
Migrating to Microservice Databases:
From Relational Monolith to Distributed Data

Edson Yanaga
Director of Developer Experience
@yanaga

Join developers.redhat.com2

Java Champion Microsoft MVP

http://developers.redhat.com

http://developers.redhat.com/promotions/
migrating-to-microservice-databases

“Now, every company is a software company”
— Forbes

Join developers.redhat.com5

http://developers.redhat.com

DevOps &
Microservices

Feedback
Loop

Batch Size

Join developers.redhat.com9

Maintenance
Window

http://developers.redhat.com

Zero Downtime

Join developers.redhat.com11

Blue Green

Deployments

http://developers.redhat.com

Join developers.redhat.com12

Deployment

http://developers.redhat.com

Join developers.redhat.com13

DeploymentProxy

http://developers.redhat.com

Join developers.redhat.com14

Blue

Proxy

Green

http://developers.redhat.com

Join developers.redhat.com15

Blue

Proxy

Green

http://developers.redhat.com

Join developers.redhat.com16

Blue

Proxy

Green

http://developers.redhat.com

Join developers.redhat.com17

Blue

Proxy

Green

http://developers.redhat.com

Code is easy,
state is hard

What about
my

relational
database?

Join developers.redhat.com20

http://developers.redhat.com

Zero Downtime
Migrations

Back and Forward
Compatibility

Baby Steps = Smallest
Possible Batch Size

Too many rows = Long Locks

Shard your
updates

Join developers.redhat.com

ALTER TABLE customers RENAME COLUMN wrong TO correct;

26

http://developers.redhat.com

Join developers.redhat.com

ALTER TABLE customers ADD COLUMN correct VARCHAR(20);

UPDATE customers SET correct = wrong
 WHERE id BETWEEN 1 AND 100;

UPDATE customers SET correct = wrong
 WHERE id BETWEEN 101 AND 200;

ALTER TABLE customers DELETE COLUMN wrong;

27

http://developers.redhat.com

Join developers.redhat.com28

Scenarios

Add a Column

Rename a Column

Change Type/Format of a Column

Delete a Column

http://developers.redhat.com

Join developers.redhat.com29

Add a Column

1 ADD COLUMN

2 Code computes the read value and writes to new column

3 Update data using shards

4 Code reads and writes from the new column

http://developers.redhat.com

Join developers.redhat.com30

Rename a Column

1 ADD COLUMN

2 Code reads from the old column and writes to both

3 Copy data using small shards

4 Code reads from the new column and writes to both

5 Code reads and writes from the new column

6 Delete the old column (later)

http://developers.redhat.com

Join developers.redhat.com31

Change Type/Format of a Column

1 ADD COLUMN

2 Code reads from the old column and writes to both

3 Copy data using small shards

4 Code reads from the new column and writes to both

5 Code reads and writes from the new column

6 Delete the old column (later)

http://developers.redhat.com

Join developers.redhat.com32

Delete a Column

1 DON’T

2 Stop using the read value but keep writing to the column

3 Delete the column

http://developers.redhat.com

What about referential integrity
constraints?

Drop them and recreate when
migration is done

Microservices
Characteristics

https://martinfowler.com/microservices/

• Componentization via Services
• Organized around Business Capabilities
• Products not Projects
• Smart endpoints and dumb pipes
• Decentralized Governance

• Decentralized Data Management
• Infrastructure Automation
• Design for failure
• Evolutionary Design

Extracting your Microservice
database

Join developers.redhat.com38

One database per Microservice

http://developers.redhat.com

Join developers.redhat.com39

But I have a monolithic database!

http://developers.redhat.com

Join developers.redhat.com40

http://developers.redhat.com

Splitting is not easy,
but how do I integrate later?

Consistency Models

Strong Consistency

Eventual Consistency

CRUD & CQRS

Join developers.redhat.com45

CRUD (Create, Read, Update, Delete)

http://developers.redhat.com

Join developers.redhat.com46

CQRS (Command Query Responsibility Segregation)

http://developers.redhat.com

Join developers.redhat.com47

CQRS with separate data stores

http://developers.redhat.com

CQRS & Event Sourcing

Join developers.redhat.com49

Scenarios
Shared Tables
Database View
Database Materialized View
Mirror Table using Trigger
Mirror Table using Transactional Code
Mirror Table using ETL
Mirror Table using Data Virtualization
Event Sourcing
Change Data Capture

http://developers.redhat.com

Join developers.redhat.com50

Shared Tables

Fastest Data Integration

Strong Consistency

Low cohesion and high coupling

http://developers.redhat.com

Join developers.redhat.com51

 Database View

Easiest one to implement

Largest support from DBMS vendors

Possible performance issues

Strong Consistency

One database must be reachable by the other

Updatable depending on DBMS support

http://developers.redhat.com

Join developers.redhat.com52

Database Materialized View

Better performance

Strong or Eventual Consistency

One database must be reachable by the other

Updatable depending on DBMS support

http://developers.redhat.com

Join developers.redhat.com53

Database Trigger

Depends on DBMS Support

Strong Consistency

One database must be reachable by the other

http://developers.redhat.com

Join developers.redhat.com54

Transactional Code

Any code: usually Stored Procedures or Distributed
Transactions
Strong Consistency

Possible cohesion/coupling issues

Possible performance issues

Updatable depending on how it is implemented

http://developers.redhat.com

Join developers.redhat.com55

ETL Tools

Lots of available tools

Requires external trigger (usually time-based)

Can aggregate from multiple datasources

Eventual Consistency

Read only integration

http://developers.redhat.com

Join developers.redhat.com56

Data Virtualization

Real Time Access

Strong Consistency

Can aggregate from multiple datasources

Updatable depending on Data Virtualization Platform

http://developers.redhat.com

Join developers.redhat.com57

http://developers.redhat.com

Join developers.redhat.com58

Event Sourcing

State of data is a stream of events

Eases auditing

Eventual Consistency

Usually combined with a Message Bus

High scalability

http://developers.redhat.com

Join developers.redhat.com59

Change Data Capture

Read datasource is updated through a stream of events

Eventual Consistency

Usually combined with a Message Bus

High scalability

http://developers.redhat.com

http://debezium.io

Join
developers.redhat.com

Feedback welcome!
@yanaga

http://developers.redhat.com

plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHatNews

Thank you!

http://plus.google.com/+RedHat
http://linkedin.com/company/red-hat
http://youtube.com/user/RedHatVideos
http://facebook.com/redhatinc
http://twitter.com/RedHatNews

