types
public interface Stream<T> {
<R> Stream<R> map(Function<? super T, ? extends R> mapper);
<R> Stream<R> flatMap(Function<? super T, ? extends Stream<? extends R>> mapper);

}

public final class Optional<T> {
public <U> Optional<U> map(Function<? super T, ? extends U> mapper);
public <U> Optional<U> flatMap(Function<? super T, ? extends Optional<? extends U>> mapper);

}

public interface CompletionStage<T> {
<U> CompletionStage<U> thenApply(Function<? super T, ? extends U> fn);
<U> CompletionStage<U> thenCompose(Function<? super T, ? extends CompletionStage<U>> fn);

}

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming – Consistency

public interface Stream<T> {
<R> Stream<R> map(Function<? super T, ? extends R> mapper);
<R> Stream<R> flatMap(Function<? super T, ? extends Stream<? extends R>> mapper);

}

public final class Optional<T> {
public <U> Optional<U> map(Function<? super T, ? extends U> mapper);
public <U> Optional<U> flatMap(Function<? super T, ? extends Optional<? extends U>> mapper);

}

public interface CompletionStage<T> {
<U> CompletionStage<U> thenApply(Function<? super T, ? extends U> fn);
<U> CompletionStage<U> thenCompose(Function<? super T, ? extends CompletionStage<U>> fn);

}

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming – Examples from jOOQ

// What’s jOOQ? It’s this internal DSL to create type safe, dynamic,
// vendor agnostic SQL statements in Java

ctx.select(AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME, count())
.from(AUTHOR)
.join(BOOK).on(AUTHOR.ID.eq(BOOK.AUTHOR_ID))
.where(BOOK.LANGUAGE.eq("DE"))
.and(BOOK.PUBLISHED.gt(date("2008-01-01")))
.groupBy(AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME)
.having(count().gt(5))
.orderBy(AUTHOR.LAST_NAME.asc().nullsFirst())
.limit(2)
.offset(1)
.fetch();

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming – Examples from jOOQ

// What’s jOOQ? It’s this internal DSL to create type safe, dynamic,
// vendor agnostic SQL statements in Java

ctx.select(AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME, count())
.from(AUTHOR)
.join(BOOK).on(AUTHOR.ID.eq(BOOK.AUTHOR_ID))
.where(BOOK.LANGUAGE.eq("DE"))
.and(BOOK.PUBLISHED.gt(date("2008-01-01")))
.groupBy(AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME)
.having(count().gt(5))
.orderBy(AUTHOR.LAST_NAME.asc().nullsFirst())
.limit(2)
.offset(1)
.fetch();

Very obvious method names

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming – Wonderful API

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming – Examples from jOOQ

Yet

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming – Examples from jOOQ

// Field vs Column
public interface Field<T> { ... }
public class DSL {
public static Field<String> substring(Field<String> str, ...) { ... }

}

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming – Examples from jOOQ

// Field vs Column
public interface Field<T> { ... }
public class DSL {
public static Field<String> substring(Field<String> str, ...) { ... }

}

// But then
ctx.createTable("my_table")

.column("my_column", VARCHAR(10))

.execute();

What now. Field or Column?

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming – Interpretation

Bad naming in their API

Bad naming in my API

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming – Examples from jOOQ

// Condition vs Predicate
// Currently:
public interface Condition { ... }

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming – Examples from jOOQ

// Condition vs Predicate
// Currently:
public interface Condition { ... }

// “Better”:
public interface Predicate { ... }

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming – Examples from jOOQ

// Condition vs Predicate
// Currently:
public interface Condition { ... }

// “Better”:
public interface Predicate { ... }

Me, every day,
with this idea

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming – Why not?

Changing the API is easy.

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming – Why not?

But you have to:

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming – Why not?

But you have to:

- Change the docs (please use HTTP 301 Redirect and
don’t create dead links!)

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming – Why not?

But you have to:

- Change the docs (please use HTTP 301 Redirect and
don’t create dead links!)

- Don’t forget «external doc» like Stack Overflow

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming – Why not?

But you have to:

- Change the docs (please use HTTP 301 Redirect and
don’t create dead links!)

- Don’t forget «external doc» like Stack Overflow

- Write good release notes / upgrade notes

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming – Why not?

But you have to:

- Change the docs (please use HTTP 301 Redirect and
don’t create dead links!)

- Don’t forget «external doc» like Stack Overflow

- Write good release notes / upgrade notes

- Keep the old name around for backwards
compatibility

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming – Why not?

But you have to:

- Change the docs (please use HTTP 301 Redirect and
don’t create dead links!)

- Don’t forget «external doc» like Stack Overflow

- Write good release notes / upgrade notes

- Keep the old name around for backwards
compatibility

Is it worth it?

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming – Do this (JSR-310)

// “Does what it says it does on the tin,” consistently.

public final class LocalDate {
public static LocalDate now() {}
public static LocalDate parse(CharSequence text) {}
public static LocalDate of(int year, int month, int dayOfMonth) {}

}
public final class LocalTime {
public static LocalTime now() {}
public static LocalTime parse(CharSequence text) {}
public static LocalDate of(int hour, int minute) {}

}
public final class Instant {
public static Instant now() {}
public static Instant parse(CharSequence text) {}
public static Instant ofEpochSecond(long epochSecond) {}

}

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming – Do this (JSR-310)

// “Does what it says it does on the tin,” consistently.

public final class LocalDate {
public static LocalDate now() {}
public static LocalDate parse(CharSequence text) {}
public static LocalDate of(int year, int month, int dayOfMonth) {}

}
public final class LocalTime {
public static LocalTime now() {}
public static LocalTime parse(CharSequence text) {}
public static LocalDate of(int hour, int minute) {}

}
public final class Instant {
public static Instant now() {}
public static Instant parse(CharSequence text) {}
public static Instant ofEpochSecond(long epochSecond) {}

}

«now» is very obvious

«parse» too

Create a value «of» its parts

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming – Do this (JSR-310)

// Other “language”:
public final class LocalDate {
public LocalDateTime atStartOfDay() {}
public LocalDateTime atTime(int hour, int minute) {}

public int get(TemporalField field) {}
public int getDayOfMonth() {}
public Month getMonth() {}

public boolean isAfter(ChronoLocalDate other) {}
public boolean isBefore(ChronoLocalDate other) {}

public LocalDate minusDays(int daysToSubtract) {}
public LocalDate minusMonths(int monthsToSubtract) {}

public LocalDate withDayOfMonth(int dayOfMonth) {}
public LocalDate withMonth(int month) {}

}

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming – Do this (JSR-310)

// Other “language”:
public final class LocalDate {
public LocalDateTime atStartOfDay() {}
public LocalDateTime atTime(int hour, int minute) {}

public int get(TemporalField field) {}
public int getDayOfMonth() {}
public Month getMonth() {}

public boolean isAfter(ChronoLocalDate other) {}
public boolean isBefore(ChronoLocalDate other) {}

public LocalDate minusDays(int daysToSubtract) {}
public LocalDate minusMonths(int monthsToSubtract) {}

public LocalDate withDayOfMonth(int dayOfMonth) {}
public LocalDate withMonth(int month) {}

}

«at» creates a more precise value

«get» extracts a part

«is» runs a check

«minus» and «plus»
arithmetic

«with» replaces a part

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming – Do this (JSR-310)

// Other “language”:
public final class LocalDate {
public LocalDateTime atStartOfDay() {}
public LocalDateTime atTime(int hour, int minute) {}

public int get(TemporalField field) {}
public int getDayOfMonth() {}
public Month getMonth() {}

public boolean isAfter(ChronoLocalDate other) {}
public boolean isBefore(ChronoLocalDate other) {}

public LocalDate minusDays(int daysToSubtract) {}
public LocalDate minusMonths(int monthsToSubtract) {}

public LocalDate withDayOfMonth(int dayOfMonth) {}
public LocalDate withMonth(int month) {}

}

«startOfDay»

«dayOfMonth»

«dayOfMonth»

«day» != «dayOfMonth>

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming

Better get it right
from the beginning!

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

2. Simplicity

Simplicity

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

2. Simplicity – Technical View

I didn't have
time to write a
short letter, so
I wrote a long
one instead.

—Mark Twain / https://en.wikipedia.org/wiki/Mark_Twain

https://en.wikipedia.org/wiki/Mark_Twain

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

2. Simplicity – Manager Version

I didn't have time
to think about
who this is for, so
I CC’ed everyone
instead.

—Not Mark Twain / https://en.wikipedia.org/wiki/Mark_Twain

https://en.wikipedia.org/wiki/Mark_Twain

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

2. Simplicity – Spiritual View

It is pointless
to do with
more what
can be done
with fewer.

—William of Ockham / https://en.wikiquote.org/wiki/William_of_Ockham

https://en.wikiquote.org/wiki/William_of_Ockham

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

2. Simplicity – Spiritual View

The more you
have, the more
you are occupied.
The less you have,
the more free you
are

—Mother Teresa / https://en.wikipedia.org/wiki/Mother_Teresa

https://en.wikipedia.org/wiki/Mother_Teresa

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

2. Simplicity

Why the spiritual
context?

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

2. Simplicity – How not to be simple

public interface JavaCompiler
extends Tool, OptionChecker {

CompilationTask getTask(
Writer out,
JavaFileManager fileManager,
DiagnosticListener<? super JavaFileObject> listener,
Iterable<String> options,
Iterable<String> classes,
Iterable<? extends JavaFileObject> compilationUnits

);

...

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

2. Simplicity

This causes existential
angst in me

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

2. Simplicity

This causes existential
angst in me

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

2. Simplicity – How not to be simple

public interface JavaCompiler
extends Tool, OptionChecker {

CompilationTask getTask(
Writer out,
JavaFileManager fileManager,
DiagnosticListener<? super JavaFileObject> listener,
Iterable<String> options,
Iterable<String> classes,
Iterable<? extends JavaFileObject> compilationUnits

);

...

6 Parameters

Difficult to build types

Stringly typed

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

2. Simplicity – Why is it important

None of these things
are inherently bad.

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

2. Simplicity – Why is it important

The implementation
works very well.

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

But we are
humans

2. Simplicity – Why is it important

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

2. Simplicity – Why is it important

We can only keep so
many things in our

heads

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

2. Simplicity – Why is it important

Complicated APIs are
frustrating.

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

2. Simplicity – See also convenience

// Using jOOR – Convenience on top of JDK
// reflection and compilation APIs
Class<?> myClass = Reflect.compile(

"com.example.MyClass",

"""
package com.example;
public class MyClass {
}
"""

).type();

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

2. Simplicity – This isn’t news

Josh Bloch https://www.infoq.com/presentations/history-api

https://www.infoq.com/presentations/history-api

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

2. Simplicity – How to be simple

This is really difficult

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

2. Simplicity – How to be simple

Some things are
«obvious»

... like low coupling

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

2. Simplicity – How to be simple

But simplicity is a lot of work.

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

2. Simplicity – How to be simple

But simplicity is a lot of work.

Simplicity emerges from very careful design.

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

2. Simplicity – How to be simple

But simplicity is a lot of work.

Simplicity emerges from very careful design.

And tons of iterations.

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

2. Simplicity – How to be simple

Simplicity is like
obscenity

«I know it when I see it»
-- United States Supreme Court Justice Potter Stewart

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

3. Do One Thing

DOTADIW

Do One Thing and Do It Well.

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

3. Do One Thing

Eric Raymond's 17 Unix Rules
1. Build modular programs

2. Write readable programs

3. Use composition

4. Separate mechanisms from policy

5. Write simple programs

6. Write small programs

7. Write transparent programs

8. Write robust programs

9. Make data complicated when required, not the program

10. Build on potential users' expected knowledge

11. Avoid unnecessary output

12. Write programs which fail in a way easy to diagnose

13. Value developer time over machine time

14. Write abstract programs that generate code instead of writing code by hand

15. Prototype software before polishing it

16. Write flexible and open programs

17. Make the program and protocols extensible.

https://en.wikipedia.org/wiki/Unix_philosophy#Do_One_Thing_and_Do_It_Well
https://en.wikipedia.org/wiki/Eric_S._Raymond#/media/File:Eric_S_Raymond_portrait.jpg License CC BY-SA 2.0

https://en.wikipedia.org/wiki/Eric_S._Raymond#/media/File:Eric_S_Raymond_portrait.jpg
https://en.wikipedia.org/wiki/Eric_S._Raymond#/media/File:Eric_S_Raymond_portrait.jpg

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

3. Do One Thing

Eric Raymond's 17 Unix Rules
1. Build modular programs

2. Write readable programs

3. Use composition

4. Separate mechanisms from policy

5. Write simple programs

6. Write small programs

7. Write transparent programs

8. Write robust programs

9. Make data complicated when required, not the program

10. Build on potential users' expected knowledge

11. Avoid unnecessary output

12. Write programs which fail in a way easy to diagnose

13. Value developer time over machine time

14. Write abstract programs that generate code instead of writing code by hand

15. Prototype software before polishing it

16. Write flexible and open programs

17. Make the program and protocols extensible.

https://en.wikipedia.org/wiki/Unix_philosophy#Do_One_Thing_and_Do_It_Well
https://en.wikipedia.org/wiki/Eric_S._Raymond#/media/File:Eric_S_Raymond_portrait.jpg License CC BY-SA 2.0

Do One Thing

https://en.wikipedia.org/wiki/Eric_S._Raymond#/media/File:Eric_S_Raymond_portrait.jpg
https://en.wikipedia.org/wiki/Eric_S._Raymond#/media/File:Eric_S_Raymond_portrait.jpg

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

3. Do One Thing

You cannot implement
simplicity without Do One

Thing.

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Types

https://www.amazon.co.uk/Imagination-Intelligence-Cognitive-Educational-Movements/dp/B07DL4WX2H

https://www.amazon.co.uk/Imagination-Intelligence-Cognitive-Educational-Movements/dp/B07DL4WX2H

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Types – Typesafety

Type safety is one of
those bikesheds

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Types – Typesafety

Great APIs can exist
without type safety

… but I doubt they exist without types

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Types – Typesafety

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Types – Typesafety Types are in the docs

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Types – Advantages

You should design types
regardless if you type

check them.

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Types – Advantages

Likewise there are no
«schemaless» DBMS.

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Types – Advantages

There are only
«schema-on-read» and

«schema-on-write» DBMS.

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Types – Advantages

Types have a few decisive
advantages

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Types – Advantages

1. They (may) have a name

2. They simplify your design (if done well)

3. They do one thing

4. They’re types and thus type safe

5. They help discover the API

6. They describe errors

7. They can be applied consistently

8. They lead to better convenience

9. They can be versioned

10. They can be documented

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Types – Recognise the outline of this talk?

10 Reasons Why we Love Some APIs and Why we Hate Some Others

1. Naming

2. Simplicity

3. Do One Thing

4. Types

5. Discoverability

6. Error Handling

7. Consistency

8. Convenience

9. Compatibility

10. Documentation

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Types – Recognise the outline of this talk?

10 Reasons Why we Love Some APIs and Why we Hate Some Others

1. Naming

2. Simplicity

3. Do One Thing

4. Types

5. Discoverability

6. Error Handling

7. Consistency

8. Convenience

9. Compatibility

10. Documentation

In a way, this talk is about types

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Types – How do we do types?

class J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource

{ ... }

Some prefer nominal types

https://docs.spring.io/spring-security/site/docs/4.2.12.BUILD-
SNAPSHOT/apidocs/org/springframework/security/web/authentication/preauth/j2ee/J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource.html

https://docs.spring.io/spring-security/site/docs/4.2.12.BUILD-SNAPSHOT/apidocs/org/springframework/security/web/authentication/preauth/j2ee/J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource.html

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Types – How do we do types?

class J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource
implements AuthenticationDetailsSource<HttpServletRequest,
PreAuthenticatedGrantedAuthoritiesWebAuthenticationDetails>

{ ... }

Some prefer nominal types

https://docs.spring.io/spring-security/site/docs/4.2.12.BUILD-
SNAPSHOT/apidocs/org/springframework/security/web/authentication/preauth/j2ee/J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource.html

https://docs.spring.io/spring-security/site/docs/4.2.12.BUILD-SNAPSHOT/apidocs/org/springframework/security/web/authentication/preauth/j2ee/J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource.html

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Types – How do we do types?

public Mono<CollectionModel<EntityModel<Employee>>> all() { ... }

Some prefer structural types

https://spring.io/blog/2019/03/05/spring-hateoas-1-0-m1-released

https://spring.io/blog/2019/03/05/spring-hateoas-1-0-m1-released

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Types – How do we do types?

public Mono<CollectionModel<EntityModel<Employee>>> all() { ... }

Some prefer structural types

https://spring.io/blog/2019/03/05/spring-hateoas-1-0-m1-releasedAre you thinking what I’m thinking?

https://spring.io/blog/2019/03/05/spring-hateoas-1-0-m1-released

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Types – How do we do types?

public Mono<Publisher<Optional<CollectionModel<Stream<EntityModel<Try<
Employee

>>>>>>> all() { ... }

Some prefer structural types

https://spring.io/blog/2019/03/05/spring-hateoas-1-0-m1-releasedMake no mistake: Not a merge conflicts

https://spring.io/blog/2019/03/05/spring-hateoas-1-0-m1-released

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Types – How do we do types?

Some people add syntax sugar.

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Types – How do we do types?

Some people add syntax sugar.

Some people add syntax vinegar.

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Types – How do we do types?

So easy to make fun of
others.

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

package org.jooq.impl;

public class DSL {
public static <T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12,
T13, T14, T15, T16, T17, T18, T19, T20, T21, T22> Row22<T1, T2,
T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16,
T17, T18, T19, T20, T21, T22> row(T1 t1, T2 t2, T3 t3, T4 t4,
T5 t5, T6 t6, T7 t7, T8 t8, T9 t9, T10 t10, T11 t11, T12 t12,
T13 t13, T14 t14, T15 t15, T16 t16, T17 t17, T18 t18, T19 t19,
T20 t20, T21 t21, T22 t22) {
...

}
}

4. Types – How do we do types?

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

package org.jooq.impl;

public class DSL {
public static <T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12,
T13, T14, T15, T16, T17, T18, T19, T20, T21, T22> Row22<T1, T2,
T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16,
T17, T18, T19, T20, T21, T22> row(T1 t1, T2 t2, T3 t3, T4 t4,
T5 t5, T6 t6, T7 t7, T8 t8, T9 t9, T10 t10, T11 t11, T12 t12,
T13 t13, T14 t14, T15 t15, T16 t16, T17 t17, T18 t18, T19 t19,
T20 t20, T21 t21, T22 t22) {
...

}
}

4. Types – How do we do types?

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Types – How do we do types?

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

package org.jooq;

public interface Row22<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11,
T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22> extends Row {

...

Condition eq(QuantifiedSelect<? extends Record22<T1, T2, T3, T4, T5,
T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19,
T20, T21, T22>> select);

}

4. Types – How do we do types?

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

// You actually don’t see those types
Condition condition = row(1, "Lukas", "Eder").eq(any(
select(
SPEAKER.ID,
SPEAKER.FIRST_NAME,
SPEAKER.LAST_NAME

)
.from(SPEAKER)

));

4. Types – How do we do types?

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

// You actually don’t see those types ... until you get it wrong
Condition condition = row(1, "Lukas", "Eder").eq(any(
select(
SPEAKER.ID,
SPEAKER.FIRST_NAME

)
.from(SPEAKER)

));

4. Types – How do we do types?

Compilation error

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Types – How do we do types?

What’s my point?

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Types – How do we do types?

Types are semantic

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Types – How do we do types?

Types convey meaning

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Types – How do we do types?

Types self-document

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Types – How do we do types?

This works both with
nominal and structural

typing

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Types – How do we do types?

This works both with
static and dynamic

typing

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Types – Bad example

Counter example

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Types – Bad example

package java.sql;

public interface Connection {
Statement createStatement(
int resultSetType,
int resultSetConcurrency,
int resultSetHoldability

) throws SQLException;
}

These things are defined in...These things are defined in... ResultSet (╯°□°）╯︵┻━┻

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Types – Much better

package java.sql;

// This would have be so much better
public enum ResultSetType { ... }
public enum ResultSetConcurrency { ... }
public enum ResultSetHoldability { ... }

public interface Connection {
Statement createStatement(
ResultSetType resultSetType,
ResultSetConcurrency resultSetConcurrency,
ResultSetHoldability resultSetHoldability

) throws SQLException;
}

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Types – Bad example: stringly typed

You know what else is
stringly typed?

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Types – Bad example: stringly typed

You know what else is
stringly typed?

@Query("SELECT * FROM user")

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Discoverability

Picture by Valentin Antonucci (Pexels License) https://www.pexels.com/photo/person-holding-compass-691637/

https://www.pexels.com/photo/person-holding-compass-691637/

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Discoverability

Good question. Closed, obviously

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Discoverability

Do your users have to
RTFM (read the docs)?

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Discoverability

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Discoverability

Another obviously great
API

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Discoverability

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Discoverability

Some people like reading docs.

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Discoverability

Some people like reading docs.

Others like navigating the API.

... can your API accommodate both?

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Discoverability

An API should have a very
small set of entry points

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Discoverability – JPA good part

emTx((EntityManager em) -> {
List<Film> films = em
.createNativeQuery("SELECT * FROM film", Film.class)
.getResultList();

for (Film film : films)
System.out.println(film.actors.size());

});

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Discoverability – JPA good part

emTx((EntityManager em) -> {
List<Film> films = em
.createNativeQuery("SELECT * FROM film", Film.class)
.getResultList();

for (Film film : films)
System.out.println(film.actors.size());

});

API can be discovered from EntityManager

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Discoverability – JPA good part

emTx((EntityManager em) -> {
List<Film> films = em
.createNativeQuery("SELECT * FROM film", Film.class)
.getResultList();

for (Film film : films)
System.out.println(film.actors.size());

});

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Discoverability – JPA good part

emTx((EntityManager em) -> {
List<Film> films = em
.createNativeQuery("SELECT * FROM film", Film.class)
.getResultList();

for (Film film : films)
System.out.println(film.actors.size());

});

But I’m
interested in

this

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Discoverability

What I wanted

void emTx(Consumer<EntityManager> consumer) {
consumer.accept(Tool.entityManager(dataSource));

}

In a way, EntityManager = DataSource

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

What I got

5. Discoverability – Bad examples (IMO)

void emTx(Consumer<EntityManager> consumer) {
LocalContainerEntityManagerFactoryBean bean = new LocalContainerEntityManagerFactoryBean();
HibernateJpaVendorAdapter adapter = new HibernateJpaVendorAdapter();
adapter.setDatabasePlatform("org.hibernate.dialect.Oracle12cDialect");

bean.setDataSource(datasource);
bean.setPackagesToScan("com.examples.entities");
bean.setJpaVendorAdapter(adapter);
bean.setPersistenceUnitName("test");
bean.setPersistenceProviderClass(HibernatePersistenceProvider.class);
bean.afterPropertiesSet();

EntityManagerFactory emf = bean.getObject();
EntityManager em = emf.createEntityManager();

em.getTransaction().begin();

// Assume exception handling here
consumer.accept(em);
em.getTransaction().commit();

}

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Discoverability – Bad examples (IMO)

void emTx(Consumer<EntityManager> consumer) {
LocalContainerEntityManagerFactoryBean bean = new LocalContainerEntityManagerFactoryBean();
HibernateJpaVendorAdapter adapter = new HibernateJpaVendorAdapter();
adapter.setDatabasePlatform("org.hibernate.dialect.Oracle12cDialect");

bean.setDataSource(datasource);
bean.setPackagesToScan("com.examples.entities");
bean.setJpaVendorAdapter(adapter);
bean.setPersistenceUnitName("test");
bean.setPersistenceProviderClass(HibernatePersistenceProvider.class);
bean.afterPropertiesSet();

EntityManagerFactory emf = bean.getObject();
EntityManager em = emf.createEntityManager();

em.getTransaction().begin();

// Assume exception handling here
consumer.accept(em);
em.getTransaction().commit();

}

Guilty: I picked this at random

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Discoverability – Bad examples (IMO)

void emTx(Consumer<EntityManager> consumer) {
LocalContainerEntityManagerFactoryBean bean = new LocalContainerEntityManagerFactoryBean();
HibernateJpaVendorAdapter adapter = new HibernateJpaVendorAdapter();
adapter.setDatabasePlatform("org.hibernate.dialect.Oracle12cDialect");

bean.setDataSource(datasource);
bean.setPackagesToScan("com.examples.entities");
bean.setJpaVendorAdapter(adapter);
bean.setPersistenceUnitName("test");
bean.setPersistenceProviderClass(HibernatePersistenceProvider.class);
bean.afterPropertiesSet();

EntityManagerFactory emf = bean.getObject();
EntityManager em = emf.createEntityManager();

em.getTransaction().begin();

// Assume exception handling here
consumer.accept(em);
em.getTransaction().commit();

}

I had to say «Hibernate» 3 times

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Discoverability – Bad examples (IMO)

void emTx(Consumer<EntityManager> consumer) {
LocalContainerEntityManagerFactoryBean bean = new LocalContainerEntityManagerFactoryBean();
HibernateJpaVendorAdapter adapter = new HibernateJpaVendorAdapter();
adapter.setDatabasePlatform("org.hibernate.dialect.Oracle12cDialect");

bean.setDataSource(datasource);
bean.setPackagesToScan("com.examples.entities");
bean.setJpaVendorAdapter(adapter);
bean.setPersistenceUnitName("test");
bean.setPersistenceProviderClass(HibernatePersistenceProvider.class);
bean.afterPropertiesSet();

EntityManagerFactory emf = bean.getObject();
EntityManager em = emf.createEntityManager();

em.getTransaction().begin();

// Assume exception handling here
consumer.accept(em);
em.getTransaction().commit();

}

What on earth is this?

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Discoverability – Bad examples (IMO)

void emTx(Consumer<EntityManager> consumer) {
LocalContainerEntityManagerFactoryBean bean = new LocalContainerEntityManagerFactoryBean();
HibernateJpaVendorAdapter adapter = new HibernateJpaVendorAdapter();
adapter.setDatabasePlatform("org.hibernate.dialect.Oracle12cDialect");

bean.setDataSource(datasource);
bean.setPackagesToScan("com.examples.entities");
bean.setJpaVendorAdapter(adapter);
bean.setPersistenceUnitName("test");
bean.setPersistenceProviderClass(HibernatePersistenceProvider.class);
bean.afterPropertiesSet();

EntityManagerFactory emf = bean.getObject();
EntityManager em = emf.createEntityManager();

em.getTransaction().begin();

// Assume exception handling here
consumer.accept(em);
em.getTransaction().commit();

}

And why is it «getObject()»?

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Discoverability

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Discoverability

How long do you think it took
me to discover this?

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Discoverability

Do I have confidence that I’m
doing it right?

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Discoverability

I sure hope Olli will not be
mad at me for quoting this ☺

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Discoverability

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Discoverability

Was I just RTFM’ed?

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Discoverability

I admit: I don’t know what I’m
doing.

... and I don’t feel bad about it

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Discoverability

Docs are great.

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Discoverability

Docs are great.

Discoverability is better.

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

6. Error Handling

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

6. Error Handling

catch (Exception e) {
// Should never happen

}

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Consistency

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Consistency

Just kidding...

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

6. Error Handling

-- PL/SQL
begin

end;

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

6. Error Handling

-- PL/SQL
begin

end;

ORA-06550: line 3, column 1:
PLS-00103: Encountered the symbol "END" when expecting one of the following:

(begin case declare exit for goto if loop mod null pragma
raise return select update while with <an identifier>
<a double-quoted delimited-identifier> <a bind variable> <<
continue close current delete fetch lock insert open rollback
savepoint set sql execute commit forall merge pipe purge
json_exists json_value json_query json_object json_array

06550. 00000 - "line %s, column %s:\n%s"
*Cause: Usually a PL/SQL compilation error.
*Action:

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

6. Error Handling

How about...

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

6. Error Handling

-- PL/SQL
begin

end;

ORA-06550: line 3, column 1:
PLS-00103: block cannot be empty. At least one statement must be provided.

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

6. Error Handling

-- PL/SQL
begin
null;

end;

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

6. Error Handling

Eric Raymond's 17 Unix Rules
1. Build modular programs

2. Write readable programs

3. Use composition

4. Separate mechanisms from policy

5. Write simple programs

6. Write small programs

7. Write transparent programs

8. Write robust programs

9. Make data complicated when required, not the program

10. Build on potential users' expected knowledge

11. Avoid unnecessary output

12. Write programs which fail in a way easy to diagnose

13. Value developer time over machine time

14. Write abstract programs that generate code instead of writing code by hand

15. Prototype software before polishing it

16. Write flexible and open programs

17. Make the program and protocols extensible.

https://en.wikipedia.org/wiki/Unix_philosophy#Do_One_Thing_and_Do_It_Well
https://en.wikipedia.org/wiki/Eric_S._Raymond#/media/File:Eric_S_Raymond_portrait.jpg License CC BY-SA 2.0

https://en.wikipedia.org/wiki/Eric_S._Raymond#/media/File:Eric_S_Raymond_portrait.jpg
https://en.wikipedia.org/wiki/Eric_S._Raymond#/media/File:Eric_S_Raymond_portrait.jpg

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

6. Error Handling

Eric Raymond's 17 Unix Rules
1. Build modular programs

2. Write readable programs

3. Use composition

4. Separate mechanisms from policy

5. Write simple programs

6. Write small programs

7. Write transparent programs

8. Write robust programs

9. Make data complicated when required, not the program

10. Build on potential users' expected knowledge

11. Avoid unnecessary output

12. Write programs which fail in a way easy to diagnose

13. Value developer time over machine time

14. Write abstract programs that generate code instead of writing code by hand

15. Prototype software before polishing it

16. Write flexible and open programs

17. Make the program and protocols extensible.

https://en.wikipedia.org/wiki/Unix_philosophy#Do_One_Thing_and_Do_It_Well
https://en.wikipedia.org/wiki/Eric_S._Raymond#/media/File:Eric_S_Raymond_portrait.jpg License CC BY-SA 2.0

Error Handling

https://en.wikipedia.org/wiki/Eric_S._Raymond#/media/File:Eric_S_Raymond_portrait.jpg
https://en.wikipedia.org/wiki/Eric_S._Raymond#/media/File:Eric_S_Raymond_portrait.jpg

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

6. Error Handling

Bikeshed time

Picture by Jeremy Segrot (CC BY 2.0) https://www.flickr.com/photos/126337928@N05/42791980705

https://www.flickr.com/photos/126337928@N05/42791980705

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

6. Error Handling

// c -- return value
int routine(...);

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

6. Error Handling

// c -- return value
int routine(...);

int err = routine(...);
if (err > 0) {
// TODO should never happen

}

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

6. Error Handling

// Java -- (checked) exceptions
void routine(...) throws
IllegalAccessException,
IllegalArgumentException,
InvocationTargetException

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

6. Error Handling

// Java -- (checked) exceptions
void routine(...) throws
IllegalAccessException,
IllegalArgumentException,
InvocationTargetException

try {
routine(...);

}
catch (InvocationTargetException ignore) {}
catch (IllegalArgumentException yolo) {}
catch (IllegalAccessException heh) {
// That’ll teach them
System.exit(-1);

}

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

6. Error Handling

// Java -- Cool kids who know Scala
Either<Void, Error> routine(...);

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

6. Error Handling

// Java -- Cool kids who know Scala
Either<Void, Error> routine(...);

Error error = routine(...)
.filter(r -> true)
.get()
.flatMap(r -> Either.right(r))
.fold(l -> null, r -> r);

if (error != null) {
// TODO should never happen

}

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

6. Error Handling

Mostly irrelevant

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

6. Error Handling

Be consistent and return
meaningful errors. The caller

should know what to do.

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

6. Error Handling

Types (Exceptions, Try monad, Either monad, etc.)
are better than Strings / ints (error codes)

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Consistency

Getting an audience is hard.
Sustaining an audience is

hard. It demands a
consistency of thought, of

purpose, and of action over a
long period of time.

—Bruce Springsteen

(Image: Bundesarchiv, Bild 183-1988-0719-38 / Uhlemann, Thomas / CC-BY-SA 3.0)

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Consistency

Usability is defined by 5 quality components:

Learnability: How easy is it for users to accomplish basic
tasks the first time they encounter the design?

Efficiency: Once users have learned the design, how
quickly can they perform tasks?

Memorability: When users return to the design after a
period of not using it, how easily can they reestablish
proficiency?

Errors: How many errors do users make, how severe are
these errors, and how easily can they recover from the
errors?

Satisfaction: How pleasant is it to use the design?
https://www.nngroup.com/articles/usability-101-introduction-to-usability/

https://www.nngroup.com/articles/usability-101-introduction-to-usability/

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Consistency

// Average enterprise bean
public interface MyRepository {

Customer[] getCustomers();
List<Customer> getCustomersList();
Stream<Customer> getCustomersByName(String name);
Optional<Customer> getCustomerById(Integer id);
Customer getCustomerBySocialSecurityNumber(String no);
Customer getAnyCustomerByName(String name)
throws ObjectNotFoundException;

}

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Consistency

// Average enterprise bean
@Component @Bean
public interface MyRepository {

Customer[] getCustomers();
List<Customer> getCustomersList();
Stream<Customer> getCustomersByName(String name);
Optional<Customer> getCustomerById(Integer id);
Customer getCustomerBySocialSecurityNumber(String no);
Customer getAnyCustomerByName(String name)
throws ObjectNotFoundException;

}

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Consistency

// Average enterprise bean
@Component @Bean
@Discoverable
@AutoProxiable
public interface MyRepository {
@Query("SELECT * FROM customers")
Customer[] getCustomers();
List<Customer> getCustomersList();

@AutoClosingStreamableDevice
Stream<Customer> getCustomersByName(String name);
Optional<Customer> getCustomerById(Integer id);
@POST @GET
Customer getCustomerBySocialSecurityNumber(String no);
Customer getAnyCustomerByName(String name)
throws ObjectNotFoundException;

}

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Consistency

// Average enterprise bean
@Component @Bean
@Discoverable
@AutoProxiable
@Sendable @TODO @JIRAIssues ({1234, 81371, 617837})
@AutoFetchProxyThing(because=@ICan)
public interface MyRepository {

@Query("SELECT * FROM customers")
Customer @NonNull [] getCustomers();
List<@NonNull Customer> getCustomersList();

@AutoClosingStreamableDevice
Stream<@NonNull Customer> getCustomersByName(@NonNull String name);
Optional<@NonNull Customer> getCustomerById(@NonNull Integer id);
@POST @GET
Customer getCustomerBySocialSecurityNumber(@NonNull String no);
Customer getAnyCustomerByName(@Nullable String name)

throws ObjectNotFoundException;
}

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Consistency

// Average enterprise bean
@Component @Bean
@Discoverable
@AutoProxiable
@Sendable @TODO @JIRAIssues ({1234, 81371, 617837})
@AutoFetchProxyThing(because=@ICan) @Bean
@Configuration
@NoArgsConstructor @Cloneable @SneakyThrows
@ResultSetMapping @ConcurrentInitialiserProxyFactory
@SpringPrefetchAdapter @AdapterProxyBeanMethod @AdapterBeanProxyMethod
@MoreAndMoreAnnotations @CanYouEvenReadThis
@IsThereStillAnyRealLogicLeft
public interface MyRepository {

@Query("SELECT * FROM customers")
Customer @NonNull [] getCustomers();
List<@NonNull Customer> getCustomersList();
@Bean
@Configuration
@NoArgsConstructor @Cloneable @SneakyThrows
@ResultSetMapping @ConcurrentInitialiserProxyFactory
@SpringPrefetchAdapter @AdapterProxyBeanMethod @AdapterBeanProxyMethod
@MoreAndMoreAnnotations @CanYouEvenReadThis
@IsThereStillAnyRealLogicLeft
@AutoClosingStreamableDevice
Stream<@NonNull Customer> getCustomersByName(@NonNull String name);
Optional<@NonNull Customer> getCustomerById(@NonNull Integer id);
@POST @GET
Customer getCustomerBySocialSecurityNumber(@NonNull String no);
Customer getAnyCustomerByName(@Nullable String name)

throws ObjectNotFoundException;
}

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Consistency

Me with
this joke

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Consistency

// Average enterprise bean
public interface MyRepository {

Customer[] getCustomers();
List<Customer> getCustomersList();
Stream<Customer> getCustomersByName(String name);
Optional<Customer> getCustomerById(Integer id);
Customer getCustomerBySocialSecurityNumber(String no);
Customer getAnyCustomerByName(String name)
throws ObjectNotFoundException;

}

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Consistency

// Average enterprise bean
public interface MyRepository {

Customer[] getCustomers();
List<Customer> getCustomersList();
Stream<Customer> getCustomersByName(String name);
Optional<Customer> getCustomerById(Integer id);
Customer getCustomerBySocialSecurityNumber(String no);
Customer getAnyCustomerByName(String name)
throws ObjectNotFoundException;

}

List vs Stream vs Array

Optional vs Null vs Exception

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Consistency

All choices are fine (don’t bikeshed)

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Consistency

All choices are fine (don’t bikeshed)

... but pick only one

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Consistency

// Examples from some other language
// ---------------------------------

// Search $needle in $haystack (which is an array)
array_search ($needle, $haystack)

// In $haystack (which is a string), search $needle
strpos ($haystack, $needle)

// Search $search, replace by $replace in $subject
// (which is an array or a string)
str_replace ($search, $replace, $subject)

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Consistency

// Examples from some other language
// ---------------------------------

// Search $needle in $haystack (which is an array)
array_search ($needle, $haystack)

// In $haystack (which is a string), search $needle
strpos ($haystack, $needle)

// Search $search, replace by $replace in $subject
// (which is an array or a string)
str_replace ($search, $replace, $subject)

If you’re not absolutely fluent,
you have to look this up in the

docs every time!

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Consistency

// Examples from some other language
// ---------------------------------

// Filter an $array using a $callback
array_filter ($array, $callback)

// Using a $callback, map an $array
array_map ($callback, $array)

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Consistency

Why consistency?

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Consistency

I’ve already mentioned JSR-
310 as a good example for

consistent naming and typing

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Consistency

Consistency is at the core
of usability

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Consistency

Usability is defined by 5 quality components:

Learnability: How easy is it for users to accomplish basic
tasks the first time they encounter the design?

Efficiency: Once users have learned the design, how
quickly can they perform tasks?

Memorability: When users return to the design after a
period of not using it, how easily can they reestablish
proficiency?

Errors: How many errors do users make, how severe are
these errors, and how easily can they recover from the
errors?

Satisfaction: How pleasant is it to use the design?
https://www.nngroup.com/articles/usability-101-introduction-to-usability/

All of these are affected!

https://www.nngroup.com/articles/usability-101-introduction-to-usability/

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Convenience

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Convenience

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Convenience

// Ignoring exceptions...
InputStream is = ...
OutputStream os = ...

byte[] buffer = new byte[1024];
int length;
while ((length = is.read(buffer)) > -1) {

baos.write(buffer, 0, length);
}

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Convenience

9 (!) major releases later...

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Convenience

public abstract class InputStream {

...

/**
* @since 9
*/
public long transferTo(OutputStream out) throws IOException {

long transferred = 0;
byte[] buffer = new byte[DEFAULT_BUFFER_SIZE];
int read;
while ((read = this.read(buffer, 0, DEFAULT_BUFFER_SIZE)) >= 0) {

out.write(buffer, 0, read);
transferred += read;

}
return transferred;

}
}

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Convenience

public abstract class InputStream {

...

/**
* @since 9
*/
public long transferTo(OutputStream out) throws IOException {

long transferred = 0;
byte[] buffer = new byte[DEFAULT_BUFFER_SIZE];
int read;
while ((read = this.read(buffer, 0, DEFAULT_BUFFER_SIZE)) >= 0) {

out.write(buffer, 0, read);
transferred += read;

}
return transferred;

}
}

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Convenience

Convenience is the most
underrated API feature

... and language feature!

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Convenience – Dogfooding

How to
achieve

convenience?

... by dogfooding

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Convenience – Dogfooding

Use your own API all the
time.

... by eating your own «dog food»

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Convenience – Dogfooding

Me, when I use my own API

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Convenience – Dogfooding

Me, when I use my any API

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Convenience – Dogfooding

But at least I can fix my own

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Convenience – Dogfooding

Advantages:

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Convenience – Dogfooding

Advantages:

− Better objective quality

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Convenience – Dogfooding

Advantages:

− Better objective quality

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Convenience – Dogfooding

Advantages:

− Better objective quality

− Better subjective quality

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Convenience – Dogfooding

Advantages:

− Better objective quality

− Better subjective quality

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Convenience – Dogfooding

// After 1000x doing this
for (var record : ctx.select(ACTOR.FIRST_NAME, ACTOR.LAST_NAME)

.from(ACTOR)

.orderBy(ACTOR.ID)

.fetch()) {

...
}

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Convenience – Dogfooding

// After 1000x doing this
for (var record : ctx.select(ACTOR.FIRST_NAME, ACTOR.LAST_NAME)

.from(ACTOR)

.orderBy(ACTOR.ID)

.fetch()) {

...
}

This gets on my nerves!

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Convenience – Dogfooding

// ... why not just do it like this?
for (var record : ctx.select(ACTOR.FIRST_NAME, ACTOR.LAST_NAME)

.from(ACTOR)

.orderBy(ACTOR.ID)) {

...
}

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Convenience – Dogfooding

// ... why not just do it like this?
for (var record : ctx.select(ACTOR.FIRST_NAME, ACTOR.LAST_NAME)

.from(ACTOR)

.orderBy(ACTOR.ID)) {

...
}

ResultQuery<R> extends Iterable<R>

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Convenience – Dogfooding

-- If you’re coding PL/SQL, this is natural
for record in (select ACTOR.FIRST_NAME, ACTOR.LAST_NAME

from ACTOR
order by ACTOR.ID) loop

...
end loop

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Convenience

Convenience is not a
game changer

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Convenience

Convenience does not
solve «the big problems»

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Convenience

But convenience makes
people happy

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Convenience

Happy people will
recommend your API

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Convenience – In the Java language

// Java 7
try (Statement s = connection.createStatement()) {
..

}

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Convenience – In the Java language

// Java 7
try (Statement s = connection.createStatement()) {
..

}

// Java 6 (more or less)
Statement s = null;
try {
s = connection.createStatement();
..

}
finally {
if (s != null) try {
s.close();

}
catch (SQLException ignore) {} // Will never happen ;-)

}

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

9. Compatibility

Or in short:

You can only lose

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

9. Compatibility – Don’t be like Python

Python 2

> 5/2
2

Python 3

> 5/2
2.5

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

9. Compatibility – Don’t be like Python

Python 2

> print ("hi")
hi

> print "hi"
hi

Python 3

> print ("hi")
hi

> print "hi"
SyntaxError

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

9. Compatibility – Don’t be like Python

Little is gained from such
incompatible changes

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

9. Compatibility – The other extreme

// Java
// ----------

package java.lang;

public final class Boolean {
public static boolean getBoolean(String name) {
xxxxxxx xxxxxx = xxxxx;
xxx {
xxxxxx = xxxxxxxxxxxx(xxxxxx.xxxxxxxxxxx(xxxx));

} xxxxx (...) {
}
xxxxx xxxxxx;

}
}

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

9. Compatibility – The other extreme

// Java
// ----------

package java.lang;

public final class Boolean {
public static boolean getBoolean(String name) {
boolean result = false;
try {
result = parseBoolean(System.getProperty(name));

} catch (...) {
}
return result;

}
}

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

9. Compatibility – The other extreme

These things are bad
because of their lack of

consistency

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

9. Compatibility – The other extreme

Why are they not
deprecated and

removed?

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

9. Compatibility – The other extreme

We need
more
Marie

Kondo in
the JDK

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

9. Compatibility – Be pragmatic

Be pragmatic

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

9. Compatibility – A Trick

Keep old
API tests
around!

http://wiki.apidesign.org/wiki/Never_update_tests

http://wiki.apidesign.org/wiki/Never_update_tests

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

9. Compatibility – A Collection of Tricks

https://wiki.eclipse.org/Evolving_Java-based_APIs

https://wiki.eclipse.org/Evolving_Java-based_APIs

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

9. Compatibility – A Collection of Tricks

https://wiki.eclipse.org/Evolving_Java-based_APIs

https://wiki.eclipse.org/Evolving_Java-based_APIs_2

https://wiki.eclipse.org/Evolving_Java-based_APIs
https://wiki.eclipse.org/Evolving_Java-based_APIs_2

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

9. Compatibility – A Collection of Tricks

https://wiki.eclipse.org/Evolving_Java-based_APIs

https://wiki.eclipse.org/Evolving_Java-based_APIs_2

https://wiki.eclipse.org/Evolving_Java-based_APIs_3

Evolving URLs, too

https://wiki.eclipse.org/Evolving_Java-based_APIs
https://wiki.eclipse.org/Evolving_Java-based_APIs_2
https://wiki.eclipse.org/Evolving_Java-based_APIs_3

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

How developers feel
about documentation

10. Documentation

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

How developers feel
about documentation

10. Documentation

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Just like testing

10. Documentation

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Just like testing

10. DocumentationWe do that at the endWe do that at the end, maybe

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

10. Documentation

public class Customer {

public String getFirstName() { ... }
}

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

10. Documentation

public class Customer {

public String getFirstName() { ... }
}

Architect:
«Document Your

Code!!»

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

10. Documentation

public class Customer {

/**
* Gets the first name.
*
* @return the first name.
*/
public String getFirstName() { ... }

}

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

10. Documentation

Documentation is the
dual of discoverability

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

10. Documentation

Discoverability:

I don’t know what I need.
API, what do you have to offer?

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

10. Documentation

Documentation:

I need this thing.
API, do you happen to support it?

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Overview

10 Reasons Why we Love Some APIs and Why we Hate Some Others

1. Naming

2. Simplicity

3. Do One Thing

4. Types

5. Discoverability

6. Error Handling

7. Consistency

8. Convenience

9. Compatibility

10. Documentation

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Overview

10 Reasons Why we Love Some APIs and Why we Hate Some Others

1. Naming

2. Simplicity

3. Do One Thing

4. Types

5. Discoverability

6. Error Handling

7. Consistency

8. Convenience

9. Compatibility

10. Documentation

Remember: NSDTDECCCD

D is silent

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Overview

Design for humans

Programmers are humans too

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Overview

Want
proof?

Geek and Poke. Licensed CC-BY-3.0.
http://geek-and-poke.com/geekandpoke/2013/6/14/insulting-made-easy

http://geek-and-poke.com/geekandpoke/2013/6/14/insulting-made-easy

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Overview

Usability is defined by 5 quality components:

Learnability: How easy is it for users to accomplish basic
tasks the first time they encounter the design?

Efficiency: Once users have learned the design, how
quickly can they perform tasks?

Memorability: When users return to the design after a
period of not using it, how easily can they reestablish
proficiency?

Errors: How many errors do users make, how severe are
these errors, and how easily can they recover from the
errors?

Satisfaction: How pleasant is it to use the design?
https://www.nngroup.com/articles/usability-101-introduction-to-usability/

https://www.nngroup.com/articles/usability-101-introduction-to-usability/

Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Thank you
Check out our trainings:

http://www.jooq.org/training

Coordinates
• Blog: http://blog.jooq.org (excellent Java SQL content)

• Twitter: @JavaOOQ / @lukaseder (more lame jokes)

• E-Mail: lukas.eder@datageekery.com

• Bank account: CH57 8148 7000 0SQL AWSM 7

http://www.jooq.org/training
http://blog.jooq.org/
https://twitter.com/JavaOOQ
https://twitter.com/lukaseder
mailto:lukas.eder@datageekery.com

