
Mirco Dotta 
@mircodotta

Akka Streams
Asynchronous non-blocking streaming made easy

1



Reactive	  Applications

The Four Reactive Traits

http://reactivemanifesto.org/

2

http://reactivemanifesto.org/


Why Reactive?

3



Why Reactive?

• Users expectations have changed 
• Services must be always up. 
• Must be fast. 

• Billions of internet connected devices. 
• Data is transformed and pushed continuously.

4



Reactive Streams

An initiative for providing 
Standardised(!) 
Back-pressured 
Asynchronous 

Stream processing 
!

http://www.reactive-streams.org/

5

http://www.reactive-streams.org/


Reactive Streams: Who?
!

• Kaazing 
• Netflix (rxJava) 
• Pivotal (reactor) 
• RedHat (vert.x) 
• Twitter 
• Typesafe (akka-streams & slick) 

• Play 2.4 also supports reactive streams! 
• Doug Lea proposed an implementation for JDK9! 
!

!

6

http://cs.oswego.edu/pipermail/concurrency-interest/2015-January/013641.html


Standardised!

7



Reactive Streams: Inter-op
!

We want to make different implementations  
co-operate with each other.

8



Reactive Streams: Inter-op

The different implementations “talk to each other” 
using the Reactive Streams protocol.

9



Reactive Streams: Inter-op
// here are a few imports that you are not seeing!
object ScalaMain extends App {!
  EmbeddedApp.fromHandler(new Handler {!
    override def handle(ctx: Context): Unit = {!
      // RxJava Observable!
      val intObs = Observable.from((1 to 10).asJava)!!
      // Reactive Streams Publisher!
      val intPub = RxReactiveStreams.toPublisher(intObs)!!
      // Akka Streams Source!
      val stringSource = Source(intPub).map(_.toString)!!
      // Reactive Streams Publisher!
      val stringPub = stringSource.runWith(Sink.fanoutPublisher(1, 1))!!
      // Reactor Stream!
      val linesStream = Streams.create(stringPub).map[String](new reactor.function.Function[String, String] {!
        override def apply(in: String) = in + "\n"!
      })!!
      // and now render the HTTP response (RatPack)!
      ctx.render(ResponseChunks.stringChunks(linesStream))!
    }!!
  }).test(new Consumer[TestHttpClient] {!
    override def accept(client: TestHttpClient): Unit = {!
      val text = client.getText()!
      println(text)!
      system.shutdown()!
    }!
  })!
} https://github.com/rkuhn/ReactiveStreamsInterop

10

https://github.com/rkuhn/ReactiveStreamsInterop


Reactive Streams: Inter-op

The Reactive Streams SPI is NOT meant to be user-
api. You should use one of the implementing 

libraries.

11



Akka Streams

12



Akka Streams: Basics

• DSL for the formulation of transformations on 
data streams. 
• Basic building blocks: 
• Source	  -‐	  something with exactly one output stream. 
• Flow - something with exactly one input and one output 

stream. 
• Sink - something with exactly one input stream. 

• RunnableFlow -  A Flow that has both ends “attached” 
to a Source and Sink respectively, and is ready to be run() .

13



Akka Streams: Basics

14



Akka Streams: Basics

15



Akka Streams: Basics

16



Demo 1

17



Akka Streams: Graph

• Source, Flow, and	  Sink	  are good for expressing 
linear computations. 
• But how to express a computation graph? 

18



Demo 2

19



Akka Streams: Fan-out

• Broadcast	  -‐	   given an input element emits to each 
output. 

• Balance -  given an input element emits to one of its 
output ports. 

• UnZip -  splits a stream of (A,B)  tuples into two 
streams, one of type A  and on of type B. 

• FlexiRoute	  -‐ enables writing custom fan out 
elements using a simple DSL.

20



Akka Streams: Fan-in

• Merge	  -‐	    picks randomly from inputs pushing them one 
by one to its output. 
• MergePreferred	  - like Merge  but if elements are 

available on preferred  port, it picks from it, otherwise 
randomly from others. 

• 	  ZipWith(fn)- takes a function of N inputs that 
given a value for each input emits 1 output element.

21



Akka Streams: Fan-in cont’d

• Zip	  -  is a ZipWith specialised to zipping input streams 
of A  and B  into an (A,B)  tuple stream. 
• Concat	  - concatenates two streams (first consume 

one, then the second one). 

• FlexiMerge	  - enables writing custom fan-in 
elements using a simple DSL.

22



Demo 3

23



What is back-pressure?

24



Back-pressure?

Publisher[T] Subscriber[T]

25



Back-pressure?

Fast Publisher Slow Subscriber

26



Back-pressure? 
“Why would I need that!?”

27



Back-pressure? Push

28



Back-pressure? Push

Subscriber usually has some kind of buffer.

29



Back-pressure? Push

30



Back-pressure? Push

31



Back-pressure? Push

What if the buffer overflows?

32



Back-pressure? Push

Use bounded buffer,  
drop messages + require re-sending

33



Back-pressure? Push (a)

Kernel does this!	

Routers do this!	


(TCP)

Use bounded buffer,  
drop messages + require re-sending

34



Back-pressure? Push + NACK model (b)
Increase buffer size…  
Well, while you have memory available!

35



Back-pressure? Push + NACK model (b)

36



Negative ACKnowledgement

37



Back-pressure? Example NACKing

Buffer overflow is imminent!

38



Back-pressure? Push + NACKing
Telling the Publisher to slow down / stop sending…

39



Back-pressure? Push + NACKing

NACK did not make it in time,  
because M was in-flight!

40



Back-pressure? 
NACKing is NOT enough.

41



An alternative to the Push model  
is the Pull model

42



Back-pressure via Pull? 
!

speed(publisher) < speed(subscriber)

43



Back-pressure? Fast Subscriber, No Problem

It doesn’t scale!

44



Back-pressure? 
Reactive-Streams 

=  

45



Just push – not safe when Slow Subscriber 
!
!

Just pull – too slow when Fast Subscriber

Back-pressure? RS: Dynamic Push/Pull

46



!
!
!

Solution: 
Dynamic adjustment

Back-pressure? RS: Dynamic Push/Pull

Just push – not safe when Slow Subscriber 
!
!

Just pull – too slow when Fast Subscriber

47



Back-pressure? RS: Dynamic Push/Pull
Slow Subscriber sees it’s buffer can take 3 elements. 
Publisher will never blow up it’s buffer.

48



Back-pressure? RS: Dynamic Push/Pull
Fast Publisher will send at-most 3 elements. This 
is pull-based-backpressure.

49



Back-pressure? RS: Dynamic Push/Pull

Fast Subscriber can issue more Request(n), 
before more data arrives!

50



Back-pressure? RS: Dynamic Push/Pull
Fast Subscriber can issue more Request(n),  
before more data arrives.  
!
Publisher can accumulate demand.

51



Back-pressure? RS: Accumulate demand

Publisher accumulates total demand per subscriber.

52



Back-pressure? RS: Accumulate demand
Total demand of elements is safe to publish. 
Subscriber’s buffer will not overflow.

53



Back-pressure? RS: Requesting “a lot”

Fast Subscriber can issue arbitrary large requests, 
including “gimme all you got” (Long.MaxValue)

54



Back-pressure? RS: Dynamic Push/Pull

          

          
MAX  

speed

55



Back-pressure? RS: Dynamic Push/Pull

Easy

          

          
MAX  

speed

56



Demo 4

57



Is that really all there is to know?
• Naaaa, there is a lot more for you to explore! 

• If the existing building blocks are not enough, define 
your owns. 

• Use mapAsync/mapAsyncUnordered for 
integrating with external services. 

• Streams Error Handling. 

• Handling TCP  connections with Streams. 

• Integration with Actors. 

• Check out Akka HTTP!

58



What now?

• Use it: 
"com.typesafe.akka" %% "akka-stream-experimental" % "1.0-RC3" 
• Check out the Activator template 

Akka Streams with Java8 or Scala. 

• Akka Streams API doc and user guide for both 
Java8 and Scala. 

• Code used for the demos https://github.com/
dotta/akka-streams-demo/releases/tag/
v03_jug_luzern_20150527

59

https://typesafe.com/community/core-tools/activator-and-sbt
https://github.com/typesafehub/activator-akka-stream-java8
https://github.com/typesafehub/activator-akka-stream-scala
http://akka.io/docs/#akka-streams-and-http
https://github.com/dotta/akka-streams-demo/releases/tag/v03_jug_luzern_20150527


Next Steps

• Akka Streams 1.0 final soon. 
• Inclusion in future JDK (shooting for JDK9) 
• We aim at polyglot standard (JS, wire proto) 
• Try it out and give feedback! 
• http://reactive-streams.org/ 
• https://github.com/reactive-streams

60

http://reactive-streams.org/
https://github.com/reactive-streams


61



©Typesafe 2015 – All Rights Reserved
62


