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NoSQL? No, SQL!

Why Your Next Application 
Should be Written With XSLT
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NoSQL? No, SQL!

10 Reasons Why we Love 
Some APIs and Why we 
Hate Some Others
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Jokes

You know... 

I rehearsed these jokes 
with my wife



Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Jokes



Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Jokes
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Good or bad?

var dir = new File(".");
for (var file : dir.list()) {
System.out.println(file);

}



Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Good or bad?

var dir = new File("C:/tmp");
for (var file : dir.list()) {
System.out.println(file);

}
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Good or bad?

var dir = new File("C:/tmp");
for (var file : dir.list()) {
System.out.println(file);

}

NullPointerException = File does not exist
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Good or bad?

Terrible idea:

Returning a null array / collection
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Good or bad?

ok ok ok

This was old JDK API. 
We’re doing better now.
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Good or bad?

Stream.of(1, 2, 3)
.skip(1)
.forEach(System.out::println);
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Good or bad?

Stream.of(1, 2, 3)
.skipUntil(t -> t == 2)
.forEach(System.out::println);
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Good or bad?

Stream.of(1, 2, 3)
//    .skipUntil(t -> t == 2) Nope!

.forEach(System.out::println);
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Good or bad?

Stream.of(1, 2, 3)
//    .skipUntil(t -> t == 2) Nope!

.skipWhile(t -> t < 2)

.forEach(System.out::println);
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Good or bad?

Stream.of(1, 2, 3)
//    .skipUntil(t -> t == 2) Nope!
//    .skipWhile(t -> t < 2)  Nope!

.forEach(System.out::println);
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Good or bad?

Stream.of(1, 2, 3)
//    .skipUntil(t -> t == 2) Nope!
//    .skipWhile(t -> t < 2)  Nope!

.dropWhile(t -> t < 2)

.forEach(System.out::println);
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Good or bad?

Terrible idea:

Inconsistent naming
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Good or bad?

// All input elements
$("input");
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Good or bad?

// All input elements
$("input");

// Where they’re contained
$("input").parent();
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Good or bad?

// All input elements
$("input");

// Where they’re contained
$("input").parent();

// Only if they have names
$("input").filter("[name]");
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Good or bad?

// All input elements
$("input");

// Where they’re contained
$("input").parent();

// Only if they have names
$("input").filter("[name]");

// Alternative
$("input[name]");
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Good or bad?

// All input elements
$("input");

// Where they’re contained
$("input").parent();

// Only if they have names
$("input").filter("[name]");

// Alternative
$("input[name]");

// Mapping / extracting information from contents
$("input[name]").map((i, e) => e.name);
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Good or bad?

This feels great!
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Good or bad?

But why?
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Good or bad?

Not just about APIs. 
About languages too.
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Good or bad?

Not just APIs. 
Languages too.
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Good or bad?

But today is about 
APIs.
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User Experience

APIs are a crucial 
part of the UX 

(User Experience)
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User Experience

Programs must be 
written for people to 
read, and only 
incidentally for 
machines to execute

—Abelson & Sussman, "Structure and Interpretation of Computer Programs"
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Programs must be 
written for people to 
read, and only 
incidentally for 
machines to execute

User Experience

APIs

—me, just now
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User Experience

User experience (UX) 
refers to a person's 
emotions and attitudes 
about using a particular 
product, system or service

https://en.wikipedia.org/wiki/User_experience

https://en.wikipedia.org/wiki/User_experience
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User Experience

User experience (UX) 
refers to a person's
emotions and attitudes 
about using a particular 
product, system or service

https://en.wikipedia.org/wiki/User_experience

developer’s

https://en.wikipedia.org/wiki/User_experience
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User Experience

We developers do 
have emotions
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User Experience

(or mostly attitudes)



Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

User Experience

Don’t let them tell you 
otherwise

https://en.wikipedia.org/wiki/User_experience

https://en.wikipedia.org/wiki/User_experience
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User Experience

In fact,

An anecdote about developer attitudes
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User Experience

A Kotlin Programmer
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User Experience

A Kotlin Programmer, an IntelliJ user,
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User Experience

A Kotlin Programmer, an IntelliJ user, 
and a Mac User
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User Experience

A Kotlin Programmer, an IntelliJ user, 
and a Mac User went into a bar.
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User Experience

A Kotlin Programmer, an IntelliJ user, 
and a Mac User went into a bar.

How do I know?
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User Experience

A Kotlin Programmer, an IntelliJ user, 
and a Mac User went into a bar.

How do I know?

After 1 Minute
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User Experience

A Kotlin Programmer, an IntelliJ user, 
and a Mac User went into a bar.

How do I know?

After 1 Minute, the whole f**king bar 
knew.
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User Experience

"User experience" 
encompasses all aspects of 
the end-user's interaction 
with the company, its 
services, and its products.

https://www.nngroup.com/articles/definition-user-experience/

https://www.nngroup.com/articles/definition-user-experience/
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User Experience

"User experience" 
encompasses all aspects of 
the end-user's interaction 
with the company, its 
services, and its products.

https://www.nngroup.com/articles/definition-user-experience/

programmer’s

https://www.nngroup.com/articles/definition-user-experience/
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Usability

Usability is defined by 5 quality components:

https://www.nngroup.com/articles/usability-101-introduction-to-usability/

https://www.nngroup.com/articles/usability-101-introduction-to-usability/
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Usability

Usability is defined by 5 quality components:

Learnability: How easy is it for users to accomplish basic 
tasks the first time they encounter the design?

https://www.nngroup.com/articles/usability-101-introduction-to-usability/

https://www.nngroup.com/articles/usability-101-introduction-to-usability/
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Usability

Usability is defined by 5 quality components:

Learnability: How easy is it for users to accomplish basic 
tasks the first time they encounter the design?

Efficiency: Once users have learned the design, how 
quickly can they perform tasks?

https://www.nngroup.com/articles/usability-101-introduction-to-usability/

https://www.nngroup.com/articles/usability-101-introduction-to-usability/
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Usability

Usability is defined by 5 quality components:

Learnability: How easy is it for users to accomplish basic 
tasks the first time they encounter the design?

Efficiency: Once users have learned the design, how 
quickly can they perform tasks?

Memorability: When users return to the design after a 
period of not using it, how easily can they reestablish 
proficiency?

https://www.nngroup.com/articles/usability-101-introduction-to-usability/

https://www.nngroup.com/articles/usability-101-introduction-to-usability/
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Usability

Usability is defined by 5 quality components:

Learnability: How easy is it for users to accomplish basic 
tasks the first time they encounter the design?

Efficiency: Once users have learned the design, how 
quickly can they perform tasks?

Memorability: When users return to the design after a 
period of not using it, how easily can they reestablish 
proficiency?

Errors: How many errors do users make, how severe are 
these errors, and how easily can they recover from the 
errors?

https://www.nngroup.com/articles/usability-101-introduction-to-usability/

https://www.nngroup.com/articles/usability-101-introduction-to-usability/
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Usability

Usability is defined by 5 quality components:

Learnability: How easy is it for users to accomplish basic 
tasks the first time they encounter the design?

Efficiency: Once users have learned the design, how 
quickly can they perform tasks?

Memorability: When users return to the design after a 
period of not using it, how easily can they reestablish 
proficiency?

Errors: How many errors do users make, how severe are 
these errors, and how easily can they recover from the 
errors?

Satisfaction: How pleasant is it to use the design?
https://www.nngroup.com/articles/usability-101-introduction-to-usability/

https://www.nngroup.com/articles/usability-101-introduction-to-usability/
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Prejudices

An important 
observation first
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Prejudices

Usability is defined by 5 quality components:

Learnability: How easy is it for users to accomplish basic 
tasks the first time they encounter the design?

Efficiency: Once users have learned the design, how 
quickly can they perform tasks?

Memorability: When users return to the design after a 
period of not using it, how easily can they reestablish 
proficiency?

Errors: How many errors do users make, how severe are 
these errors, and how easily can they recover from the 
errors?

Satisfaction: How pleasant is it to use the design?
https://www.nngroup.com/articles/usability-101-introduction-to-usability/These things aren’t about technical details

https://www.nngroup.com/articles/usability-101-introduction-to-usability/
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Prejudices – null

https://en.wikipedia.org/wiki/Tony_Hoare

https://en.wikipedia.org/wiki/Tony_Hoare
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Prejudices – null

https://www.youtube.com/watch?v=Ej0sss6cq14

https://www.youtube.com/watch?v=Ej0sss6cq14
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Prejudices – null

Null is not bad per se
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Prejudices – null

Null is bad when it is 
unexpected

... You still want some special «absent» value
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Prejudices

Let’s not bikeshed

Picture by Jeremy Segrot (CC BY 2.0) https://www.flickr.com/photos/126337928@N05/42791980705

https://www.flickr.com/photos/126337928@N05/42791980705
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Outline

10 Reasons Why we Love Some APIs and Why we Hate Some Others

1. Naming

2. Simplicity

3. Do One Thing

4. Types

5. Discoverability

6. Error Handling

7. Consistency

8. Convenience

9. Compatibility

10. Documentation
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Outline

10 Reasons Why we Love Some APIs and Why we Hate Some Others

1. Naming

2. Simplicity

3. Do One Thing

4. Types

5. Discoverability

6. Error Handling

7. Consistency

8. Convenience

9. Compatibility

10. Documentation

Colloquially NSDTDECCCD

D is silent
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1. Naming

This is actually really 
simple.

... and simplicity is hard as we’ll soon see!
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1. Naming
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1. Naming – Ubiquitous Language

https://en.wikipedia.org/wiki/Domain-driven_design

Ubiquitous Language

A language structured 
around the domain model 
and used by all team 
members to connect all the 
activities of the team with 
the software.

https://en.wikipedia.org/wiki/Domain-driven_design
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1. Naming – Why is it important?
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1. Naming – Don’t do this

public interface Stream<T> {

// Looks like Informix :-)
// SELECT SKIP 10 LIMIT 10 * FROM my_table
Stream<T> skip(long n);
Stream<T> limit(long maxSize);

}
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1. Naming – Don’t do this

public interface Stream<T> {

// Looks like Informix :-)
// SELECT SKIP 10 LIMIT 10 * FROM my_table
Stream<T> skip(long n);
Stream<T> limit(long maxSize);

// These have been added in Java 9
// They follow Scala naming conventions
default Stream<T> dropWhile(Predicate<? super T> predicate) {}
default Stream<T> takeWhile(Predicate<? super T> predicate) {}
..

}
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1. Naming

You know how this 
happens?
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1. Naming

Every single time...
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1. Naming – Consistency

When 
someone 

else touches 
my API...
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1. Naming – Can be fixed

It seems that the 
«language» has 

changed.
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1. Naming – Can be fixed

This can be fixed.

... but keep backwards compatibility in mind
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1. Naming – Tradeoffs

In an API, sometimes, 
backwards compatibility is 

more important than 
good, consistent names
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1. Naming – Tradeoffs
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1. Naming – Consistency

Better get it right the first 
time.

And talk to each other!
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1. Naming – Consistency

// Some monadic JDK types
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1. Naming – Consistency

// Some monadic JDK types
public interface Stream<T> {
<R> Stream<R> map(Function<? super T, ? extends R> mapper);
<R> Stream<R> flatMap(Function<? super T, ? extends Stream<? extends R>> mapper);

}
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1. Naming – Consistency

// Some monadic JDK types
public interface Stream<T> {
<R> Stream<R> map(Function<? super T, ? extends R> mapper);
<R> Stream<R> flatMap(Function<? super T, ? extends Stream<? extends R>> mapper);

}

public final class Optional<T> {
public <U> Optional<U> map(Function<? super T, ? extends U> mapper);
public <U> Optional<U> flatMap(Function<? super T, ? extends Optional<? extends U>> mapper);

}
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1. Naming – Consistency

// Some monadic JDK types
public interface Stream<T> {
<R> Stream<R> map(Function<? super T, ? extends R> mapper);
<R> Stream<R> flatMap(Function<? super T, ? extends Stream<? extends R>> mapper);

}

public final class Optional<T> {
public <U> Optional<U> map(Function<? super T, ? extends U> mapper);
public <U> Optional<U> flatMap(Function<? super T, ? extends Optional<? extends U>> mapper);

}

public interface CompletionStage<T> {
<U> CompletionStage<U> ...      (Function<? super T, ? extends U> fn);
<U> CompletionStage<U> ...        (Function<? super T, ? extends CompletionStage<U>> fn);

}
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1. Naming – Consistency

// Some monadic JDK types
public interface Stream<T> {
<R> Stream<R> map(Function<? super T, ? extends R> mapper);
<R> Stream<R> flatMap(Function<? super T, ? extends Stream<? extends R>> mapper);

}

public final class Optional<T> {
public <U> Optional<U> map(Function<? super T, ? extends U> mapper);
public <U> Optional<U> flatMap(Function<? super T, ? extends Optional<? extends U>> mapper);

}

public interface CompletionStage<T> {
<U> CompletionStage<U> thenApply(Function<? super T, ? extends U> fn);
<U> CompletionStage<U> thenCompose(Function<? super T, ? extends CompletionStage<U>> fn);

}
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1. Naming – Consistency

public interface Stream<T> {
<R> Stream<R> map(Function<? super T, ? extends R> mapper);
<R> Stream<R> flatMap(Function<? super T, ? extends Stream<? extends R>> mapper);

}

public final class Optional<T> {
public <U> Optional<U> map(Function<? super T, ? extends U> mapper);
public <U> Optional<U> flatMap(Function<? super T, ? extends Optional<? extends U>> mapper);

}

public interface CompletionStage<T> {
<U> CompletionStage<U> thenApply(Function<? super T, ? extends U> fn);
<U> CompletionStage<U> thenCompose(Function<? super T, ? extends CompletionStage<U>> fn);

}
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1. Naming – Examples from jOOQ

// What’s jOOQ? It’s this internal DSL to create type safe, dynamic,
// vendor agnostic SQL statements in Java

ctx.select(AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME, count())
.from(AUTHOR)
.join(BOOK).on(AUTHOR.ID.eq(BOOK.AUTHOR_ID))
.where(BOOK.LANGUAGE.eq("DE"))
.and(BOOK.PUBLISHED.gt(date("2008-01-01")))
.groupBy(AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME)
.having(count().gt(5))
.orderBy(AUTHOR.LAST_NAME.asc().nullsFirst())
.limit(2)
.offset(1)
.fetch();
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1. Naming – Examples from jOOQ

// What’s jOOQ? It’s this internal DSL to create type safe, dynamic,
// vendor agnostic SQL statements in Java

ctx.select(AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME, count())
.from(AUTHOR)
.join(BOOK).on(AUTHOR.ID.eq(BOOK.AUTHOR_ID))
.where(BOOK.LANGUAGE.eq("DE"))
.and(BOOK.PUBLISHED.gt(date("2008-01-01")))
.groupBy(AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME)
.having(count().gt(5))
.orderBy(AUTHOR.LAST_NAME.asc().nullsFirst())
.limit(2)
.offset(1)
.fetch();

Very obvious method names
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1. Naming – Wonderful API
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1. Naming – Examples from jOOQ

Yet
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1. Naming – Examples from jOOQ

// Field vs Column
public interface Field<T> { ... }
public class DSL {
public static Field<String> substring(Field<String> str, ...) { ... }

}
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1. Naming – Examples from jOOQ

// Field vs Column
public interface Field<T> { ... }
public class DSL {
public static Field<String> substring(Field<String> str, ...) { ... }

}

// But then
ctx.createTable("my_table")

.column("my_column", VARCHAR(10))

.execute();

What now. Field or Column?
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1. Naming – Interpretation

Bad naming in their API

Bad naming in my API



Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming – Examples from jOOQ

// Condition vs Predicate
// Currently:
public interface Condition { ... }
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1. Naming – Examples from jOOQ

// Condition vs Predicate
// Currently:
public interface Condition { ... }

// “Better”:
public interface Predicate { ... }
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1. Naming – Examples from jOOQ

// Condition vs Predicate
// Currently:
public interface Condition { ... }

// “Better”:
public interface Predicate { ... }

Me, every day, 
with this idea
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1. Naming – Why not?

Changing the API is easy.
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1. Naming – Why not?

But you have to:
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1. Naming – Why not?

But you have to:

- Change the docs (please use HTTP 301 Redirect and 
don’t create dead links!)



Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Naming – Why not?

But you have to:

- Change the docs (please use HTTP 301 Redirect and 
don’t create dead links!)

- Don’t forget «external doc» like Stack Overflow
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1. Naming – Why not?

But you have to:

- Change the docs (please use HTTP 301 Redirect and 
don’t create dead links!)

- Don’t forget «external doc» like Stack Overflow

- Write good release notes / upgrade notes
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1. Naming – Why not?

But you have to:

- Change the docs (please use HTTP 301 Redirect and 
don’t create dead links!)

- Don’t forget «external doc» like Stack Overflow

- Write good release notes / upgrade notes

- Keep the old name around for backwards 
compatibility
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1. Naming – Why not?

But you have to:

- Change the docs (please use HTTP 301 Redirect and 
don’t create dead links!)

- Don’t forget «external doc» like Stack Overflow

- Write good release notes / upgrade notes

- Keep the old name around for backwards 
compatibility

Is it worth it?
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1. Naming – Do this (JSR-310)

// “Does what it says it does on the tin,” consistently.

public final class LocalDate {
public static LocalDate now() {}
public static LocalDate parse(CharSequence text) {}
public static LocalDate of(int year, int month, int dayOfMonth) {}

}
public final class LocalTime {
public static LocalTime now() {}
public static LocalTime parse(CharSequence text) {}
public static LocalDate of(int hour, int minute) {}

}
public final class Instant {
public static Instant now() {}
public static Instant parse(CharSequence text) {}
public static Instant ofEpochSecond(long epochSecond) {}

}
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1. Naming – Do this (JSR-310)

// “Does what it says it does on the tin,” consistently.

public final class LocalDate {
public static LocalDate now() {}
public static LocalDate parse(CharSequence text) {}
public static LocalDate of(int year, int month, int dayOfMonth) {}

}
public final class LocalTime {
public static LocalTime now() {}
public static LocalTime parse(CharSequence text) {}
public static LocalDate of(int hour, int minute) {}

}
public final class Instant {
public static Instant now() {}
public static Instant parse(CharSequence text) {}
public static Instant ofEpochSecond(long epochSecond) {}

}

«now» is very obvious

«parse» too

Create a value «of» its parts
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1. Naming – Do this (JSR-310)

// Other “language”:
public final class LocalDate {
public LocalDateTime atStartOfDay() {}
public LocalDateTime atTime(int hour, int minute) {}

public int get(TemporalField field) {}
public int getDayOfMonth() {}
public Month getMonth() {}

public boolean isAfter(ChronoLocalDate other) {}
public boolean isBefore(ChronoLocalDate other) {}

public LocalDate minusDays(int daysToSubtract) {}
public LocalDate minusMonths(int monthsToSubtract) {}

public LocalDate withDayOfMonth(int dayOfMonth) {}
public LocalDate withMonth(int month) {}

}
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1. Naming – Do this (JSR-310)

// Other “language”:
public final class LocalDate {
public LocalDateTime atStartOfDay() {}
public LocalDateTime atTime(int hour, int minute) {}

public int get(TemporalField field) {}
public int getDayOfMonth() {}
public Month getMonth() {}

public boolean isAfter(ChronoLocalDate other) {}
public boolean isBefore(ChronoLocalDate other) {}

public LocalDate minusDays(int daysToSubtract) {}
public LocalDate minusMonths(int monthsToSubtract) {}

public LocalDate withDayOfMonth(int dayOfMonth) {}
public LocalDate withMonth(int month) {}

}

«at» creates a more precise value

«get» extracts a part

«is» runs a check

«minus» and «plus» 
arithmetic

«with» replaces a part
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1. Naming – Do this (JSR-310)

// Other “language”:
public final class LocalDate {
public LocalDateTime atStartOfDay() {}
public LocalDateTime atTime(int hour, int minute) {}

public int get(TemporalField field) {}
public int getDayOfMonth() {}
public Month getMonth() {}

public boolean isAfter(ChronoLocalDate other) {}
public boolean isBefore(ChronoLocalDate other) {}

public LocalDate minusDays(int daysToSubtract) {}
public LocalDate minusMonths(int monthsToSubtract) {}

public LocalDate withDayOfMonth(int dayOfMonth) {}
public LocalDate withMonth(int month) {}

}

«startOfDay»

«dayOfMonth»

«dayOfMonth»

«day» != «dayOfMonth>
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1. Naming

Better get it right 
from the beginning!
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2. Simplicity

Simplicity
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2. Simplicity – Technical View

I didn't have 
time to write a 
short letter, so 
I wrote a long 
one instead.

—Mark Twain / https://en.wikipedia.org/wiki/Mark_Twain

https://en.wikipedia.org/wiki/Mark_Twain
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2. Simplicity – Manager Version

I didn't have time 
to think about 
who this is for, so 
I CC’ed everyone 
instead.

—Not Mark Twain / https://en.wikipedia.org/wiki/Mark_Twain

https://en.wikipedia.org/wiki/Mark_Twain
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2. Simplicity – Spiritual View

It is pointless 
to do with 
more what 
can be done 
with fewer.

—William of Ockham / https://en.wikiquote.org/wiki/William_of_Ockham

https://en.wikiquote.org/wiki/William_of_Ockham
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2. Simplicity – Spiritual View

The more you 
have, the more 
you are occupied. 
The less you have, 
the more free you 
are

—Mother Teresa / https://en.wikipedia.org/wiki/Mother_Teresa

https://en.wikipedia.org/wiki/Mother_Teresa
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2. Simplicity

Why the spiritual 
context?
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2. Simplicity – How not to be simple

public interface JavaCompiler
extends Tool, OptionChecker {

CompilationTask getTask(
Writer out,
JavaFileManager fileManager,
DiagnosticListener<? super JavaFileObject> listener,
Iterable<String> options,
Iterable<String> classes,
Iterable<? extends JavaFileObject> compilationUnits

);

...
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2. Simplicity

This causes existential 
angst in me
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2. Simplicity

This causes existential 
angst in me



Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

2. Simplicity – How not to be simple

public interface JavaCompiler
extends Tool, OptionChecker {

CompilationTask getTask(
Writer out,
JavaFileManager fileManager,
DiagnosticListener<? super JavaFileObject> listener,
Iterable<String> options,
Iterable<String> classes,
Iterable<? extends JavaFileObject> compilationUnits

);

...

6 Parameters

Difficult to build types

Stringly typed
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2. Simplicity – Why is it important

None of these things 
are inherently bad.
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2. Simplicity – Why is it important

The implementation 
works very well.
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But we are
humans

2. Simplicity – Why is it important
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2. Simplicity – Why is it important

We can only keep so 
many things in our 

heads



Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

2. Simplicity – Why is it important

Complicated APIs are 
frustrating.
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2. Simplicity – See also convenience

// Using jOOR – Convenience on top of JDK
// reflection and compilation APIs
Class<?> myClass = Reflect.compile(

"com.example.MyClass",

"""
package com.example; 
public class MyClass {
}
"""

).type();
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2. Simplicity – This isn’t news

Josh Bloch https://www.infoq.com/presentations/history-api

https://www.infoq.com/presentations/history-api
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2. Simplicity – How to be simple

This is really difficult
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2. Simplicity – How to be simple

Some things are 
«obvious»

... like low coupling
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2. Simplicity – How to be simple

But simplicity is a lot of work.
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2. Simplicity – How to be simple

But simplicity is a lot of work.

Simplicity emerges from very careful design.
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2. Simplicity – How to be simple

But simplicity is a lot of work.

Simplicity emerges from very careful design.

And tons of iterations.
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2. Simplicity – How to be simple

Simplicity is like 
obscenity

«I know it when I see it»
-- United States Supreme Court Justice Potter Stewart
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3. Do One Thing

DOTADIW

Do One Thing and Do It Well.
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3. Do One Thing

Eric Raymond's 17 Unix Rules
1. Build modular programs

2. Write readable programs

3. Use composition

4. Separate mechanisms from policy

5. Write simple programs

6. Write small programs

7. Write transparent programs

8. Write robust programs

9. Make data complicated when required, not the program

10. Build on potential users' expected knowledge

11. Avoid unnecessary output

12. Write programs which fail in a way easy to diagnose

13. Value developer time over machine time

14. Write abstract programs that generate code instead of writing code by hand

15. Prototype software before polishing it

16. Write flexible and open programs

17. Make the program and protocols extensible.

https://en.wikipedia.org/wiki/Unix_philosophy#Do_One_Thing_and_Do_It_Well
https://en.wikipedia.org/wiki/Eric_S._Raymond#/media/File:Eric_S_Raymond_portrait.jpg License CC BY-SA 2.0

https://en.wikipedia.org/wiki/Eric_S._Raymond#/media/File:Eric_S_Raymond_portrait.jpg
https://en.wikipedia.org/wiki/Eric_S._Raymond#/media/File:Eric_S_Raymond_portrait.jpg
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3. Do One Thing

Eric Raymond's 17 Unix Rules
1. Build modular programs

2. Write readable programs

3. Use composition

4. Separate mechanisms from policy

5. Write simple programs

6. Write small programs

7. Write transparent programs

8. Write robust programs

9. Make data complicated when required, not the program

10. Build on potential users' expected knowledge

11. Avoid unnecessary output

12. Write programs which fail in a way easy to diagnose

13. Value developer time over machine time

14. Write abstract programs that generate code instead of writing code by hand

15. Prototype software before polishing it

16. Write flexible and open programs

17. Make the program and protocols extensible.

https://en.wikipedia.org/wiki/Unix_philosophy#Do_One_Thing_and_Do_It_Well
https://en.wikipedia.org/wiki/Eric_S._Raymond#/media/File:Eric_S_Raymond_portrait.jpg License CC BY-SA 2.0

Do One Thing

https://en.wikipedia.org/wiki/Eric_S._Raymond#/media/File:Eric_S_Raymond_portrait.jpg
https://en.wikipedia.org/wiki/Eric_S._Raymond#/media/File:Eric_S_Raymond_portrait.jpg
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3. Do One Thing

You cannot implement 
simplicity without Do One 

Thing.
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4. Types

https://www.amazon.co.uk/Imagination-Intelligence-Cognitive-Educational-Movements/dp/B07DL4WX2H

https://www.amazon.co.uk/Imagination-Intelligence-Cognitive-Educational-Movements/dp/B07DL4WX2H
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4. Types – Typesafety

Type safety is one of 
those bikesheds
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4. Types – Typesafety

Great APIs can exist 
without type safety

… but I doubt they exist without types
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4. Types – Typesafety
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4. Types – Typesafety Types are in the docs
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4. Types – Advantages

You should design types 
regardless if you type 

check them.
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4. Types – Advantages

Likewise there are no 
«schemaless» DBMS.
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4. Types – Advantages

There are only 
«schema-on-read» and 

«schema-on-write» DBMS.
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4. Types – Advantages

Types have a few decisive 
advantages
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4. Types – Advantages

1. They (may) have a name

2. They simplify your design (if done well)

3. They do one thing

4. They’re types and thus type safe

5. They help discover the API

6. They describe errors

7. They can be applied consistently

8. They lead to better convenience

9. They can be versioned

10. They can be documented
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4. Types – Recognise the outline of this talk?

10 Reasons Why we Love Some APIs and Why we Hate Some Others

1. Naming

2. Simplicity

3. Do One Thing

4. Types

5. Discoverability

6. Error Handling

7. Consistency

8. Convenience

9. Compatibility

10. Documentation
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4. Types – Recognise the outline of this talk?

10 Reasons Why we Love Some APIs and Why we Hate Some Others

1. Naming

2. Simplicity

3. Do One Thing

4. Types

5. Discoverability

6. Error Handling

7. Consistency

8. Convenience

9. Compatibility

10. Documentation

In a way, this talk is about types
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4. Types – How do we do types?

class J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource 

{ ... }

Some prefer nominal types

https://docs.spring.io/spring-security/site/docs/4.2.12.BUILD-
SNAPSHOT/apidocs/org/springframework/security/web/authentication/preauth/j2ee/J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource.html

https://docs.spring.io/spring-security/site/docs/4.2.12.BUILD-SNAPSHOT/apidocs/org/springframework/security/web/authentication/preauth/j2ee/J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource.html
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4. Types – How do we do types?

class J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource 
implements AuthenticationDetailsSource<HttpServletRequest,
PreAuthenticatedGrantedAuthoritiesWebAuthenticationDetails>

{ ... }

Some prefer nominal types

https://docs.spring.io/spring-security/site/docs/4.2.12.BUILD-
SNAPSHOT/apidocs/org/springframework/security/web/authentication/preauth/j2ee/J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource.html

https://docs.spring.io/spring-security/site/docs/4.2.12.BUILD-SNAPSHOT/apidocs/org/springframework/security/web/authentication/preauth/j2ee/J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource.html


Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Types – How do we do types?

public Mono<CollectionModel<EntityModel<Employee>>> all() { ... }

Some prefer structural types

https://spring.io/blog/2019/03/05/spring-hateoas-1-0-m1-released

https://spring.io/blog/2019/03/05/spring-hateoas-1-0-m1-released
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4. Types – How do we do types?

public Mono<CollectionModel<EntityModel<Employee>>> all() { ... }

Some prefer structural types

https://spring.io/blog/2019/03/05/spring-hateoas-1-0-m1-releasedAre you thinking what I’m thinking?

https://spring.io/blog/2019/03/05/spring-hateoas-1-0-m1-released
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4. Types – How do we do types?

public Mono<Publisher<Optional<CollectionModel<Stream<EntityModel<Try<
Employee

>>>>>>> all() { ... }

Some prefer structural types

https://spring.io/blog/2019/03/05/spring-hateoas-1-0-m1-releasedMake no mistake: Not a merge conflicts

https://spring.io/blog/2019/03/05/spring-hateoas-1-0-m1-released
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4. Types – How do we do types?

Some people add syntax sugar.
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4. Types – How do we do types?

Some people add syntax sugar.

Some people add syntax vinegar.
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4. Types – How do we do types?

So easy to make fun of 
others.



Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

package org.jooq.impl;

public class DSL {
public static <T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, 
T13, T14, T15, T16, T17, T18, T19, T20, T21, T22> Row22<T1, T2, 
T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, 
T17, T18, T19, T20, T21, T22> row(T1 t1, T2 t2, T3 t3, T4 t4, 
T5 t5, T6 t6, T7 t7, T8 t8, T9 t9, T10 t10, T11 t11, T12 t12, 
T13 t13, T14 t14, T15 t15, T16 t16, T17 t17, T18 t18, T19 t19, 
T20 t20, T21 t21, T22 t22) {
...

}
}

4. Types – How do we do types?
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package org.jooq.impl;

public class DSL {
public static <T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, 
T13, T14, T15, T16, T17, T18, T19, T20, T21, T22> Row22<T1, T2, 
T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, 
T17, T18, T19, T20, T21, T22> row(T1 t1, T2 t2, T3 t3, T4 t4, 
T5 t5, T6 t6, T7 t7, T8 t8, T9 t9, T10 t10, T11 t11, T12 t12, 
T13 t13, T14 t14, T15 t15, T16 t16, T17 t17, T18 t18, T19 t19, 
T20 t20, T21 t21, T22 t22) {
...

}
}

4. Types – How do we do types?
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4. Types – How do we do types?
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package org.jooq;

public interface Row22<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11,
T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22> extends Row {

...

Condition eq(QuantifiedSelect<? extends Record22<T1, T2, T3, T4, T5,
T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, 
T20, T21, T22>> select);

}

4. Types – How do we do types?
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// You actually don’t see those types
Condition condition = row(1, "Lukas", "Eder").eq(any(
select(
SPEAKER.ID,
SPEAKER.FIRST_NAME,
SPEAKER.LAST_NAME

)
.from(SPEAKER)

));

4. Types – How do we do types?
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// You actually don’t see those types ... until you get it wrong
Condition condition = row(1, "Lukas", "Eder").eq(any(
select(
SPEAKER.ID,
SPEAKER.FIRST_NAME

)
.from(SPEAKER)

));

4. Types – How do we do types?

Compilation error
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4. Types – How do we do types?

What’s my point?
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4. Types – How do we do types?

Types are semantic
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4. Types – How do we do types?

Types convey meaning
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4. Types – How do we do types?

Types self-document
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4. Types – How do we do types?

This works both with 
nominal and structural 

typing
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4. Types – How do we do types?

This works both with 
static and dynamic

typing
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4. Types – Bad example

Counter example
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4. Types – Bad example

package java.sql;

public interface Connection {
Statement createStatement(
int resultSetType, 
int resultSetConcurrency,
int resultSetHoldability

) throws SQLException;
}

These things are defined in...These things are defined in... ResultSet (╯°□°）╯︵┻━┻
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4. Types – Much better

package java.sql;

// This would have be so much better
public enum ResultSetType { ... }
public enum ResultSetConcurrency { ... }
public enum ResultSetHoldability { ... }

public interface Connection {
Statement createStatement(
ResultSetType resultSetType, 
ResultSetConcurrency resultSetConcurrency,
ResultSetHoldability resultSetHoldability

) throws SQLException;
}
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4. Types – Bad example: stringly typed

You know what else is 
stringly typed?
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4. Types – Bad example: stringly typed

You know what else is 
stringly typed?

@Query("SELECT * FROM user")
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5. Discoverability

Picture by Valentin Antonucci  (Pexels License) https://www.pexels.com/photo/person-holding-compass-691637/

https://www.pexels.com/photo/person-holding-compass-691637/
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5. Discoverability

Good question. Closed, obviously
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5. Discoverability

Do your users have to 
RTFM (read the docs)?
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5. Discoverability
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5. Discoverability

Another obviously great 
API
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5. Discoverability
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5. Discoverability

Some people like reading docs.
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5. Discoverability

Some people like reading docs.

Others like navigating the API.

... can your API accommodate both?
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5. Discoverability

An API should have a very 
small set of entry points



Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Discoverability – JPA good part

emTx((EntityManager em) -> {
List<Film> films = em
.createNativeQuery("SELECT * FROM film", Film.class)
.getResultList();

for (Film film : films)
System.out.println(film.actors.size());

});
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5. Discoverability – JPA good part

emTx((EntityManager em) -> {
List<Film> films = em
.createNativeQuery("SELECT * FROM film", Film.class)
.getResultList();

for (Film film : films)
System.out.println(film.actors.size());

});

API can be discovered from EntityManager
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5. Discoverability – JPA good part

emTx((EntityManager em) -> {
List<Film> films = em
.createNativeQuery("SELECT * FROM film", Film.class)
.getResultList();

for (Film film : films)
System.out.println(film.actors.size());

});
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5. Discoverability – JPA good part

emTx((EntityManager em) -> {
List<Film> films = em
.createNativeQuery("SELECT * FROM film", Film.class)
.getResultList();

for (Film film : films)
System.out.println(film.actors.size());

});

But I’m 
interested in 

this
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5. Discoverability

What I wanted

void emTx(Consumer<EntityManager> consumer) {
consumer.accept(Tool.entityManager(dataSource));

}

In a way, EntityManager = DataSource
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What I got

5. Discoverability – Bad examples (IMO)

void emTx(Consumer<EntityManager> consumer) {
LocalContainerEntityManagerFactoryBean bean = new LocalContainerEntityManagerFactoryBean();
HibernateJpaVendorAdapter adapter = new HibernateJpaVendorAdapter();
adapter.setDatabasePlatform("org.hibernate.dialect.Oracle12cDialect");

bean.setDataSource(datasource);
bean.setPackagesToScan("com.examples.entities");
bean.setJpaVendorAdapter(adapter);
bean.setPersistenceUnitName("test");
bean.setPersistenceProviderClass(HibernatePersistenceProvider.class);
bean.afterPropertiesSet();

EntityManagerFactory emf = bean.getObject();
EntityManager em = emf.createEntityManager();

em.getTransaction().begin();

// Assume exception handling here
consumer.accept(em);
em.getTransaction().commit();

}
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5. Discoverability – Bad examples (IMO)

void emTx(Consumer<EntityManager> consumer) {
LocalContainerEntityManagerFactoryBean bean = new LocalContainerEntityManagerFactoryBean();
HibernateJpaVendorAdapter adapter = new HibernateJpaVendorAdapter();
adapter.setDatabasePlatform("org.hibernate.dialect.Oracle12cDialect");

bean.setDataSource(datasource);
bean.setPackagesToScan("com.examples.entities");
bean.setJpaVendorAdapter(adapter);
bean.setPersistenceUnitName("test");
bean.setPersistenceProviderClass(HibernatePersistenceProvider.class);
bean.afterPropertiesSet();

EntityManagerFactory emf = bean.getObject();
EntityManager em = emf.createEntityManager();

em.getTransaction().begin();

// Assume exception handling here
consumer.accept(em);
em.getTransaction().commit();

}

Guilty: I picked this at random
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5. Discoverability – Bad examples (IMO)

void emTx(Consumer<EntityManager> consumer) {
LocalContainerEntityManagerFactoryBean bean = new LocalContainerEntityManagerFactoryBean();
HibernateJpaVendorAdapter adapter = new HibernateJpaVendorAdapter();
adapter.setDatabasePlatform("org.hibernate.dialect.Oracle12cDialect");

bean.setDataSource(datasource);
bean.setPackagesToScan("com.examples.entities");
bean.setJpaVendorAdapter(adapter);
bean.setPersistenceUnitName("test");
bean.setPersistenceProviderClass(HibernatePersistenceProvider.class);
bean.afterPropertiesSet();

EntityManagerFactory emf = bean.getObject();
EntityManager em = emf.createEntityManager();

em.getTransaction().begin();

// Assume exception handling here
consumer.accept(em);
em.getTransaction().commit();

}

I had to say «Hibernate» 3 times
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5. Discoverability – Bad examples (IMO)

void emTx(Consumer<EntityManager> consumer) {
LocalContainerEntityManagerFactoryBean bean = new LocalContainerEntityManagerFactoryBean();
HibernateJpaVendorAdapter adapter = new HibernateJpaVendorAdapter();
adapter.setDatabasePlatform("org.hibernate.dialect.Oracle12cDialect");

bean.setDataSource(datasource);
bean.setPackagesToScan("com.examples.entities");
bean.setJpaVendorAdapter(adapter);
bean.setPersistenceUnitName("test");
bean.setPersistenceProviderClass(HibernatePersistenceProvider.class);
bean.afterPropertiesSet();

EntityManagerFactory emf = bean.getObject();
EntityManager em = emf.createEntityManager();

em.getTransaction().begin();

// Assume exception handling here
consumer.accept(em);
em.getTransaction().commit();

}

What on earth is this?
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5. Discoverability – Bad examples (IMO)

void emTx(Consumer<EntityManager> consumer) {
LocalContainerEntityManagerFactoryBean bean = new LocalContainerEntityManagerFactoryBean();
HibernateJpaVendorAdapter adapter = new HibernateJpaVendorAdapter();
adapter.setDatabasePlatform("org.hibernate.dialect.Oracle12cDialect");

bean.setDataSource(datasource);
bean.setPackagesToScan("com.examples.entities");
bean.setJpaVendorAdapter(adapter);
bean.setPersistenceUnitName("test");
bean.setPersistenceProviderClass(HibernatePersistenceProvider.class);
bean.afterPropertiesSet();

EntityManagerFactory emf = bean.getObject();
EntityManager em = emf.createEntityManager();

em.getTransaction().begin();

// Assume exception handling here
consumer.accept(em);
em.getTransaction().commit();

}

And why is it «getObject()»?
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5. Discoverability
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5. Discoverability

How long do you think it took 
me to discover this?
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5. Discoverability

Do I have confidence that I’m 
doing it right?
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5. Discoverability

I sure hope Olli will not be 
mad at me for quoting this ☺
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5. Discoverability



Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Discoverability

Was I just RTFM’ed?              
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5. Discoverability

I admit: I don’t know what I’m 
doing.

... and I don’t feel bad about it



Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Discoverability

Docs are great.
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5. Discoverability

Docs are great.

Discoverability is better.
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6. Error Handling
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6. Error Handling

catch (Exception e) {
// Should never happen

}
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7. Consistency
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7. Consistency

Just kidding...
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6. Error Handling

-- PL/SQL
begin 

end;
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6. Error Handling

-- PL/SQL
begin 

end;

ORA-06550: line 3, column 1:
PLS-00103: Encountered the symbol "END" when expecting one of the following:

( begin case declare exit for goto if loop mod null pragma
raise return select update while with <an identifier>
<a double-quoted delimited-identifier> <a bind variable> <<
continue close current delete fetch lock insert open rollback
savepoint set sql execute commit forall merge pipe purge
json_exists json_value json_query json_object json_array

06550. 00000 - "line %s, column %s:\n%s"
*Cause:    Usually a PL/SQL compilation error.
*Action:
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6. Error Handling

How about...
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6. Error Handling

-- PL/SQL
begin 

end;

ORA-06550: line 3, column 1:
PLS-00103: block cannot be empty. At least one statement must be provided.



Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

6. Error Handling

-- PL/SQL
begin 
null;

end;
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6. Error Handling

Eric Raymond's 17 Unix Rules
1. Build modular programs

2. Write readable programs

3. Use composition

4. Separate mechanisms from policy

5. Write simple programs

6. Write small programs

7. Write transparent programs

8. Write robust programs

9. Make data complicated when required, not the program

10. Build on potential users' expected knowledge

11. Avoid unnecessary output

12. Write programs which fail in a way easy to diagnose

13. Value developer time over machine time

14. Write abstract programs that generate code instead of writing code by hand

15. Prototype software before polishing it

16. Write flexible and open programs

17. Make the program and protocols extensible.

https://en.wikipedia.org/wiki/Unix_philosophy#Do_One_Thing_and_Do_It_Well
https://en.wikipedia.org/wiki/Eric_S._Raymond#/media/File:Eric_S_Raymond_portrait.jpg License CC BY-SA 2.0

https://en.wikipedia.org/wiki/Eric_S._Raymond#/media/File:Eric_S_Raymond_portrait.jpg
https://en.wikipedia.org/wiki/Eric_S._Raymond#/media/File:Eric_S_Raymond_portrait.jpg
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6. Error Handling

Eric Raymond's 17 Unix Rules
1. Build modular programs

2. Write readable programs

3. Use composition

4. Separate mechanisms from policy

5. Write simple programs

6. Write small programs

7. Write transparent programs

8. Write robust programs

9. Make data complicated when required, not the program

10. Build on potential users' expected knowledge

11. Avoid unnecessary output

12. Write programs which fail in a way easy to diagnose

13. Value developer time over machine time

14. Write abstract programs that generate code instead of writing code by hand

15. Prototype software before polishing it

16. Write flexible and open programs

17. Make the program and protocols extensible.

https://en.wikipedia.org/wiki/Unix_philosophy#Do_One_Thing_and_Do_It_Well
https://en.wikipedia.org/wiki/Eric_S._Raymond#/media/File:Eric_S_Raymond_portrait.jpg License CC BY-SA 2.0

Error Handling

https://en.wikipedia.org/wiki/Eric_S._Raymond#/media/File:Eric_S_Raymond_portrait.jpg
https://en.wikipedia.org/wiki/Eric_S._Raymond#/media/File:Eric_S_Raymond_portrait.jpg
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6. Error Handling

Bikeshed time

Picture by Jeremy Segrot (CC BY 2.0) https://www.flickr.com/photos/126337928@N05/42791980705

https://www.flickr.com/photos/126337928@N05/42791980705
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6. Error Handling

// c -- return value
int routine(...);
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6. Error Handling

// c -- return value
int routine(...);

int err = routine(...);
if (err > 0) {
// TODO should never happen

}
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6. Error Handling

// Java -- (checked) exceptions
void routine(...) throws
IllegalAccessException, 
IllegalArgumentException,
InvocationTargetException
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6. Error Handling

// Java -- (checked) exceptions
void routine(...) throws
IllegalAccessException, 
IllegalArgumentException,
InvocationTargetException

try {
routine(...);

}
catch (InvocationTargetException ignore) {}
catch (IllegalArgumentException yolo) {}
catch (IllegalAccessException heh) {
// That’ll teach them
System.exit(-1);

}
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6. Error Handling

// Java -- Cool kids who know Scala
Either<Void, Error> routine(...);
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6. Error Handling

// Java -- Cool kids who know Scala
Either<Void, Error> routine(...);

Error error = routine(...)
.filter(r -> true)
.get()
.flatMap(r -> Either.right(r))
.fold(l -> null, r -> r);

if (error != null) {
// TODO should never happen

}
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6. Error Handling

Mostly irrelevant
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6. Error Handling

Be consistent and return 
meaningful errors. The caller 

should know what to do.
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6. Error Handling

Types (Exceptions, Try monad, Either monad, etc.) 
are better than Strings / ints (error codes)
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7. Consistency

Getting an audience is hard. 
Sustaining an audience is 

hard. It demands a 
consistency of thought, of 

purpose, and of action over a 
long period of time.

—Bruce Springsteen 

(Image: Bundesarchiv, Bild 183-1988-0719-38 / Uhlemann, Thomas / CC-BY-SA 3.0)
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7. Consistency

Usability is defined by 5 quality components:

Learnability: How easy is it for users to accomplish basic 
tasks the first time they encounter the design?

Efficiency: Once users have learned the design, how 
quickly can they perform tasks?

Memorability: When users return to the design after a 
period of not using it, how easily can they reestablish 
proficiency?

Errors: How many errors do users make, how severe are 
these errors, and how easily can they recover from the 
errors?

Satisfaction: How pleasant is it to use the design?
https://www.nngroup.com/articles/usability-101-introduction-to-usability/

https://www.nngroup.com/articles/usability-101-introduction-to-usability/
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7. Consistency

// Average enterprise bean
public interface MyRepository {

Customer[] getCustomers();
List<Customer> getCustomersList();
Stream<Customer> getCustomersByName(String name);
Optional<Customer> getCustomerById(Integer id);
Customer getCustomerBySocialSecurityNumber(String no);
Customer getAnyCustomerByName(String name)
throws ObjectNotFoundException;

}
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7. Consistency

// Average enterprise bean
@Component @Bean 
public interface MyRepository {

Customer[] getCustomers();
List<Customer> getCustomersList();
Stream<Customer> getCustomersByName(String name);
Optional<Customer> getCustomerById(Integer id);
Customer getCustomerBySocialSecurityNumber(String no);
Customer getAnyCustomerByName(String name)
throws ObjectNotFoundException;

}
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7. Consistency

// Average enterprise bean
@Component @Bean 
@Discoverable
@AutoProxiable
public interface MyRepository {
@Query("SELECT * FROM customers")
Customer[] getCustomers();
List<Customer> getCustomersList();

@AutoClosingStreamableDevice
Stream<Customer> getCustomersByName(String name);
Optional<Customer> getCustomerById(Integer id);
@POST @GET
Customer getCustomerBySocialSecurityNumber(String no);
Customer getAnyCustomerByName(String name)
throws ObjectNotFoundException;

}
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7. Consistency

// Average enterprise bean
@Component @Bean 
@Discoverable
@AutoProxiable
@Sendable @TODO @JIRAIssues ({1234, 81371, 617837})
@AutoFetchProxyThing(because=@ICan)
public interface MyRepository {

@Query("SELECT * FROM customers")
Customer @NonNull [] getCustomers();
List<@NonNull Customer> getCustomersList();

@AutoClosingStreamableDevice
Stream<@NonNull Customer> getCustomersByName(@NonNull String name);
Optional<@NonNull Customer> getCustomerById(@NonNull Integer id);
@POST @GET
Customer getCustomerBySocialSecurityNumber(@NonNull String no);
Customer getAnyCustomerByName(@Nullable String name)

throws ObjectNotFoundException;
}
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7. Consistency

// Average enterprise bean
@Component @Bean 
@Discoverable
@AutoProxiable
@Sendable @TODO @JIRAIssues ({1234, 81371, 617837})
@AutoFetchProxyThing(because=@ICan) @Bean
@Configuration
@NoArgsConstructor @Cloneable @SneakyThrows
@ResultSetMapping @ConcurrentInitialiserProxyFactory
@SpringPrefetchAdapter @AdapterProxyBeanMethod @AdapterBeanProxyMethod
@MoreAndMoreAnnotations @CanYouEvenReadThis
@IsThereStillAnyRealLogicLeft
public interface MyRepository {

@Query("SELECT * FROM customers")
Customer @NonNull [] getCustomers();
List<@NonNull Customer> getCustomersList();
@Bean
@Configuration
@NoArgsConstructor @Cloneable @SneakyThrows
@ResultSetMapping @ConcurrentInitialiserProxyFactory
@SpringPrefetchAdapter @AdapterProxyBeanMethod @AdapterBeanProxyMethod
@MoreAndMoreAnnotations @CanYouEvenReadThis
@IsThereStillAnyRealLogicLeft
@AutoClosingStreamableDevice
Stream<@NonNull Customer> getCustomersByName(@NonNull String name);
Optional<@NonNull Customer> getCustomerById(@NonNull Integer id);
@POST @GET
Customer getCustomerBySocialSecurityNumber(@NonNull String no);
Customer getAnyCustomerByName(@Nullable String name)

throws ObjectNotFoundException;
}
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7. Consistency

Me with 
this joke
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7. Consistency

// Average enterprise bean
public interface MyRepository {

Customer[] getCustomers();
List<Customer> getCustomersList();
Stream<Customer> getCustomersByName(String name);
Optional<Customer> getCustomerById(Integer id);
Customer getCustomerBySocialSecurityNumber(String no);
Customer getAnyCustomerByName(String name)
throws ObjectNotFoundException;

}
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7. Consistency

// Average enterprise bean
public interface MyRepository {

Customer[] getCustomers();
List<Customer> getCustomersList();
Stream<Customer> getCustomersByName(String name);
Optional<Customer> getCustomerById(Integer id);
Customer getCustomerBySocialSecurityNumber(String no);
Customer getAnyCustomerByName(String name)
throws ObjectNotFoundException;

}

List vs Stream vs Array

Optional vs Null vs Exception
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7. Consistency

All choices are fine (don’t bikeshed)
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7. Consistency

All choices are fine (don’t bikeshed)

... but pick only one
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7. Consistency

// Examples from some other language
// ---------------------------------

// Search $needle in $haystack (which is an array)
array_search ($needle, $haystack)

// In $haystack (which is a string), search $needle
strpos ($haystack, $needle)

// Search $search, replace by $replace in $subject
// (which is an array or a string)
str_replace ($search, $replace, $subject)
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7. Consistency

// Examples from some other language
// ---------------------------------

// Search $needle in $haystack (which is an array)
array_search ($needle, $haystack)

// In $haystack (which is a string), search $needle
strpos ($haystack, $needle)

// Search $search, replace by $replace in $subject
// (which is an array or a string)
str_replace ($search, $replace, $subject)

If you’re not absolutely fluent, 
you have to look this up in the 

docs every time!
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7. Consistency

// Examples from some other language
// ---------------------------------

// Filter an $array using a $callback
array_filter ($array, $callback)

// Using a $callback, map an $array
array_map ($callback, $array)
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7. Consistency

Why consistency?
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7. Consistency

I’ve already mentioned JSR-
310 as a good example for 

consistent naming and typing
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7. Consistency

Consistency is at the core 
of usability
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7. Consistency

Usability is defined by 5 quality components:

Learnability: How easy is it for users to accomplish basic 
tasks the first time they encounter the design?

Efficiency: Once users have learned the design, how 
quickly can they perform tasks?

Memorability: When users return to the design after a 
period of not using it, how easily can they reestablish 
proficiency?

Errors: How many errors do users make, how severe are 
these errors, and how easily can they recover from the 
errors?

Satisfaction: How pleasant is it to use the design?
https://www.nngroup.com/articles/usability-101-introduction-to-usability/

All of these are affected!

https://www.nngroup.com/articles/usability-101-introduction-to-usability/
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8. Convenience
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8. Convenience
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8. Convenience

// Ignoring exceptions...
InputStream is = ...
OutputStream os = ...

byte[] buffer = new byte[1024];
int length;
while ((length = is.read(buffer)) > -1) {

baos.write(buffer, 0, length);
}
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8. Convenience

9 (!) major releases later...
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8. Convenience

public abstract class InputStream {

...

/**
* @since 9
*/
public long transferTo(OutputStream out) throws IOException {

long transferred = 0;
byte[] buffer = new byte[DEFAULT_BUFFER_SIZE];
int read;
while ((read = this.read(buffer, 0, DEFAULT_BUFFER_SIZE)) >= 0) {

out.write(buffer, 0, read);
transferred += read;

}
return transferred;

}
}



Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Convenience

public abstract class InputStream {

...

/**
* @since 9
*/
public long transferTo(OutputStream out) throws IOException {

long transferred = 0;
byte[] buffer = new byte[DEFAULT_BUFFER_SIZE];
int read;
while ((read = this.read(buffer, 0, DEFAULT_BUFFER_SIZE)) >= 0) {

out.write(buffer, 0, read);
transferred += read;

}
return transferred;

}
}
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8. Convenience

Convenience is the most 
underrated API feature

... and language feature!
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8. Convenience – Dogfooding

How to 
achieve 

convenience?

... by dogfooding
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8. Convenience – Dogfooding

Use your own API all the 
time.

... by eating your own «dog food»
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8. Convenience – Dogfooding

Me, when I use my own API
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8. Convenience – Dogfooding

Me, when I use my any API
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8. Convenience – Dogfooding

But at least I can fix my own
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8. Convenience – Dogfooding

Advantages:
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8. Convenience – Dogfooding

Advantages:

− Better objective quality
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8. Convenience – Dogfooding

Advantages:

− Better objective quality
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8. Convenience – Dogfooding

Advantages:

− Better objective quality

− Better subjective quality
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8. Convenience – Dogfooding

Advantages:

− Better objective quality

− Better subjective quality
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8. Convenience – Dogfooding

// After 1000x doing this
for (var record : ctx.select(ACTOR.FIRST_NAME, ACTOR.LAST_NAME)

.from(ACTOR)

.orderBy(ACTOR.ID)

.fetch()) {

...
}
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8. Convenience – Dogfooding

// After 1000x doing this
for (var record : ctx.select(ACTOR.FIRST_NAME, ACTOR.LAST_NAME)

.from(ACTOR)

.orderBy(ACTOR.ID)

.fetch()) {

...
}

This gets on my nerves!
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8. Convenience – Dogfooding

// ... why not just do it like this?
for (var record : ctx.select(ACTOR.FIRST_NAME, ACTOR.LAST_NAME)

.from(ACTOR)

.orderBy(ACTOR.ID)) {

...
}
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8. Convenience – Dogfooding

// ... why not just do it like this?
for (var record : ctx.select(ACTOR.FIRST_NAME, ACTOR.LAST_NAME)

.from(ACTOR)

.orderBy(ACTOR.ID)) {

...
}

ResultQuery<R> extends Iterable<R>
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8. Convenience – Dogfooding

-- If you’re coding PL/SQL, this is natural
for record in (select ACTOR.FIRST_NAME, ACTOR.LAST_NAME

from ACTOR
order by ACTOR.ID) loop

...
end loop
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8. Convenience

Convenience is not a 
game changer
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8. Convenience

Convenience does not 
solve «the big problems»
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8. Convenience

But convenience makes 
people happy
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8. Convenience

Happy people will 
recommend your API
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8. Convenience – In the Java language

// Java 7
try (Statement s = connection.createStatement()) {
..

}
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8. Convenience – In the Java language

// Java 7
try (Statement s = connection.createStatement()) {
..

}

// Java 6 (more or less)
Statement s = null;
try {
s = connection.createStatement();
..

}
finally {
if (s != null) try {
s.close();

}
catch (SQLException ignore) {} // Will never happen ;-)

}
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9. Compatibility

Or in short:

You can only lose



Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

9. Compatibility – Don’t be like Python

# Python 2
# --------

> 5/2
2

# Python 3
# --------

> 5/2
2.5
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9. Compatibility – Don’t be like Python

# Python 2
# --------

> print ("hi")
hi

> print "hi"
hi

# Python 3
# --------

> print ("hi")
hi

> print "hi"
SyntaxError
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9. Compatibility – Don’t be like Python

Little is gained from such 
incompatible changes
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9. Compatibility – The other extreme

// Java
// ----------

package java.lang;

public final class Boolean {
public static boolean getBoolean(String name) {
xxxxxxx xxxxxx = xxxxx;
xxx {
xxxxxx = xxxxxxxxxxxx(xxxxxx.xxxxxxxxxxx(xxxx));

} xxxxx (...) {
}
xxxxx xxxxxx;

}
}
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9. Compatibility – The other extreme

// Java
// ----------

package java.lang;

public final class Boolean {
public static boolean getBoolean(String name) {
boolean result = false;
try {
result = parseBoolean(System.getProperty(name));

} catch (...) {
}
return result;

}
}
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9. Compatibility – The other extreme

These things are bad 
because of their lack of 

consistency
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9. Compatibility – The other extreme

Why are they not 
deprecated and 

removed?
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9. Compatibility – The other extreme

We need 
more 
Marie 

Kondo in 
the JDK
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9. Compatibility – Be pragmatic

Be pragmatic
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9. Compatibility – A Trick

Keep old 
API tests 
around!

http://wiki.apidesign.org/wiki/Never_update_tests

http://wiki.apidesign.org/wiki/Never_update_tests
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9. Compatibility – A Collection of Tricks

https://wiki.eclipse.org/Evolving_Java-based_APIs

https://wiki.eclipse.org/Evolving_Java-based_APIs
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9. Compatibility – A Collection of Tricks

https://wiki.eclipse.org/Evolving_Java-based_APIs

https://wiki.eclipse.org/Evolving_Java-based_APIs_2

https://wiki.eclipse.org/Evolving_Java-based_APIs
https://wiki.eclipse.org/Evolving_Java-based_APIs_2
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9. Compatibility – A Collection of Tricks

https://wiki.eclipse.org/Evolving_Java-based_APIs

https://wiki.eclipse.org/Evolving_Java-based_APIs_2

https://wiki.eclipse.org/Evolving_Java-based_APIs_3

Evolving URLs, too

https://wiki.eclipse.org/Evolving_Java-based_APIs
https://wiki.eclipse.org/Evolving_Java-based_APIs_2
https://wiki.eclipse.org/Evolving_Java-based_APIs_3
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How developers feel 
about documentation

10. Documentation
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How developers feel 
about documentation

10. Documentation
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Just like testing

10. Documentation
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Just like testing

10. DocumentationWe do that at the endWe do that at the end, maybe
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10. Documentation

public class Customer {

public String getFirstName() { ... }
}
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10. Documentation

public class Customer {

public String getFirstName() { ... }
}

Architect: 
«Document Your 

Code!!»
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10. Documentation

public class Customer {

/**
* Gets the first name.
*
* @return the first name.
*/
public String getFirstName() { ... }

}



Copyright (c) 2009-2019 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

10. Documentation

Documentation is the 
dual of discoverability
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10. Documentation

Discoverability:

I don’t know what I need.
API, what do you have to offer?
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10. Documentation

Documentation:

I need this thing. 
API, do you happen to support it?
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Overview

10 Reasons Why we Love Some APIs and Why we Hate Some Others

1. Naming

2. Simplicity

3. Do One Thing

4. Types

5. Discoverability

6. Error Handling

7. Consistency

8. Convenience

9. Compatibility

10. Documentation
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Overview

10 Reasons Why we Love Some APIs and Why we Hate Some Others

1. Naming

2. Simplicity

3. Do One Thing

4. Types

5. Discoverability

6. Error Handling

7. Consistency

8. Convenience

9. Compatibility

10. Documentation

Remember: NSDTDECCCD

D is silent
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Overview

Design for humans

Programmers are humans too
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Overview

Want 
proof?

Geek and Poke. Licensed CC-BY-3.0. 
http://geek-and-poke.com/geekandpoke/2013/6/14/insulting-made-easy

http://geek-and-poke.com/geekandpoke/2013/6/14/insulting-made-easy
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Overview

Usability is defined by 5 quality components:

Learnability: How easy is it for users to accomplish basic 
tasks the first time they encounter the design?

Efficiency: Once users have learned the design, how 
quickly can they perform tasks?

Memorability: When users return to the design after a 
period of not using it, how easily can they reestablish 
proficiency?

Errors: How many errors do users make, how severe are 
these errors, and how easily can they recover from the 
errors?

Satisfaction: How pleasant is it to use the design?
https://www.nngroup.com/articles/usability-101-introduction-to-usability/

https://www.nngroup.com/articles/usability-101-introduction-to-usability/
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Thank you
Check out our trainings:

http://www.jooq.org/training

Coordinates
• Blog: http://blog.jooq.org (excellent Java SQL content)

• Twitter: @JavaOOQ / @lukaseder (more lame jokes)

• E-Mail: lukas.eder@datageekery.com

• Bank account: CH57 8148 7000 0SQL AWSM 7

http://www.jooq.org/training
http://blog.jooq.org/
https://twitter.com/JavaOOQ
https://twitter.com/lukaseder
mailto:lukas.eder@datageekery.com

