
Gabriel Weis | GmbH

RxJava 
Just another golden grail for Android?

Why

“A good design is easier to change
than a bad design”

Dave Thomas

Why Architecture

• Understandability

• Testability

• Maintainability
• Reliability

⇒ Stability in the long term

Why not

Architecture is not free
-More source code
- Less performance
-Needs reviews
-Needs experienced developers

What makes it difficult on Android to have a good
architecture?

Android Flaws
• Android violates massively SOLID 

• Single reponsibility: can you say “Context”
• Open/closed: we are final
• Liskov substitution: puh, had luck
• Interface segregation: the empty listener
• Dependency inversion: interface what?

Android Flaws
• Lifecycle
• No build-in ModelView-Whatever
• Asynchronous execution
• No guidelines and degree of freedom

View (passive)

Presenter

Model

user events

model update state change event

view update

MVP

Separation of Concerns

© honold.ch

http://www.honold.ch/sortiment/patisseries/patisserie/product/217-cremeschnitte.html

Layer & Dependencies
ui
 MVP

cr
os

s-
co

nc
er

n

repository

Dependency Rule

business

Flow
view

cr
os

s-
co

nc
er

n

business

presenter

repository

RxJava over Bus?

More powerful and explicit…

… less easy to learn

3:0 for RxJava
• BUS just notifies and requires pull

–say data hell to stateful events 

• RxJava binds and pushes
• RxJava has built in data transformation
• solution for asynchronous tasks

+1 for extraordinary documentation

• Observable and Completable
• (onNext)

• onCompleted
• onError

⇒ Observer pattern on steroids

RxJava concepts

RxJava concepts
• Operators

• Creation

• Transforming

• Filtering

• …

RxJava concepts
• Schedulers

• subscribeOn

• observeOn 

• Subscription

RxJava in MVP + layers?
• data and events get observable
• emitted items can be transformed 

⇒ each layer can “decorate”

Hotspots
• generation of devices
• update of view
• connecting a device

BusinessUI

IOverviewView

OverviewFragment

OverviewActivity

OverviewManager

IOverviewPresenter

OverviewPresenter

Business Repository <library>

BleManager DeviceGenerator

BleRepository

OverviewManager

Business Repository

BleManager DeviceGenerator

startDeviceScan()

generateDevices()

UI

onAttached()

startDeviceScan()

OverviewManagerPresenter

Business Repository

BleDevice 
Repository DeviceGenerator

UI

onAttached()

startDeviceScan()

deviceObservable()

observable.onNext(device)

deviceObservable()

subscribe()

put(device)

startDeviceScan()

observable.onNext(device)

OverviewManagerPresenter

Business Repository

BleDevice 
Repository DeviceGenerator

UI

onAttached()

startDeviceScan()

deviceObservable()

observable.onNext(device)

deviceObservable()

subscribe()

put(device)

startDeviceScan()

observable.onNext(device)

OverviewManagerPresenter

Business Repository

BleManager Device
Repository

startDeviceScan()

put(device)

bus.post(new EventRepoAddedNewDevice)

bus.post(...)

getDevice(address)

getDevice(address)

Device
GeneratorOverviewManager

some more words about testing

• Passive View
• Presenter is Java-only
• Contract between View/Presenter
• Separate configuration & execution

The ugly truth
 
 

Memory Leaks
• Remember anonymous classes?

=> reference enclosing class

Memory Leaks
• Care for your Subscription(s)

–unsubscribe is not enough
–CompositeSubscription.clear()

Sometimes strange
• async configuration surprises sometimes
• async nested commands with loops

Summary
• KISS / SoC and clarity are Key 

• straighten out

• RxJava has a learning curve ;-)

Thank you!

“No rules are universal”

(except this one)

About
• GmbH

– http://binosys.de
– info@binosys.de

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel

Links
• Memory Leaks

– https://medium.com/@scanarch/how-to-leak-memory-with-subscriptions-in-rxjava-
ae0ef01ad361#.trg5p6fn4

• MVVM
– https://en.wikipedia.org/wiki/Model-view-viewmodel
– https://medium.com/@manuelvicnt/rxjava-android-mvvm-app-structure-with-retrofit-

a5605fa32c00#.x17crfmof
• MVVM

– https://www.infoq.com/articles/Testing-RxJava
• RxLifecycle

– https://github.com/trello/RxLifecycle

https://medium.com/@scanarch/how-to-leak-memory-with-subscriptions-in-rxjava-ae0ef01ad361#.trg5p6fn4
https://medium.com/@scanarch/how-to-leak-memory-with-subscriptions-in-rxjava-ae0ef01ad361#.trg5p6fn4
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel
https://medium.com/@manuelvicnt/rxjava-android-mvvm-app-structure-with-retrofit-a5605fa32c00#.x17crfmof
https://medium.com/@manuelvicnt/rxjava-android-mvvm-app-structure-with-retrofit-a5605fa32c00#.x17crfmof
https://github.com/trello/RxLifecycle

Layers start with packages...
 
 
… and packages give structure to source

