
Gabriel Weis   |              GmbH

RxJava 
Just another golden grail for Android?



Why

“A good design is easier to change  
than a bad design” 

Dave Thomas



Why Architecture

• Understandability 

• Testability 

• Maintainability 
• Reliability 

⇒ Stability in the long term



Why not

Architecture is not free 
-More source code 
- Less performance 
-Needs reviews 
-Needs experienced developers



What makes it difficult on Android to have a good 
architecture?



Android Flaws
• Android violates massively SOLID 

• Single reponsibility:   can you say “Context” 
• Open/closed:   we are final 
• Liskov substitution:   puh, had luck  
• Interface segregation:  the empty listener 
• Dependency inversion:  interface what?



Android Flaws
• Lifecycle 
• No build-in ModelView-Whatever 
• Asynchronous execution 
• No guidelines and degree of freedom
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Separation of Concerns

©  honold.ch

http://www.honold.ch/sortiment/patisseries/patisserie/product/217-cremeschnitte.html
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RxJava over Bus?

More powerful and explicit… 

… less easy to learn



3:0 for RxJava
• BUS just notifies and requires pull 

–say data hell to stateful events 

• RxJava binds and pushes 
• RxJava has built in data transformation 
• solution for asynchronous tasks 

+1 for extraordinary documentation



• Observable and Completable 
• (onNext) 

• onCompleted 
• onError 

⇒ Observer pattern on steroids

RxJava concepts



RxJava concepts
• Operators 

• Creation 

• Transforming 

• Filtering 

• …



RxJava concepts
• Schedulers 

• subscribeOn 

• observeOn 

• Subscription





RxJava in MVP + layers?
• data and events get observable 
• emitted items can be transformed 

⇒ each layer can “decorate” 







Hotspots
• generation of devices 
• update of view 
• connecting a device



BusinessUI

IOverviewView

OverviewFragment
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OverviewPresenter



Business Repository <library>

BleManager DeviceGenerator

BleRepository

OverviewManager



Business Repository
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Business Repository
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Business Repository

BleManager Device 
Repository

startDeviceScan() 

put(device)

bus.post(new EventRepoAddedNewDevice)

bus.post(...)
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Device 
GeneratorOverviewManager









some more words about testing

• Passive View 
• Presenter is Java-only 
• Contract between View/Presenter 
• Separate configuration & execution



The ugly truth
 
 



Memory Leaks
• Remember anonymous classes? 

=> reference enclosing class



Memory Leaks
• Care for your Subscription(s) 

–unsubscribe is not enough 
–CompositeSubscription.clear()





Sometimes strange
• async configuration surprises sometimes 
• async nested commands with loops



Summary
• KISS / SoC and clarity are Key 

• straighten out 

• RxJava has a learning curve ;-)



Thank you!

“No rules are universal”

(except this one)



About
•                    GmbH 

– http://binosys.de 
– info@binosys.de

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel


Links
• Memory Leaks 

– https://medium.com/@scanarch/how-to-leak-memory-with-subscriptions-in-rxjava-
ae0ef01ad361#.trg5p6fn4 

• MVVM 
– https://en.wikipedia.org/wiki/Model-view-viewmodel  
– https://medium.com/@manuelvicnt/rxjava-android-mvvm-app-structure-with-retrofit-

a5605fa32c00#.x17crfmof 
• MVVM 

– https://www.infoq.com/articles/Testing-RxJava 
• RxLifecycle 

– https://github.com/trello/RxLifecycle

https://medium.com/@scanarch/how-to-leak-memory-with-subscriptions-in-rxjava-ae0ef01ad361#.trg5p6fn4
https://medium.com/@scanarch/how-to-leak-memory-with-subscriptions-in-rxjava-ae0ef01ad361#.trg5p6fn4
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel
https://medium.com/@manuelvicnt/rxjava-android-mvvm-app-structure-with-retrofit-a5605fa32c00#.x17crfmof
https://medium.com/@manuelvicnt/rxjava-android-mvvm-app-structure-with-retrofit-a5605fa32c00#.x17crfmof
https://github.com/trello/RxLifecycle


Layers start with packages...
 
 
… and packages give structure to source










