g e JAUA

: .“:' .::;2: USER
B e s GROUP
CH

Neodj ang

Going from relatione s|ofs /: 0 databases with

relations N ,
< P

Michael Simor drotnroll666
\\4!!!!5

@
@

Q@neos

s JAVA
. USER

-
- e
. ceme -
a1l - -
8 - 8r & rRes
LR L L
R ER I T B] - ©ace
L S
B BB BEs
LR TR R T 2
il L L @ sssee
..... LA B L L B L
aees “a . . =88
. - cew m- .
e Lad R e .
- sEEe .
'SR R ™
--w L 3
-

CH

 About Neo4;

* My ,,business” domain

+ Getting data into Neo4;

* Some options to access Neo4j on the JVM
- Spring Data Neo4j

 Some advanced queries

q;neoqj

About Neo4j

neoqj

Mindset

“Graph Thinking” is all about
considering connections in
data as important as the
data itself.

Neo4j

Native Graph Platform

Neo4j is an internet-scale,
native graph database which
executes connected workloads
faster than any other database
management system.

Ecosystem

Neo4j Professional Services
300+ partners
47,000 group members
61,000 trained engineers
3.5M downloads

Spring Data and Neo4j

NeoL]

About me

+ Neo4j since July 2018
+ Java Champion

. CO-
» Aut

nor (Spring Boot 2 und Arc42 by example)

'\

First contact to Neo4| through

QA ssistant

~ounder and current lead of Java User Group EuregJUG

4
Z::_% Javar

Champions

NeoL]

Known for

= JAVA ANL

""" JOIN 2017 AT ORDINA JWORKS
LIVE WITH YOUR
SAL-FETISH

NEeOL]

Known for

/

neoqj

My ,.business” domain

neoqj

Tracking musical data

:;@3

I —

o _/
A
o .

NEOL]

Tracking musical data

Attribute
—

Tuple {

R’_____/

Relation

NeoL]

Logical vs physical model e

+ Logical model designed as ER diagram

- Then normalized

- All about being free of redundancies
+ UNF (Unnormalized)

* TN

+ 2NF
- 3NF

: Atomic
. + No partial dependencies

. + No transitive dependencies

Foreign keys between tables aren’t relations!
The tables itself and every query result are.

10

12

The whiteboard model

IS the physical model o
:FOUNDED IN
+ Bands are founded in and :BORN_IN

solo artists are born in countries

:Artist

* Sometimes Artists are Band
associated with other Artists :SoloArtist
and bands have member :ASSOCIATED_WiTH

. Artists used to release .HAS_MEMBER 'RELEASED BY

Albums

13

The whiteboard model

IS the physical model

o ‘HAS_MEMBER

./ :‘RELEASED BY
Roger o |

A

:FOUNDED_IN

14

A Property Graph

Relationships connect nodes
and represent actions (verbs)

:HAS_MEMBER
joinedin: 1970
leftin: 1991 :FOUNDED_IN
:SoloArtist
name: Freddie Nodes represents objects

role: Lead Singer (Nouns)

Both nodes and relationships
can have properties neoy)

Querying

* Cypher is to Neo4j what SQL is to RDBMS:
A declarative, powerful query language

 https://www.opencvpher.org / The GOL Manifesto

MATCH (a:Album) -[:RELEASED BY]— (b:Band),
(c) «<[:FOUNDED_IN]- (b) -[:HAS_MEMBER]— (m) -[:BORN_IN]— (c2)

WHERE a.name = 'Innuendo’
RETURN a, b, m, c, c2

15

https://www.opencypher.org

http://localhost:7474/browser/?cmd=play&arg=http://localhost:8001/html/bootiful-music-demo1.html

Getting data into Neo4j

(@neoL]

Explore your source

S jrab information to inspect your source
and configure what you want to import into
Neodj.

Once you end up configuring your entities you
can import your data from your source into Neodj
just clicking a button

Explore and change your metadata

Type
Node
Node
Node
Node
Node
Relationship
Relationship

Relationship

Column
Name

Entity Name
Track
Artist

FlywayScherr

Play

Genre

ARTISTS

TRACKS

GENRES

R et
id INTEGER [Long I
name VARCHAR | String z

The Neo4)-ETL Tool

Import data from source

TRACKS

ARTISTS

GENRES 0

FIywayS.aHistory

Save Mapping

18

neoA|

J

LOAD CSV

Name; Founded 1n

Slayer;US

Die Arzte;DE

Die Toten Hosen;DE

Pink Floyd;GB P,

LOAD CSV WITH HEADERS FROM 'http://localhost:8001/data/artists.csv’
AS line FIELDTERMINATOR ';°

MERGE (a:Artist {name: line.Name})

MERGE (c:Country {code: line. Founded in})

MERGE (a) -[:FOUNDED IN]— (c)

RETURN =

19

http://localhost:8001/data/artists.csv

Building your own importer

public class StatsIntegration {
aContext public GraphDatabaseService db;

aProcedure(name = "stats.loadArtistData", mode = Mode.WRITE)
public void loadArtistData(
aName("userName") final String userName,
aName("password") final String password,
aName("url") final String url) {

try (var connection = DriverManager.getConnection(url, userName, password);
var neoTransaction = db.beginTx()) {

DSL.using(connection)

.selectFrom(ARTISTS)
.forEach(a —
db.execute("MERGE (artist:Artist {name: $artistName}) ", Map.of("artistName", a.getName()))
);
neoTransaction.success();

} catch (Exception e) {}

}
}

20

21

APOC

+ Not only a guy from the movie ,,The Matrix"”

https://neo4j-contrib.github.io/neo4j-apoc-procedures/
https://neo4j-contrib.github.io/neo4j-apoc-procedures/

APOC

+ Not only a guy from the movie ,,The Matrix"”
- Also not that guy
+ A Package Of Components” for Neo4j

+ ,Awesome Procedures on Cypher”

A huge set of all kinds of extension for Neo4;
https://neo4j-contrib.github.io/neo4j-apoc-
procedures/

21

https://neo4j-contrib.github.io/neo4j-apoc-procedures/
https://neo4j-contrib.github.io/neo4j-apoc-procedures/

apoc.load. jdbc

+ Use with single tables

* Or custom SQL statements

22

apoc.load. jdbc

WITH "jdbc:postgresql://localhost:5432/bootiful-music?user=statsdb-dev&password=dev" as url,
"SELECT DISTINCT a.name as artist_name, t.album, g.name as genre_name, t.year
FROM tracks t JOIN artists a ON a.id = t.artist_id JOIN genres g ON g.id = t.genre_id
WHERE t.compilation = 'f'" as sql

CALL apoc.load.jdbc(url,sql) YIELD row

MERGE (decade:Decade {value: row.year-row.year%10})

MERGE (year:Year {value: row.year})

MERGE (year) -[:PART_OF]— (decade)

MERGE (artist:Artist {name: row.artist _name})

MERGE (album:Album {name: row.album}) -[:RELEASED BY]— (artist)

MERGE (genre:Genre {name: row.genre_name})

MERGE (album) -[:HAS]— (genre)

MERGE (album) -[:RELEASED _IN]— (year)

http://localhost:7474/browser/?cmd=play&arg=http://localhost:8001/html/bootiful-music-demo2.html

Using Neo4j from the JVM

neOA.j

Different endpoints

+ Offers the binary Bolt protocol
+ Drivers for Java, Go, C#, Seabolt (C), Python, JavaScript

26

27

Working directly with the driver

try (
Driver driver = GraphDatabase.driver(uri, AuthTokens.basic(user, password));
Session session = driver.session()

) Eist<$tring> artistNames =
session
.readTransaction(tx — tx.run("MATCH (a:Artist) RETURN a", emptyMap()))
} .list(record — record.get("a").get("name").asString());

MICRONAUI

28

Using Ne04j-OGM

Neo4j Object Graph Mapper (OGM)

SessionFactory

TransactionManager

Java Driver
neoqj

Using Ne04j-OGM

+ Unified configuration
* Annotation based

 Mapping between Classes and Graph Model
+ Data access

 Domain based

* Through custom queries

29

aNodeEntity("Band")
public class BandEntity extends ArtistEntity {

ald aGeneratedValue
private Long id;

private String name;

aRelationship("FOUNDED_IN")
private CountryEntity foundedIn;

mRelationship("ACTIVE_SINCE")
private YearEntity activeSince;

aRelationship("HAS_MEMBER")
private List<Member> member = new ArraylList<();

Annotations

30

aRelationshipEntity("HAS_MEMBER")

public static class Member { 1
ald aGeneratedValue AnnOtatlons
private Long memberId;

aStartNode
private BandEntity band;

aEndNode
private SoloArtistEntity artist;

aConvert(YearConverter.class)
private Year joinedIn;

aConvert(YearConverter.class)
private Year leftlIn;

} :SoloArtist

‘HAS_MEMBER
joinedIn: 1970
leftin: 1991 :FOUNDED IN

Domain based data access

var artist = new BandEntity("Queen");
artist.addMember(new SoloArtistEntity("Freddie Mercury"));

var session = sessionFactory.openSession();
session.save(artist);

32

Domain based data access

var queen = session.load(BandEntity.class, 4711);

var allBands = session.loadAll(BandEntity.class);

33

Domain based data access

session.delete(nickelback);

session.deleteAll(BandEntity.class);

34

Data access with custom queries

var britishBands = session.query(
ArtistEntity.class,

"MATCH (b:Band) -[:FOUNDED_IN]— (:Country {code: 'GB'})", emptyMap());

Result result = session.query(

"MATCH (b:Artist) < [r:RELEASED BY]- (a:Album) -[:RELEASED_IN]— () -
[:PART OF]— (:Decade {value: $decade})"

"WHERE b.name = $name" +

"RETURN b, r, a",

Map.of("decade", 1970, "name", "Queen")

) ;

35

Works with

+ ,Plain” Java
* Micronaut
* Spring

+ Spring Boot

36

Spring Data Neo4j

neoqj

Spring Data Neo4j

+ Very early Spring Data Module
+ First Version ~2010 (Emil Eifrem, Rod Johnson)
+ Build on top of Neo4j-OGM
+ Part of the Spring Data release trains
+ Offers
+ Derived finder methods
+ Custom results and projections
+ Domain Events

+ Integrated in Spring Boot

38

Spring Data Neo4j

+ Can be used store agnostic
+ Without Cypher

+ Or ,Graph aware”

+ limiting the fetch size

+ Custom Cypher

Domain based data access revised

interface BandRepository extends Repository<BandEntity, Long> {

}

40

Domain based data access revised

interface BandRepository extends Neo4jRepository<BandEntity, Long> {

}

+ CRUD Methods
* (save, findByld, delete, count)

+ Supports @Depth annotation as well as depth argument

40

Domain based data access revised

var artist = new BandEntity("Queen");
artist.addMember(new SoloArtistEntity("Freddie Mercury"));

artist = bandRepository.save(artist);

41

Domain based data access revised

var artist = bandRepository.findByName("Nickelback")

artist.ifPresent(bandRepository::delete);

41

Derived finder methods

interface AlbumRepository extends Neo4jRepository<AlbumEntity, Long> {
Optional<AlbumEntity> findOneByName(String x);
List<AlbumEntity> findAllByNameMatchesRegex(String name);

List<AlbumEntity> findAllByNameMatchesRegex(
String name, Sort sort, @Depth int depth);

Optional<AlbumEntity> findOneByArtistNameAndName(
String artistName, String name);

42

Custom queries

interface AlbumRepository extends Neo4jRepository<AlbumEntity, Long> {

}

nQuery(value
" MATCH (album:Album) - [:CONTAINS] — (track:Track)"
" MATCH p=(album) - [*1] - ()"
WHERE id(track) = $trackId"

AND ALL(relationship IN relationships(p) "

+ + + + +

)

RETURN p"

WHERE type(relationship) < 'CONTAINS')"

List<AlbumEntity> findAllByTrack(Long trackId);

43

Custom results

adQueryResult
public class AlbumTrack {
private Long id;

private String name;
private Long discNumber;

private Long trackNumber;

}

44

Custom results

interface AlbumRepository extends Neo4jRepository<AlbumEntity, Long> {
aQuery(value

" MATCH (album:Album) - [c:CONTAINS] — (track:Track) "

" WHERE id(album) = $albumId"

" RETURN id(track) AS id, track.name AS name, "

+ + + + 0

" ORDER BY c.discNumber ASC, c.trackNumber ASC"

)
List<AlbumTrack> findAllAlbumTracks(Long albumId);

}

! c.discNumber AS discNumber, c.trackNumber AS trackNumber"

44

Spring Transactions

public class ArtistService {

aTransactional
public void deleteArtist(Long id) {

this.bandRepository.findById(id).ifPresent(a — {

session.delete(a);
session.query("MATCH (a:Album) WHERE size((a)-[:RELEASED_BY]—(:Artist))=0 DETACH DELETE a", emptyMap());
session.query("MATCH (t:Track) WHERE size((:Album)-[:CONTAINS]—(t))=0 DETACH DELETE t", emptyMap());
2
}
}

45

Spring Transactions

TransactionTemplate transactionTemplate;

return transactionTemplate.execute(t — {
ArtistEntity artist = this.findArtistById(artistId).get();

var oldLinks = artist.updateWikipedialLinks(newLinks);
session.save(artist);

oldLinks.forEach(session::delete);

return artist;

});

46

With Spring Boot: Configuration properties and
auto config

org.springframework.boot:spring-boot-starter-neo4]

spring.data.neo4j.username=neo4j
spring.data.neo4j.password=music
spring.data.neo4j.uri=bolt://localhost:7687

spring.data.neo4j.embedded.enabled=false

With Spring Boot: Test-Slice

aDataNeo4jTest

Motance(Litecycle.PER_CLASS)
class CountryRepositoryTest {

private final Session session;

private final CountryRepository countryRepository;

QdAutowlred
CountryRepositoryTest(Session session, CountryRepository countryRepository) {

this.session = session;
this.countryRepository = countryRepository;

}

aBeforeAll
void createTestData() {}

alest
void getStatisticsForCountryShouldwork() {}

48

Spring Data Neo4j: Don'ts

+ Not for batch processing

- Don't abuse derived method names

l.e. Optional<AlbumEntity>
findOneByArtistNameAndNameAndLiveIsTrueAndReleasedInValue(String artistName,

String name, long year)

+ Don't follow your Graph model blindly while modeling the domain

+ Graph model usually tailored to answer specific question

- Domain often follows a different use-case

49

Don’t follow your Graph model blindly while

modeling the domain

oNodeEntity("Artist")
public class ArtistEntity {

private String name;

oRelationship(
value = "RELEASED_BY",
direction = INCOMING)

private List<AlbumEntity> albums;

}

aNodeEntity("Album")
public class AlbumEntity f{

}

aRelationship("RELEASED_BY")
private ArtistEntity artist;

aRelationship("CONTAINS")
private List<TrackEntity> tracks;

aNodeEntity("Track")
public class TrackEntity f{

}

aRelationship(
value = "CONTAINS", direction =
private List<AlbumEntity> tracks;

INCOMING)

50

51

Better approach

oNodeEntity("Artist")
public class ArtistEntity {

private String name;

}

aNodeEntity("Album")
public class AlbumEntity {

oRelationship("RELEASED_BY")
private ArtistEntity artist;

}

adQueryResult
public class AlbumTrack {

private String name;

private Long trackNumber;

}

interface AlbumRepository extends Repository<AlbumEntity, Long> {
List<AlbumEntity> findAl1ByArtistNameMatchesRegex(
String artistName,
Sort sort);

aQuery(value
= " MATCH (album:Album) - [c:CONTAINS] — (track:Track) "
+ " WHERE id(album) = $albumId"
+ " RETURN track.name AS name, c.trackNumber AS trackNumber"
+ " ORDER BY c.discNumber ASC, c.trackNumber ASC"

)

List<AlbumTrack> findAllAlbumTracks(long albumId);
}

https://start.spring.io

Some advanced queries

neOA.j

http://localhost:7474/browser/?cmd=play&arg=http://localhost:8001/html/bootiful-music-demo3.html

Putting it all together

neoqj

Genre

My pérsondal music datab'a

2010 Germany Punk Rock 8271

1990 Germany Punk Rock 6919

2010 Germany Rock

2000 United Kingdom
Rock

1970 United Kingdom
Rock

1980 United Kingdom
Rock

2010 United Kingdom
Rock

2000 United Kingdom
Heavy Metal

1990 United States
Heavy Metal

6778

5116

3554

3433

3224

2370

2314

o
°-9 . .
L) ...
o
A
. []
- @
° e °® oo
° ..
o C
° e O ,
. ® o ¢
e ° ® 7
° ® e o
L]
0. .Oo
LN o @ ¢
o .
o @ o .
°
o
.. [] e
....o‘
e e o
° o
..
L]
L]
» M
L] . °
° et
. . .
L]
‘e o
L]
o o Lo
L]
. b o
¢ o - °
L J
9
o . °
e o
e o ' J
L]

http://localhost:8085

57

RELATIONAL DB DOCUMENT STORE WIDE COLUMN STORE DOCUMENT STORE RELATIONAL DB KEY VALUE STORE

Leveraging Cross-Silo Connections
neOA.j

Real use-cases

https://neodj.com/blog/icij-neo4j-unravel-panama-papers/
https://neodj.com/blog/analyzing-panama-papers-neodj/

https://neo4j.com/blog/analyzing-paradise-papers-neo4j/

IClJ - International Consortium of
Investigative Journalists

59

60

Neo4j

,In biology or medicine, data is
connected. You know that entities are
connected -- they are dependent on each
other. The reason why we chose graph
technology and Neo4| is because all the
entities are connected.”

Dr Alexander Jarasch, DZD German centre of diabetic research

https://www.zdnet.com/article/using-graph-database-technology-to-tackle-diabetes/

NEOL]

Try yourself

neoqj

neo4j.com/graphtour

. NeOL Berlin

GRAPHTOUR Tuesday, 12'March 2019

@Neo4j #GraphTour . in

GraphTour 2019 Brings Neo4j to a City Near You

Neod4j is hitting the road to bring a full day of content-rich
sessions on how graph databases are revolutionizing the modern
enterprise. This one-day event will turn you into a graph expert —
no matter your technical background or familiarity with graph
technology.

Meet our experts to hear first-hand about the advantages of
Neodj's native Graph Platform, which offers not just the Neo4j
database, but also Analytics, Data Import and Transformation,
Visualization, and Discovery capabilities.

There's a relationship-rich community waiting for you on the
Neo4j GraphTour. Pick any of the cities below to find out more
about these free events.

https://neo4j.com/graphtour/

Neo4j

* https://neo4dj.com/download/

* Neo4j Desktop (Analyst centric)

* Neo4j Server (Community and Enterprise Edition)
Community Edition: GPLv3
Enterprise Edition: Proprietary

63

https://neo4j.com/download/

Neo4j Datasets

+ https://neodj.com/sandbox-v2/

* Preconfigured instance with several different datasets

+ https://neodj.com/graphgists/
* Neodj Graph Gists, Example Models and Cypher Queries
+ https://offshoreleaks.icij.org/

+ Data convolutes mentioned early

64

https://neo4j.com/sandbox-v2/
https://neo4j.com/graphgists/
https://offshoreleaks.icij.org/

My ,,Bootiful Music” project

+ https://github.com/michael-simons/bootiful-music

+ Contains docker-compose-scripts for both relational database and Neo4;
Instances

+ Two Spring Boot applications
+ charts: the relational part of the application
- knowledge: the graph application

- etl: the custom Neo4j plugin

- A Micronaut demo as well

65

https://github.com/michael-simons/bootiful-music

Resources

* Demo:
github.com/michael-simons/bootiful-music

+ A series of blog posts: From relational databases to databases with relations
https://info.michael-simons.eu/2018/10/11/from-relational-databases-to-databases-with-relations/

+ Slides: speakerdeck.com/michaelsimons

+ Curated set of SDN / OGM tips
https://github.com/michael-simons/neo4j-sdn-ogm-tips

+ GraphTour 2019: https://neo4j.com/graphtour/

+ (German) Spring Boot Book
@SpringBootBuch // springbootbuch.de

66

https://github.com/michael-simons/bootiful-music
https://info.michael-simons.eu/2018/10/11/from-relational-databases-to-databases-with-relations/
http://speakerdeck.com/michaelsimons
https://github.com/michael-simons/neo4j-sdn-ogm-tips
https://neo4j.com/graphtour/
https://twitter.com/@springbootbuch
http://springbootbuch.de

Thank you!

neoqj

68

Images

+ Medical graph: DZD German centre of diabetic research
+ Codd: Wikipedia
+ Apoc and Cypher: Stills from the motion picture ,,The Matrix"

» Demo:
nttps://unsplash.com/photos/Uduc5h|X2Ew
nttps://unsplash.com/photos/FIPc9 Vocj4
nttps://unsplash.com/photos/gp8BLyaTlaAQ

neoqj

https://unsplash.com/photos/Uduc5hJX2Ew
https://unsplash.com/photos/FlPc9_VocJ4
https://unsplash.com/photos/gp8BLyaTaA0

