
Making Sense of

your Data
BUILDING A CUSTOM MONGODB DATASOURCE

FOR GRAFANA WITH VERTX

1

About me

 IT Consultant & Java Specialist at DevCon5 (CH)

 Focal Areas

 Tool-assisted quality assurance

 Performance (-testing, -analysis, -tooling)

 Operational Topics (APM, Monitoring)

 Twitter: @gmuecke

2

The Starting Point

 Customer stored and keep response time measurement of test runs

in a MongoDB

 Lots of Data

 Timestamp & Value

 No Proper Visualization

3

What are timeseries data?

 a set of datapoints with a timestamp and a value

time

v
a

lu
e

What is MongoDB?

 MongoDB

 NoSQL database with focus on scale

 JSON as data representation

 No HTTP endpoint (TCP based Wire Protocol)

 Aggregation framework for complex queries

 Provides an Async Driver

5

What is Grafana?

 A Service for Visualizing Time Series Data

 Open Source

 Backend written in Go

 Frontend based on Angular

 Dashboards & Alerts

Grafana Architecture 7

Grafana Server

• Implemented in GO

• Persistence for Settings and Dashboards

• Offers Proxy for Service Calls

Browser

Angular UI Data Source Data Source Plugin...

Proxy

DB DB

Datasources for Grafana 8

Grafana Server

• Implemented in GO

• Persistence for Settings and Dashboards

• Offers Proxy for Service Calls

Browser

Datasource

Angular UI

Data Source Plugin

• Angular

• JavaScript

HTTP

Connect Angular Directly to

Mongo?

9

From 2 Tier to 3 Tier 10

Grafana

(Angular) Mongo DB

Grafana

(Angular) Mongo DB
Datasource

Service
HTTP Mongo

Wire

Protocol

Start Simple

SimpleJsonDatasource (Plugin)

3 ServiceEndpoints

 /search  Labels – names of available timeseries

 /annotations  Annotations – textual markers

 /query  Query – actual time series data

11

https://github.com/grafana/simple-json-datasource

/search Format

Request

{

"target" : "select metric",

"refId" : "E"

}

Response

[

"Metric Name 1",

"Metric Name2",

]

An array of strings

12

/annotations Format

Request
{ "annotation" : {

"name" : "Test",

"iconColor" : "rgba(255, 96, 96, 1)",

"datasource" : "Simple Example DS",

"enable" : true,

"query" : "{\"name\":\"Timeseries A\"}" },

"range" : {

"from" : "2016-06-13T12:23:47.387Z",

"to" : "2016-06-13T12:24:19.217Z" },

"rangeRaw" : {

"from" : "2016-06-13T12:23:47.387Z",

"to" : "2016-06-13T12:24:19.217Z"

} }

Response
[{ "annotation": {

"name": "Test",

"iconColor": "rgba(255, 96, 96, 1)",

"datasource": "Simple Example DS",

"enable": true,

"query": "{\"name\":\"Timeseries A\"}" },

"time": 1465820629774,

"title": "Marker",

"tags": [

"Tag 1",

"Tag 2"] }]

13

/query Format

Request
{ "panelId" : 1,

"maxDataPoints" : 1904,

"format" : "json",

"range" : {

"from" : "2016-06-13T12:23:47.387Z",

"to" : "2016-06-13T12:24:19.217Z" },

"rangeRaw" : {

"from" : "2016-06-13T12:23:47.387Z",

"to" : "2016-06-13T12:24:19.217Z" },

"interval" : "20ms",

"targets" : [{

"target" : "Time series A",

"refId" : "A" },] }

Response

[{ "target":"Timeseries A",

"datapoints":[

[1936,1465820629774],

[2105,1465820632673],

[4187,1465820635570],

[30001,1465820645243] },

{ "target":"Timeseries B",

"datapoints":[] }

]

14

Structure of the Source Data

{

"_id" : ObjectId("56375bc54f3c4caedfe68aca"),

"t" : {

"eDesc" : "some description",

"eId" : "56375ae24f3c4caedfe68a07",

"name" : "some name",

"profile" : "I01",

"rnId" : "56375b694f3c4caedfe68aa0",

"rnStatus" : "PASSED",

"uId" : "anonymous"

},

"n" : {

"begin" : NumberLong("1446468494689"),

"value" : NumberLong(283)

}

}

15

Custom Datasource

 Should be

 Lightweight

 Fast / Performant

 Simple

16

Microservice?

 Options for implementation

 Java EE Microservice (i.e. Wildfly Swarm)

 Springboot Microservice

 Vert.x Microservice

 Node.js

 ...

17

The Alternative Options

Node.js

 Single Threaded

 Child Worker Processes

 Javascript Only

 Not best-choice for heavy

computation

Spring / Java EE

 Multithreaded

 Clusterable

 Java Only

 Solid Workhorses, cumbersome at

times

19

Why Vert.x?

 High Performance, Low Footprint

 Asynchronous, Non-Blocking

 Actor-like Concurrency

 Event & Worker Verticles

 Message Driven

 Polyglott

 Java, Groovy, Javascript, Scala …

 Scalable

 Distributed Eventbus

 Multi-threaded Event Loops

20

But first,

some basics

21

Asynchronous non-blocking vs

Synchronous blocking

23

© Fritz Geller-Grimm

© Dontworry

https://commons.wikimedia.org/wiki/User:Dysmachus
https://commons.wikimedia.org/wiki/User:Dontworry

Event Loop 24

Photo: Andreas Praefcke

Event Loop and Verticles 25

Photo: RokerHRO

3rd Floor, Verticle A

2nd Floor, Verticle B

1st Floor, Verticle C

https://commons.wikimedia.org/wiki/User:RokerHRO

26

27

Event Loop 28

Verticle

Verticle

Verticle

EventI/O

Event Bus 30

Verticle

Verticle

Verticle

Eventbus

Message

CPU

Multi-Reactor 31

Core Core Core Core

Eventbus

Other Vert.x

Instance

Browser

Verticle Verticle

Event & Worker Verticles

Event Driven Verticles Worker Verticles

32

Verticle

Verticle

Verticle

Thread Pool

Thread Pool

V
e

rt
ic

le

V
e

rt
ic

le

V
e

rt
ic

le

V
e

rt
ic

le

V
e

rt
ic

le

Implementing the datasource

 Http Verticle

 Routing requests & sending responses

 Verticles querying the DB

 Searching timeseries labels

 Annotation

 Timeseries data points

 Optional Verticles for Post Processing

33

What is the challenge?

 Optimization

 Queries can be optimized

 Large datasets have to be searched, read and transported

 Source data can not be modified VS data redundancy

 Sizing

 How to size the analysis system without knowing the query-times?

 How to size thread pools or database pools if most of the queries will

take 100ms – 30s ?

34

CPU

Datasource Architecture 35

HTTP

Service

Eventbus

Timeseries

HTTP

Request

HTTP

Response

DB

Labels Annotations

Step 1 – The naive approach

 Find all datapoints within range

36

CPU

Datasource Architecture 37

HTTP

Service

Eventbus

Query

Database

HTTP

Request

HTTP

Response

DB

Step 2 – Split Request

 Split request into chunks (#chunks = #cores)

 Use multiple Verticle Instance in parallel (#instances = #cores) ?

38

CPU

CPU

Datasource Architecture 39

HTTP

Service

Split/ Merge

Request

Eventbus

Query

Database

Query

Database

Query

Database

Query

Database

HTTP

Request

HTTP

Response

DB

Step 3 – Aggregate Datapoints

 Use Mongo Aggregation Pipeline

 Reduce Datapoints returned to service

40

CPU

Datasource Architecture 41

HTTP

Service

Split/ Merge

Request

Eventbus

Query

Database

Query

Database

Query

Database

Query

Database

HTTP

Request

HTTP

Response

DB

Step 4 – Percentiles (CPU)

 Fetch all data

 Calculate percentiles in service

42

CPU

Step 4 – Percentiles (DB)

 Build aggregation pipeline to calculate percentiles

 Algorithm, see

http://www.dummies.com/education/math/statistics/how-to-

calculate-percentiles-in-statistics/

43

DB

http://www.dummies.com/education/math/statistics/how-to-calculate-percentiles-in-statistics/

CPU

Datasource Architecture 44

HTTP

Service

Split/ Merge

Request

Eventbus

Query

Database

Query

Database

Query

Database

Query

Database

HTTP

Request

HTTP

Response

DB

Step 5 - Postprocessing

 Apply additional computation on the result from the database

45

CPUCPU

Datasource Architecture (final) 46

HTTP

Service

Split

Request

Eventbus

Query

Database

Query

Database

Query

Database

Query

Database

Merge

Result

HTTP

Request

HTTP

Response

DB

Post

Process
Post

Process

Post

Process

Post

Process

Eventbus

Anyone recognize
this chip?
 CPU of the PS3 (Cell BE)

 Central Bus (EIB)

 1 General Purpose CPU

 Runs the Game (Event) Loop

 8 SPUs

 Special Processing

 Sound

 Physics

 AI

 ...

 230 GFLOPS (vs 103 GFLOPS PS4)

47

Adding more stats & calculation

 Push Calculation to DB if possible

 Add more workers / node for complex (post-) processing

 Aggregate results before post-processing

 DB performance is king

48

Custom vs. timeseries DB

Custom:

 No migration of existing data

 No redundant data storage

 More flexibility

 Better extensibility

 Custom views

 Custom aggregation

 More options

 scalability

 retention

Timeseries DB:

 Better out-of-the-box

 experience / performance

 integration

 functionality

 Built-in retention policies

 Built for scalability

49

Takeaways

 Grafana is powerful tool for visualizing data

 Information becomes consumable through visualization

 Information is essential for decision making

 Vert.x is

 Reactive, Non-Blocking, Asynchronous, Scalable

 Running on JVM

 Polyglott

 Fun

52

Source code on:

https://github.com/gmuecke/grafana-vertx-datasource

Still hungry?
FOR GEEK STUFF

53

Let’s read a large data file

 Datafile is large (> 1GB)

 Every line of the file is a datapoint

 The first 10 characters are a timestamp

 The dataset is sorted

 The datapoints are not equally distributed

 Grafana requires reads ~1900 datapoints per chart request

54

The Challenges (pick one)

 How to randomly access

1900 datapoints without

reading the entire file into

memory?

 How to read a huge file

efficiently into memory?

55

Index

+ Lazy refinement

Index

+ Lazy load

Let’s build an index

 Indexes can be build using a tree-

datastructure

 Node: Timestamp

 Leaf: offset position in file

or the datapoint

 Red-Black Trees provide fast

access

 Read/Insert O(log n)

 Space n

56

© Cburnett, Wikipedia

https://en.wikipedia.org/wiki/User:Cburnett
https://de.wikipedia.org/wiki/Datei:Red-black_tree_example.svg

57

 java.util.TreeMap is a red-black tree

based implementation*

 TreeMap<Long,Long> index = new

TreeMap<>();

 *actually all HashMaps are

58

How to build an index (fast)?

 Read datapoint from offset positions

 Build a partial index

59

Dataset

On next query

 Locate Block

 Refine Block

 Update Index

60

CPUCPU

Datasource Architecture (again) 61

HTTP

Service

Split

Request

Eventbus

Read File
Read File

Read File
Read File

Merge

Result

HTTP

Request

HTTP

Response

Dataset

Post

Process
Post

Process

Post

Process

Post

Process

Eventbus

Tradeoffs

Block
Size

Index
Size

Startup
Time

Heap
Size

Request
Size

62

Thank you!
FEEDBACK APRECIATED!

63

