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“Now, every company is a software company” 
— Forbes 



Join developers.redhat.com5

http://developers.redhat.com


DevOps & 
Microservices



Feedback  
Loop



Batch Size
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Maintenance 
Window
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Zero Downtime
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Deployment
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DeploymentProxy
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Code is easy,  
state is hard



What about 
my 

relational 
database?
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Zero Downtime 
Migrations



Back and Forward 
Compatibility



Baby Steps = Smallest 
Possible Batch Size



Too many rows = Long Locks



Shard your 
updates
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ALTER TABLE customers RENAME COLUMN wrong TO correct; 
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ALTER TABLE customers ADD COLUMN correct VARCHAR(20); 

UPDATE customers SET correct = wrong 
  WHERE id BETWEEN 1 AND 100; 

UPDATE customers SET correct = wrong 
  WHERE id BETWEEN 101 AND 200; 

ALTER TABLE customers DELETE COLUMN wrong;
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Scenarios

Add a Column

Rename a Column

Change Type/Format of a Column

Delete a Column
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Add a Column

1 ADD COLUMN

2 Code computes the read value and writes to new column

3 Update data using shards

4 Code reads and writes from the new column
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Rename a Column

1 ADD COLUMN

2 Code reads from the old column and writes to both

3 Copy data using small shards

4 Code reads from the new column and writes to both

5 Code reads and writes from the new column

6 Delete the old column (later)
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Change Type/Format of a Column

1 ADD COLUMN

2 Code reads from the old column and writes to both

3 Copy data using small shards

4 Code reads from the new column and writes to both

5 Code reads and writes from the new column

6 Delete the old column (later)
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Delete a Column

1 DON’T

2 Stop using the read value but keep writing to the column

3 Delete the column
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What about referential integrity 
constraints?



Drop them and recreate when 
migration is done



Microservices 
Characteristics

https://martinfowler.com/microservices/



• Componentization via Services 
• Organized around Business Capabilities 
• Products not Projects 
• Smart endpoints and dumb pipes 
• Decentralized Governance 

• Decentralized Data Management 
• Infrastructure Automation 
• Design for failure 
• Evolutionary Design



Extracting your Microservice 
database
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One database per Microservice
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But I have a monolithic database!
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Splitting is not easy, 
but how do I integrate later?



Consistency Models



Strong Consistency 

Eventual Consistency



CRUD & CQRS
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CRUD (Create, Read, Update, Delete)
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CQRS (Command Query Responsibility Segregation)
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CQRS with separate data stores
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CQRS & Event Sourcing
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Scenarios
Shared Tables
Database View
Database Materialized View
Mirror Table using Trigger
Mirror Table using Transactional Code
Mirror Table using ETL
Mirror Table using Data Virtualization
Event Sourcing
Change Data Capture
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Shared Tables

Fastest Data Integration

Strong Consistency

Low cohesion and high coupling
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 Database View

Easiest one to implement

Largest support from DBMS vendors

Possible performance issues

Strong Consistency

One database must be reachable by the other

Updatable depending on DBMS support
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Database Materialized View

Better performance

Strong or Eventual Consistency

One database must be reachable by the other

Updatable depending on DBMS support
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Database Trigger

Depends on DBMS Support

Strong Consistency

One database must be reachable by the other
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Transactional Code

Any code: usually Stored Procedures or Distributed 
Transactions
Strong Consistency

Possible cohesion/coupling issues

Possible performance issues

Updatable depending on how it is implemented
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ETL Tools

Lots of available tools

Requires external trigger (usually time-based)

Can aggregate from multiple datasources

Eventual Consistency

Read only integration
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Data Virtualization

Real Time Access

Strong Consistency

Can aggregate from multiple datasources

Updatable depending on Data Virtualization Platform

http://developers.redhat.com
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Event Sourcing

State of data is a stream of events

Eases auditing

Eventual Consistency

Usually combined with a Message Bus

High scalability

http://developers.redhat.com
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Change Data Capture

Read datasource is updated through a stream of events

Eventual Consistency

Usually combined with a Message Bus

High scalability
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http://debezium.io
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