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@Path("notebook")
public class BadNotebookResource {

// Cannot replace for testing :-(
NotebookApplication notebookApplication = new NotebookApplication();

// Strings are pretty simple and straightforward to handle – but not type safe!
@GET @Produces("text/plain")
public List<String> getNotesAsStringList(@MatrixParam("from") String startDate, @MatrixParam("to") String endDate) {

List<Note> notes = notesAsList(startDate, endDate);
List<String> notesAsStrings = notes.stream().map(Note::toString).collect(Collectors.toList());
// TODO Implement Note::toString!
return notesAsStrings;

}

private List<Note> notesAsList(String startDate, String endDate) {
return notebookApplication.getNotes(new TimeSpan(Instant.parse(startDate), Instant.parse(endDate))).asList();

}

// Hopefully JAXB support will not get deprecated sometimes... ;-)
@GET @Produces("application/xml")
public List<Note> getNotesAsXML(@MatrixParam("from") String startDate, @MatrixParam("to") String endDate) {

List<Note> notes = notesAsList(startDate, endDate);
// TODO Add @XmlRootElement to Note class
return notes;

}

// Now we're rather screwed! :-(
@GET @Produces("application/pdf")
public PDF /* TBD */getNotesAsPDF(@MatrixParam("from") String startDate, @MatrixParam("to") String endDate) {

List<Note> notes = notesAsList(startDate, endDate);
PDF pdf = useFOP(notes); // TODO fix this!
return pdf;

}
}

 How to write ugly JAX-RS code



  

Dude, that's really ugly!



  

Lesson #1: Choose Right API

Servlet API

● You want to do 
something with HTTP.

● Virtualizes web-servers
– (Tomcat, Jetty, etc.)

● Layer 7 (HTTP)

● Request-oriented

● Slim and fast

JAX-RS

● You want to write 
RESTful applications.

● Virtualizes frameworks
– (Jersey, RESTeasy, etc.)

● „Layer 8“ (Business)

● Domain-oriented

● Comes at a cost



  

Lesson #2: Use JAX-RS 2.0

JAX-RS 1.x

● Nice idea.

● Providers

● Auto-discovery

● JAXB

● Conditional Requests

● REST Level 2
http://martinfowler.com/articles/richardsonMaturityModel.html

JAX-RS 2.x

● Now we're talking!

● Features

● Configuration

● Filters, Interceptors

● Converter Providers

● Validation

● Basic Hypermedia

● Asynchronous Processing

● Client API

● REST Level 2.5



  

Lesson #3: Clean Business Object

● Apply CoC (Convention over Configuration)

– Use annotations sparingly. You might actually not need them at all!

● Don't mix technology into business logic
– Resource – „Business Service“

– Entity – „Business Item“

– Header – „Business State“

– Exception – „Business Problem“

● Don't reference providers

● Let framework do the rest
– Parsing and Rendering of State Representation (HTTP Entity)

– Encoding / Decoding of additional information (HTTP Headers)

– Result Code and Exceptions

– Transfer Encoding, Compression, Caching

– Dealing with URIs, Parameters, etc.



  

Lesson #4: Separate Aspects

● Apply SoC (Separation of Concerns)

– Disintegrate monolithic application

– Compose standalone components

● Think in features

– „PDF Support“, „JSON Support“

– „Compression Support“

– „OData Support“

● Know Your API

– Filters, Providers, Configuration, ...



  

Disintegrated Application
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How nice JAX-RS code looks like

@Path("notebook")
public class GoodNotebookResource {

@Inject
NotebookApplication notebookApplication;

@GET
public Notes getNotes(@BeanParam TimeSpan timeSpan) {

return this.notebookApplication.getNotes(timeSpan);
}

}



  

Ain't that cool?



  

The Magic behind JAX-RS

● Auto-detects features and global providers

● Auto-selects stuitable provider alternatives

● Manages component lifecycle

● Features configure providers

● Features are dynamic, optional and configurable

● Integrates with CDI, Bean Validation API, and EJB



  

Ingredients

● Providers

– Message Body Readers and Writers

– Parameter Converters

– Context Resolvers

– Exception Mappers

● Filters and Interceptors

– The JAX-RS Swiss Army Knife

– Can completely re-route, modify or even suppress requests and commits!

● Features

– Dynamic Features are asked to register for each method AT DEPLOYMENT; can also bind globally

● Configuration

– Shared among all components, application scoped

● Request and Response Properties

– Forward information tags from one component to the next



  

Conclusion

● Application := ∑Features

● Marketplace with replaceable off-the-shelf Features

– PDF Support

– Encryption

– Compression

– Data Type Conversion (Instant, Image, URL, ...)

● Less *.java, more pom.xml



  

Got It?



  

The Bonus Slide: JAX-RS 2.1 Status

● Oracle has better things to do than doing open source.

– Oracle was rather inactive for many months.

● Reactivated Expert Group recently with massively reduced charter:

– RX (Support for reactive programming using CompletableFuture<T>)

– NIO (Improving scalability by decoupling thread cound from client count)

– SSE (Pushing events to clients)

– Alignment with MVC specification (JAX-RS based MVC controllers)

– Support for JSON-B


