
Making Sense of

your Data
BUILDING A CUSTOM MONGODB DATASOURCE

FOR GRAFANA WITH VERTX

1

About me

 IT Consultant & Java Specialist at DevCon5 (CH)

 Focal Areas

 Tool-assisted quality assurance

 Performance (-testing, -analysis, -tooling)

 Operational Topics (APM, Monitoring)

 Twitter: @gmuecke

2

The Starting Point

 Customer stored and keep response time measurement of test runs

in a MongoDB

 Lots of Data

 Timestamp & Value

 No Proper Visualization

3

What are timeseries data?

 a set of datapoints with a timestamp and a value

time

v
a

lu
e

What is MongoDB?

 MongoDB

 NoSQL database with focus on scale

 JSON as data representation

 No HTTP endpoint (TCP based Wire Protocol)

 Aggregation framework for complex queries

 Provides an Async Driver

5

What is Grafana?

 A Service for Visualizing Time Series Data

 Open Source

 Backend written in Go

 Frontend based on Angular

 Dashboards & Alerts

Grafana Architecture 7

Grafana Server

• Implemented in GO

• Persistence for Settings and Dashboards

• Offers Proxy for Service Calls

Browser

Angular UI Data Source Data Source Plugin...

Proxy

DB DB

Datasources for Grafana 8

Grafana Server

• Implemented in GO

• Persistence for Settings and Dashboards

• Offers Proxy for Service Calls

Browser

Datasource

Angular UI

Data Source Plugin

• Angular

• JavaScript

HTTP

Connect Angular Directly to

Mongo?

9

From 2 Tier to 3 Tier 10

Grafana

(Angular) Mongo DB

Grafana

(Angular) Mongo DB
Datasource

Service
HTTP Mongo

Wire

Protocol

Start Simple

SimpleJsonDatasource (Plugin)

3 ServiceEndpoints

 /search Labels – names of available timeseries

 /annotations Annotations – textual markers

 /query Query – actual time series data

11

https://github.com/grafana/simple-json-datasource

/search Format

Request

{

"target" : "select metric",

"refId" : "E"

}

Response

[

"Metric Name 1",

"Metric Name2",

]

An array of strings

12

/annotations Format

Request
{ "annotation" : {

"name" : "Test",

"iconColor" : "rgba(255, 96, 96, 1)",

"datasource" : "Simple Example DS",

"enable" : true,

"query" : "{\"name\":\"Timeseries A\"}" },

"range" : {

"from" : "2016-06-13T12:23:47.387Z",

"to" : "2016-06-13T12:24:19.217Z" },

"rangeRaw" : {

"from" : "2016-06-13T12:23:47.387Z",

"to" : "2016-06-13T12:24:19.217Z"

} }

Response
[{ "annotation": {

"name": "Test",

"iconColor": "rgba(255, 96, 96, 1)",

"datasource": "Simple Example DS",

"enable": true,

"query": "{\"name\":\"Timeseries A\"}" },

"time": 1465820629774,

"title": "Marker",

"tags": [

"Tag 1",

"Tag 2"] }]

13

/query Format

Request
{ "panelId" : 1,

"maxDataPoints" : 1904,

"format" : "json",

"range" : {

"from" : "2016-06-13T12:23:47.387Z",

"to" : "2016-06-13T12:24:19.217Z" },

"rangeRaw" : {

"from" : "2016-06-13T12:23:47.387Z",

"to" : "2016-06-13T12:24:19.217Z" },

"interval" : "20ms",

"targets" : [{

"target" : "Time series A",

"refId" : "A" },] }

Response

[{ "target":"Timeseries A",

"datapoints":[

[1936,1465820629774],

[2105,1465820632673],

[4187,1465820635570],

[30001,1465820645243] },

{ "target":"Timeseries B",

"datapoints":[] }

]

14

Structure of the Source Data

{

"_id" : ObjectId("56375bc54f3c4caedfe68aca"),

"t" : {

"eDesc" : "some description",

"eId" : "56375ae24f3c4caedfe68a07",

"name" : "some name",

"profile" : "I01",

"rnId" : "56375b694f3c4caedfe68aa0",

"rnStatus" : "PASSED",

"uId" : "anonymous"

},

"n" : {

"begin" : NumberLong("1446468494689"),

"value" : NumberLong(283)

}

}

15

Custom Datasource

 Should be

 Lightweight

 Fast / Performant

 Simple

16

Microservice?

 Options for implementation

 Java EE Microservice (i.e. Wildfly Swarm)

 Springboot Microservice

 Vert.x Microservice

 Node.js

 ...

17

The Alternative Options

Node.js

 Single Threaded

 Child Worker Processes

 Javascript Only

 Not best-choice for heavy

computation

Spring / Java EE

 Multithreaded

 Clusterable

 Java Only

 Solid Workhorses, cumbersome at

times

19

Why Vert.x?

 High Performance, Low Footprint

 Asynchronous, Non-Blocking

 Actor-like Concurrency

 Event & Worker Verticles

 Message Driven

 Polyglott

 Java, Groovy, Javascript, Scala …

 Scalable

 Distributed Eventbus

 Multi-threaded Event Loops

20

But first,

some basics

21

Asynchronous non-blocking vs

Synchronous blocking

23

© Fritz Geller-Grimm

© Dontworry

https://commons.wikimedia.org/wiki/User:Dysmachus
https://commons.wikimedia.org/wiki/User:Dontworry

Event Loop 24

Photo: Andreas Praefcke

Event Loop and Verticles 25

Photo: RokerHRO

3rd Floor, Verticle A

2nd Floor, Verticle B

1st Floor, Verticle C

https://commons.wikimedia.org/wiki/User:RokerHRO

26

27

Event Loop 28

Verticle

Verticle

Verticle

EventI/O

Event Bus 30

Verticle

Verticle

Verticle

Eventbus

Message

CPU

Multi-Reactor 31

Core Core Core Core

Eventbus

Other Vert.x

Instance

Browser

Verticle Verticle

Event & Worker Verticles

Event Driven Verticles Worker Verticles

32

Verticle

Verticle

Verticle

Thread Pool

Thread Pool

V
e

rt
ic

le

V
e

rt
ic

le

V
e

rt
ic

le

V
e

rt
ic

le

V
e

rt
ic

le

Implementing the datasource

 Http Verticle

 Routing requests & sending responses

 Verticles querying the DB

 Searching timeseries labels

 Annotation

 Timeseries data points

 Optional Verticles for Post Processing

33

What is the challenge?

 Optimization

 Queries can be optimized

 Large datasets have to be searched, read and transported

 Source data can not be modified VS data redundancy

 Sizing

 How to size the analysis system without knowing the query-times?

 How to size thread pools or database pools if most of the queries will

take 100ms – 30s ?

34

CPU

Datasource Architecture 35

HTTP

Service

Eventbus

Timeseries

HTTP

Request

HTTP

Response

DB

Labels Annotations

Step 1 – The naive approach

 Find all datapoints within range

36

CPU

Datasource Architecture 37

HTTP

Service

Eventbus

Query

Database

HTTP

Request

HTTP

Response

DB

Step 2 – Split Request

 Split request into chunks (#chunks = #cores)

 Use multiple Verticle Instance in parallel (#instances = #cores) ?

38

CPU

CPU

Datasource Architecture 39

HTTP

Service

Split/ Merge

Request

Eventbus

Query

Database

Query

Database

Query

Database

Query

Database

HTTP

Request

HTTP

Response

DB

Step 3 – Aggregate Datapoints

 Use Mongo Aggregation Pipeline

 Reduce Datapoints returned to service

40

CPU

Datasource Architecture 41

HTTP

Service

Split/ Merge

Request

Eventbus

Query

Database

Query

Database

Query

Database

Query

Database

HTTP

Request

HTTP

Response

DB

Step 4 – Percentiles (CPU)

 Fetch all data

 Calculate percentiles in service

42

CPU

Step 4 – Percentiles (DB)

 Build aggregation pipeline to calculate percentiles

 Algorithm, see

http://www.dummies.com/education/math/statistics/how-to-

calculate-percentiles-in-statistics/

43

DB

http://www.dummies.com/education/math/statistics/how-to-calculate-percentiles-in-statistics/

CPU

Datasource Architecture 44

HTTP

Service

Split/ Merge

Request

Eventbus

Query

Database

Query

Database

Query

Database

Query

Database

HTTP

Request

HTTP

Response

DB

Step 5 - Postprocessing

 Apply additional computation on the result from the database

45

CPUCPU

Datasource Architecture (final) 46

HTTP

Service

Split

Request

Eventbus

Query

Database

Query

Database

Query

Database

Query

Database

Merge

Result

HTTP

Request

HTTP

Response

DB

Post

Process
Post

Process

Post

Process

Post

Process

Eventbus

Anyone recognize
this chip?
 CPU of the PS3 (Cell BE)

 Central Bus (EIB)

 1 General Purpose CPU

 Runs the Game (Event) Loop

 8 SPUs

 Special Processing

 Sound

 Physics

 AI

 ...

 230 GFLOPS (vs 103 GFLOPS PS4)

47

Adding more stats & calculation

 Push Calculation to DB if possible

 Add more workers / node for complex (post-) processing

 Aggregate results before post-processing

 DB performance is king

48

Custom vs. timeseries DB

Custom:

 No migration of existing data

 No redundant data storage

 More flexibility

 Better extensibility

 Custom views

 Custom aggregation

 More options

 scalability

 retention

Timeseries DB:

 Better out-of-the-box

 experience / performance

 integration

 functionality

 Built-in retention policies

 Built for scalability

49

Takeaways

 Grafana is powerful tool for visualizing data

 Information becomes consumable through visualization

 Information is essential for decision making

 Vert.x is

 Reactive, Non-Blocking, Asynchronous, Scalable

 Running on JVM

 Polyglott

 Fun

52

Source code on:

https://github.com/gmuecke/grafana-vertx-datasource

Still hungry?
FOR GEEK STUFF

53

Let’s read a large data file

 Datafile is large (> 1GB)

 Every line of the file is a datapoint

 The first 10 characters are a timestamp

 The dataset is sorted

 The datapoints are not equally distributed

 Grafana requires reads ~1900 datapoints per chart request

54

The Challenges (pick one)

 How to randomly access

1900 datapoints without

reading the entire file into

memory?

 How to read a huge file

efficiently into memory?

55

Index

+ Lazy refinement

Index

+ Lazy load

Let’s build an index

 Indexes can be build using a tree-

datastructure

 Node: Timestamp

 Leaf: offset position in file

or the datapoint

 Red-Black Trees provide fast

access

 Read/Insert O(log n)

 Space n

56

© Cburnett, Wikipedia

https://en.wikipedia.org/wiki/User:Cburnett
https://de.wikipedia.org/wiki/Datei:Red-black_tree_example.svg

57

 java.util.TreeMap is a red-black tree

based implementation*

 TreeMap<Long,Long> index = new

TreeMap<>();

 *actually all HashMaps are

58

How to build an index (fast)?

 Read datapoint from offset positions

 Build a partial index

59

Dataset

On next query

 Locate Block

 Refine Block

 Update Index

60

CPUCPU

Datasource Architecture (again) 61

HTTP

Service

Split

Request

Eventbus

Read File
Read File

Read File
Read File

Merge

Result

HTTP

Request

HTTP

Response

Dataset

Post

Process
Post

Process

Post

Process

Post

Process

Eventbus

Tradeoffs

Block
Size

Index
Size

Startup
Time

Heap
Size

Request
Size

62

Thank you!
FEEDBACK APRECIATED!

63

