
Making Sense of 

your Data
BUILDING A CUSTOM MONGODB DATASOURCE

FOR GRAFANA WITH VERTX
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About me

 IT Consultant & Java Specialist at DevCon5 (CH)

 Focal Areas

 Tool-assisted quality assurance

 Performance (-testing, -analysis, -tooling)

 Operational Topics (APM, Monitoring)

 Twitter: @gmuecke
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The Starting Point

 Customer stored and keep response time measurement of test runs 

in a MongoDB

 Lots of Data

 Timestamp & Value

 No Proper Visualization
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What are timeseries data?

 a set of datapoints with a timestamp and a value

time
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What is MongoDB?

 MongoDB

 NoSQL database with focus on scale

 JSON as data representation

 No HTTP endpoint (TCP based Wire Protocol)

 Aggregation framework for complex queries

 Provides an Async Driver
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What is Grafana?

 A Service for Visualizing Time Series Data

 Open Source

 Backend written in Go

 Frontend based on Angular

 Dashboards & Alerts



Grafana Architecture 7

Grafana Server 

• Implemented in GO

• Persistence for Settings and Dashboards

• Offers Proxy for Service Calls

Browser

Angular UI Data Source Data Source Plugin...

Proxy

DB DB



Datasources for Grafana 8

Grafana Server 

• Implemented in GO

• Persistence for Settings and Dashboards

• Offers Proxy for Service Calls

Browser

Datasource

Angular UI

Data Source Plugin

• Angular

• JavaScript

HTTP



Connect Angular Directly to 

Mongo?
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From 2 Tier to 3 Tier 10

Grafana

(Angular) Mongo DB

Grafana

(Angular) Mongo DB
Datasource 

Service
HTTP Mongo 

Wire

Protocol



Start Simple

SimpleJsonDatasource (Plugin)

3 ServiceEndpoints

 /search  Labels – names of available timeseries

 /annotations  Annotations – textual markers

 /query  Query – actual time series data
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https://github.com/grafana/simple-json-datasource



/search Format

Request

{

"target" : "select metric",

"refId" : "E"

}

Response

[

"Metric Name 1",

"Metric Name2",

]

An array of strings
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/annotations Format

Request
{      "annotation" : {

"name" : "Test",

"iconColor" : "rgba(255, 96, 96, 1)",

"datasource" : "Simple Example DS",

"enable" : true,

"query" : "{\"name\":\"Timeseries A\"}"      },

"range" : {

"from" : "2016-06-13T12:23:47.387Z",

"to" : "2016-06-13T12:24:19.217Z"      },

"rangeRaw" : {

"from" : "2016-06-13T12:23:47.387Z",

"to" : "2016-06-13T12:24:19.217Z"

}    }

Response
[      {        "annotation": {

"name": "Test",

"iconColor": "rgba(255, 96, 96, 1)",

"datasource": "Simple Example DS",

"enable": true,

"query": "{\"name\":\"Timeseries A\"}"        },

"time": 1465820629774,

"title": "Marker",

"tags": [

"Tag 1",

"Tag 2"        ]      }    ]
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/query Format

Request
{      "panelId" : 1,

"maxDataPoints" : 1904,

"format" : "json",

"range" : {

"from" : "2016-06-13T12:23:47.387Z",

"to" : "2016-06-13T12:24:19.217Z"      },

"rangeRaw" : {

"from" : "2016-06-13T12:23:47.387Z",

"to" : "2016-06-13T12:24:19.217Z"      },

"interval" : "20ms",

"targets" : [ {

"target" : "Time series A",

"refId" : "A"      },]  }

Response

[  {  "target":"Timeseries A",

"datapoints":[

[1936,1465820629774],

[2105,1465820632673],

[4187,1465820635570],

[30001,1465820645243] }, 

{  "target":"Timeseries B",

"datapoints":[ ] }

]
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Structure of the Source Data

{

"_id" : ObjectId("56375bc54f3c4caedfe68aca"),

"t" : {

"eDesc" : "some description",

"eId" : "56375ae24f3c4caedfe68a07",

"name" : "some name",

"profile" : "I01",

"rnId" : "56375b694f3c4caedfe68aa0",

"rnStatus" : "PASSED",

"uId" : "anonymous"

},

"n" : {

"begin" : NumberLong("1446468494689"),

"value" : NumberLong(283)

}

}
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Custom Datasource

 Should be 

 Lightweight

 Fast / Performant

 Simple
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Microservice?

 Options for implementation

 Java EE Microservice (i.e. Wildfly Swarm)

 Springboot Microservice

 Vert.x Microservice

 Node.js

 ...
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The Alternative Options

Node.js

 Single Threaded

 Child Worker Processes

 Javascript Only

 Not best-choice for heavy 

computation

Spring / Java EE

 Multithreaded

 Clusterable

 Java Only

 Solid Workhorses, cumbersome at 

times

19



Why Vert.x?

 High Performance, Low Footprint

 Asynchronous, Non-Blocking

 Actor-like Concurrency

 Event & Worker Verticles

 Message Driven

 Polyglott

 Java, Groovy, Javascript, Scala …

 Scalable

 Distributed Eventbus

 Multi-threaded Event Loops
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But first, 

some basics
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Asynchronous non-blocking vs

Synchronous blocking
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© Fritz Geller-Grimm

© Dontworry

https://commons.wikimedia.org/wiki/User:Dysmachus
https://commons.wikimedia.org/wiki/User:Dontworry


Event Loop 24

Photo: Andreas Praefcke



Event Loop and Verticles 25

Photo: RokerHRO

3rd Floor, Verticle A

2nd Floor, Verticle B

1st Floor, Verticle C

https://commons.wikimedia.org/wiki/User:RokerHRO
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Event Loop 28

Verticle

Verticle

Verticle

EventI/O



Event Bus 30

Verticle

Verticle

Verticle

Eventbus

Message



CPU

Multi-Reactor 31

Core Core Core Core

Eventbus

Other Vert.x

Instance

Browser

Verticle Verticle



Event & Worker Verticles

Event Driven Verticles Worker Verticles
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Implementing the datasource

 Http Verticle

 Routing requests & sending responses

 Verticles querying the DB

 Searching timeseries labels

 Annotation

 Timeseries data points

 Optional Verticles for Post Processing 
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What is the challenge?

 Optimization

 Queries can be optimized

 Large datasets have to be searched, read and transported

 Source data can not be modified VS data redundancy

 Sizing

 How to size the analysis system without knowing the query-times?

 How to size thread pools or database pools if most of the queries will 

take 100ms – 30s ?
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Datasource Architecture 35

HTTP 

Service

Eventbus

Timeseries

HTTP 

Request

HTTP 

Response

DB

Labels Annotations



Step 1 – The naive approach

 Find all datapoints within range

36



CPU

Datasource Architecture 37

HTTP 

Service

Eventbus

Query 

Database

HTTP 

Request

HTTP 

Response

DB



Step 2 – Split Request

 Split request into chunks (#chunks = #cores)

 Use multiple Verticle Instance in parallel (#instances = #cores) ?
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Step 3 – Aggregate Datapoints

 Use Mongo Aggregation Pipeline

 Reduce Datapoints returned to service
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Step 4 – Percentiles (CPU)

 Fetch all data

 Calculate percentiles in service
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Step 4 – Percentiles (DB)

 Build aggregation pipeline to calculate percentiles

 Algorithm, see 

http://www.dummies.com/education/math/statistics/how-to-

calculate-percentiles-in-statistics/
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DB

http://www.dummies.com/education/math/statistics/how-to-calculate-percentiles-in-statistics/
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Step 5 - Postprocessing

 Apply additional computation on the result from the database
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Anyone recognize
this chip?
 CPU of the PS3 (Cell BE)

 Central Bus (EIB)

 1 General Purpose CPU

 Runs the Game (Event) Loop

 8 SPUs

 Special Processing

 Sound

 Physics

 AI 

 ...

 230 GFLOPS (vs 103 GFLOPS PS4)
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Adding more stats & calculation

 Push Calculation to DB if possible

 Add more workers / node for complex (post-) processing

 Aggregate results before post-processing

 DB performance is king
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Custom vs. timeseries DB

Custom:

 No migration of existing data

 No redundant data storage

 More flexibility

 Better extensibility

 Custom views

 Custom aggregation

 More options

 scalability

 retention

Timeseries DB:

 Better out-of-the-box

 experience / performance

 integration

 functionality

 Built-in retention policies

 Built for scalability
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Takeaways

 Grafana is powerful tool for visualizing data

 Information becomes consumable through visualization

 Information is essential for decision making

 Vert.x is

 Reactive, Non-Blocking, Asynchronous, Scalable

 Running on JVM

 Polyglott

 Fun 
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Source code on: 

https://github.com/gmuecke/grafana-vertx-datasource



Still hungry?
FOR GEEK STUFF
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Let’s read a large data file

 Datafile is large (> 1GB)

 Every line of the file is a datapoint

 The first 10 characters are a timestamp

 The dataset is sorted

 The datapoints are not equally distributed

 Grafana requires reads ~1900 datapoints per chart request
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The Challenges (pick one)

 How to randomly access

1900 datapoints without

reading the entire file into

memory?

 How to read a huge file

efficiently into memory?
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Index 

+ Lazy refinement

Index 

+ Lazy load



Let’s build an index

 Indexes can be build using a tree-

datastructure

 Node: Timestamp

 Leaf: offset position in file

or the datapoint

 Red-Black Trees provide fast 

access

 Read/Insert O(log n) 

 Space n

56

©  Cburnett, Wikipedia

https://en.wikipedia.org/wiki/User:Cburnett
https://de.wikipedia.org/wiki/Datei:Red-black_tree_example.svg
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 java.util.TreeMap is a red-black tree 

based implementation*

 TreeMap<Long,Long> index = new 

TreeMap<>();

 *actually all HashMaps are
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How to build an index (fast)?

 Read datapoint from offset positions

 Build a partial index
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On next query

 Locate Block

 Refine Block

 Update Index
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Tradeoffs

Block 
Size

Index 
Size

Startup 
Time

Heap 
Size

Request 
Size
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Thank you!
FEEDBACK APRECIATED!
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