

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Polyglot	on	the	JVM	with	Graal

Thomas	Wuerthinger
Senior	Research	Director,	Oracle	Labs
@thomaswue

Java	User	Group	Zurich,	15	of	December	2016

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Safe	Harbor	Statement
The	following	is	intended	to	provide	some	insight	into	a	line	of	research	in	Oracle	Labs.	It	
is	intended	for	information	purposes	only,	and	may	not	be	incorporated	into	any	contract.		
It	is	not	a	commitment	to	deliver	any	material,	code,	or	functionality,	and	should	not	be	
relied	upon	in	making	purchasing	decisions.	The	development,	release,	and	timing	of	any	
features	or	functionality	described	in	connection	with	any	Oracle	product	or	service	
remains	at	the	sole	discretion	of	Oracle.		Any	views	expressed	in	this	presentation	are	my	
own	and	do	not	necessarily	reflect	the	views	of	Oracle.

3

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

One	language	to	rule	them	all?

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

One	Language	to	Rule	Them	All?
Let’s	ask	Stack	Overflow…

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 6

3Lo
we

ri
s
be

tte
r

The	World	Is	Polyglot

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Graal Overview
A	new compiler for HotSpot	written in	Java	and with a	focus on	speculative optimizations.
JVMCI	and Graal included in	JDK9,	modified version of JDK8	available via	OTN.

HotSpot

Compiler Interface

Client Server

HotSpot

JVMCI

Graal

C++

Java

HotSpot	VM Graal VM

7

Compiler
Interface

Client

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 8

Compilers	Are	Complex	Beasts…
inlining,	global	value	numbering,	constant	folding	and	propagation,	dead	code	
elimination,	partial	escape	analysis,	conditional	elimination,	loop-invariant	code	motion,	
core	library	intrinsifications,	invariant	reassociation,	bounds-checking	elimination,	read	
elimination,	checkcast elimination,	string	builder	optimizations,	test	reordering,	strength	
reduction,	null	check	elimination,	allocation	site	merging,	speculative	guard	movement,	
deoptimization grouping,	common	subexpression elimination,	profile-based	
devirtualization,	class	hierarchy	analysis,	redundant	lock	elision,	tail	duplication,	path	
duplication,	push-through-phi,	de-duplication,	alias	classification	and	pointer	analysis,	
induction	variable	analysis,	loop	fusion/inversion/unrolling/splitting/unswitching,	
automatic	vectorization,	register	allocation,	instruction	selection,	peephole	
optimizations,	instruction	scheduling,	code-block	reordering

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Key	Features	of	Graal
• Designed	for	speculative	optimizations	and	deoptimization

– Metadata	for	deoptimization is	propagated	through	all	optimization	phases

• Aggressive	high-level	optimizations
– Example:	partial	escape	analysis

• Modular	architecture
– Configurable	compiler	phases

• Written	in	Java!
– Easier	to	maintain	and	lower	entry	barrier
– Blurs	the	line	between	user	application	and	user	library	and	compiler
– Graal compiling	and	optimizing	itself	is	also	a	good	optimization	opportunity
– https://github.com/graalvm/graal-core

9

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 10

Partial	Escape	Analysis	(1)
public static Car getCached(int hp, String name) {

Car car = new Car(hp, name, null);
Car cacheEntry = null;
for (int i = 0; i < cache.length; i++) {

if (car.hp == cache[i].hp &&
car.name == cache[i].name) {

cacheEntry = cache[i];
break;

}
}
if (cacheEntry != null) {

return cacheEntry;
} else {

addToCache(car);
return car;

}
}

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 11

Partial	Escape	Analysis	(2)
public static Car getCached(int hp, String name) {

Car cacheEntry = null;
for (int i = 0; i < cache.length; i++) {

if (hp == cache[i].hp &&
name == cache[i].name) {

cacheEntry = cache[i];
break;

}
}
if (cacheEntry != null) {

return cacheEntry;
} else {

Car car = new Car(hp, name, null);
addToCache(car);
return car;

}
}

§ new Car(...) escapes	at:
— addToCache(car);

— return car;

§ Might	be	a	very	unlikely	path

§ No	allocation	in	frequent	path

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Graal VM	Polyglot

12

HotSpot

JVMCI

Graal

Compiler
Interface

Client

Truffle

RRubyJavaScript

C
LLVM

• JavaScript
– Better	ECMAScript2016	score	than	V8
– Performance	competitive	with	V8
– Full	node.js support

• Ruby
– Fork	of	JRuby for	~5-10x	speed

• R
– Statistical	language

• C,	C++,	Fortran
– Native	language	support	via	LLVM

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Truffle:	System	Structure

Guest Language Implementation

Host Services

Guest Language Application

OS

Application
Developer

Language
Developer

VM Expert

Guest Language

Managed Host Language

Managed Host Language
or Unmanaged Language

Unmanaged Language
(typically C or C++)

Written by: Written in:

OS Expert

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Speculate	and	Optimize	…

U

U U

U

U I

I I

G

G I

I I

G

G

Node Rewriting
for Profiling Feedback

AST Interpreter
Rewritten Nodes

AST Interpreter
Uninitialized Nodes

Compilation using
Partial Evaluation

Compiled Code

Node Transitions

S

U
I

D

G

Uninitialized Integer

Generic

DoubleString

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

…	and	Deoptimize and	Reoptimize!

I

I I

G

G I

I I

G

G

Deoptimization
to AST Interpreter

D

I D

G

G D

I D

G

G

Node Rewriting to Update
Profiling Feedback

Recompilation using
Partial Evaluation

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 16

Graal.js Architecture

JavaScript

C++

Java

node	modules	with	only	JavaScriptnode	modules	with	native	extensions

node	standard	library

node	bindings	(socket,	http,	…)

V8	API
thread
pool
(libeio)

event
loop
(libev)

DNS
(c-ares)

crypto
(OpenSSL)

Graal.js JavaScript	Engine

Adapter	V8	API	to	Graal.js via	JNI

native	extensions

Fully	compatible	including	native	module	support!

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| Confidential	– Oracle	Internal

The	Ruby	team	aim	to	make	this	NES	
emulator	benchmark	3x	faster	for	their	

next	version,	3.0

It’s	non-academic	code,	written	based	
on	what	the	Ruby	team	thinks	is	

important	 to	optimise

• MRI	2.3.3	runs	around	~20	FPS
• JRuby 9.1.6.0	with	invokedynamic~40	FPS
• TruffleRubyon	Graal ~180	FPS

https://eregon.me/blog/2016/11/28/optcarrot.html

TruffleRuby – OptCarrot Benchmark

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

FastR

• Goal:	realize	the	advantages	of	the	Truffle	stack	for	R
– Superior	performance	without	resorting	to	C/C++/Fortran/…
– Designed	for	data-heavy	and	parallel	applications
– CRAN	/	Bioconductor	repository	support

• Not	an	”incremental	improvement”	on	GNU	R
– New	execution	engine	written	from	scratch,	based	on	Truffle
– Designed	as	a	drop-in	replacement	for	GNU	R

• Speedup	over	latest	GNU	R	interpreter
– Somewhere	between	2	and10x

Confidential	– Oracle	Internal

https://github.com/graalvm/fastr

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Project	Sulong:	LLVM	front-end	for	Graal

int add(x, y) {
return x + y;

} define i32 @add(i32 %x, i32 %y) #0 {
%1 = alloca i32, align 4
%2 = alloca i32, align 4
store i32 %x, i32* %1, align 4
store i32 %y, i32* %2, align 4
%3 = load i32* %1, align 4
%4 = load i32* %2, align 4
%5 = add nsw i32 %3, %4
ret i32 %5

}

FUNCTION add(x, y)
INTEGER :: add
INTEGER :: a
INTEGER :: b
add = a + b
RETURN

END FUNCTION

func add(x int, y int) int {
return x + y;

}

https://github.com/graalvm/sulong

C/C++

Fortran

Go

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Performance:	Graal VM

20

1.02 1.2

4.1
4.5

0.85 0.9

0

1

2

3

4

5

Java Scala Ruby R Native JavaScript

Speedup,	higher	is	better

Performance	relative	to:
HotSpot/Server,	HotSpot/Server	running	JRuby,	GNU	R,	LLVM	AOT	compiled,	V8

Graal

Best	Specialized	Competition

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 21

C
• Interoperability

– Java	ó languages
– Between	languages

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 22

Inlining Across	Language	Boundaries

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 23

Compilation	Across	Language	Boundaries
Machine code for loop:

function main() {
eval("application/x-ruby",

"def add(a, b) a + b; end;");
eval("application/x-ruby",

"Truffle::Interop.export_method(:add);");
...

}

function loop(n) {
add = import("add");

i = 0;
sum = 0;
while (i <= n) {

sum = add(sum, i);
i = add(i, 1);

}
return sum;

}

Mixed JavaScript and Ruby source code:
mov r14, 0
mov r13, 0
jmp L2

L1: safepoint
mov rax, r13
add rax, r14
jo L3
inc r13
mov r14, rax

L2: cmp r13, rbp
jle L1
...

L3: call
transferToInterpreter

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Substrate	VM:	Execution	Model

Ahead-of-Time
Compilation

Points-To Analysis

Substrate	VM

Truffle	Language

JDK

Reachable	methods,	
fields,	 and	classes

Machine	Code

Initial	Heap

All	Java	classes	from	
Truffle	language	

(or	any	application),	
JDK,	and	Substrate	VM

Application	 running	
without		dependency	 on	JDK	
and	without	Java	class	loading

DWARF	Info

ELF	/	MachO Binary

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Open	Source
• https://github.com/graalvm/graal-core

– Graal compiler
• https://github.com/graalvm/truffle

– Truffle	language	implementation	framework
• https://github.com/graalvm/fastr

– Fast	R	runtime
• https://github.com/graalvm/sulong

– Dynamic	runtime	for	LLVM	bitcode
• https://github.com/jruby/jruby/wiki/Truffle

– Fast	Ruby	runtime

25

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Graal OTN	Download
• oracle.com/technetwork/oracle-labs/program-languages
• Based	on	Java	8u92

• Includes	a	Graal VM	technology	preview	running

– Java	bytecode based	languages

– JavaScript	and	node.js

– Ruby

– R

26

We	are	looking	for	
example	workloads!

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 27

Graal

Truffle

RRuby

Java Scala

JavaScript

C
LLVM

@thomaswue

Questions?

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 28

