Akka Streams

Asynchronous non-blocking streaming made easy

Mirco Dotta

@mircodotta

(STypesafe

The Four Reactive Traits

a

http://reactivemanifesto.org/

s

http://reactivemanifesto.org/

Why Reactive?

Why Reactive?

* Users expectations have changed
* Services must be always up.
* Must be fast.
* Billions of internet connected devices.
* Data is transformed and pushed continuously.

(STypesafe 4

Reactive Streams

An initiative for providing
Standardised(!)
Back-pressured
Asynchronous
Stream processing

http://www.reactive-streams.org/

(STypesafe 5

http://www.reactive-streams.org/

Reactive Streams: Who?

« Kaazing
« Netflix (rxJava)
« Pivotal (reactor)
« RedHat (vert.x)
« Twitter
« Typesafe (akka-streams & slick)
« Play 2.4 also supports reactive streams!
 Doug Lea proposed an implementation for JDK9!

(STypesafe 6

http://cs.oswego.edu/pipermail/concurrency-interest/2015-January/013641.html

Standardised!

Reactive Streams: Inter-op

We want to make different implementations
co-operate with each other.

Reactive Streams: Inter-op

The different implementations “talk to each other”
using the Reactive Streams protocol.

Reactive Streams: Inter-op

// here are a few imports that you are not seeing
object ScalaMain extends App {
EmbeddedApp. fromHandler (new Handler {
override def handle(ctx: Context): Unit = {
// RxJava Observable
val intObs = Observable.from((1l to 10).asJava)

// Reactive Streams Publisher
val intPub = RxReactiveStreams.toPublisher (intObs)

// Akka Streams Source
val stringSource = Source(intPub).map(_.toString)

// Reactive Streams Publisher
val stringPub = stringSource.runWith(Sink.fanoutPublisher(1l, 1))

// Reactor Stream
val linesStream = Streams.create(stringPub).map[String] (new reactor.function.Function[String, String] {
override def apply(in: String) = in + "\n"

)

// and now render the HTTP response (RatPack)
ctx.render (ResponseChunks.stringChunks(linesStream))

}

}) .test(new Consumer[TestHttpClient] {
override def accept(client: TestHttpClient): Unit = {
val text = client.getText()
println(text)
system.shutdown ()
}
)

} https://github.com/rkuhn/ReactiveStreamsinterop

https://github.com/rkuhn/ReactiveStreamsInterop

Reactive Streams: Inter-op

The Reactive Streams SPIis NOT meant to be user-
api. You should use one of the implementing
libraries.

@
@ & AKKA
%

Akka Streams

Akka Streams: Basics

e DSL for the formulation of transformations on
data streams.

* Basic building blocks:
* Source - something with exactly one output stream.

* Flow - something with exactly one input and one output
stream.

* Sink - something with exactly one input stream.

* RunnableFlow - A Flow that has both ends “attached”
to a Source and Sink respectively, and is ready to be run().

(STypesafe

Akka Streams: Basics

Q0

c——~
FL()\A/

Akka Streams: Basics

Q@

SOURCE

Akka Streams: Basics

¢

SINK

Demo 1

Akka Streams: Graph

* Source, Flow, and Sink are good for expressing
linear computations.

* But how to express a computation graph?

. 2
@ 5ked (et
fu

Akka Streams: Fan-out

e Broadcast - given aninput element emits to each
output.

e Balance - given aninput element emits to one of its
output ports.

* UnZ1p - splits a stream of (A,B) tuplesinto two
streams, one of type A and on of type B.

e F'lex1Route -enables writing custom fan out
elements using a simple DSL.

(STypesafe

Akka Streams: Fan-in

e Merge - picks randomly from inputs pushing them one
by one to its output.

e MergePreferred-like Merge butif elements are

available on preferred port, it picks from it, otherwise
randomly from others.

* Z1pW1ith (£,) -takesafunction of N inputs that
given a value for each input emits 1 output element.

Akka Streams: Fan-in cont’d

e Z1p - isazipWith specialised to zipping input streams
of A and B into an (A,B) tuple stream.

e Concart -concatenates two streams (first consume
one, then the second one).

e I'lex1Merge - enables writing custom fan-in
elements using a simple DSL.

Demo 3

What is back-pressure?

Back-pressure?

R

N

Publisher[T] Subscriber|[T]

(STypesafe

Back-pressure?

Publisher Slow Subscriber

:

/

/)Ooo?g//)vec /}O‘?/OO"C

Back-pressure?
“Why would | need that!?”

(STypesafe

Back-pressure? Push

Z AN S

R

N
/)OOOPQ/ s 40‘7/49“

(STypesafe

Back-pressure? Push

usually has some kind of buffer.

Z oA

-

Back-pressure? Push

Back-pressure? Push

Back-pressure? Push

What if the buffer overflows?

Back-pressure? Push

Use bounded buffer,
drop messages + require re-sending o0 MG

Back-pressure? Push

Use bounded buffer,
drop messages + require re-sending 0 MSC

m

@@@@%
Kernel does this! o — t@x
Routers do this! o
(TCP) g

\
|

4

N
.
Q
—
e
= e, 9
O
Ry

%oow/

(STypesafe

Back-pressure? Push + NACK model

Increase buffer size...
Well, while you have memory available!

4

1R
71 8-
Z P EE X Y
— \> v
M
A\ V

4000}7;/ %/ e

7€cC

(STypesafe

Back-pressure? Push + NACK model (b)

N ACK

(STypesafe

Back-pressure? Example NACKing

Buffer overflow is imminent!

Back-pressure? Push + NACKing

Telling the Publisher to slow down / stop sending...

Back-pressure? Push + NACKing

NACK did not make it in time,
because M was in-flight!

Back-pressure?
NACKing is NOT enough.

(STypesafe

An alternative to the Push model
is the Pull model

(STypesafe

Back-pressure via Pull?

(STypesafe

Back-pressure?

It doesn’t scale!

Back-pressure?

(STypesafe

Back-pressure? RS: Dynamic Push/Pull

Just push - not safe when Slow Subscriber

Just pull - too slow when Fast Subscriber

(STypesafe

Back-pressure?

Just push - not safe when Slow Subscriber

Just pull - too slow when

Solution:
Dynamic adjustment

(STypesafe

Back-pressure?

Slow Subscriber sees it’s buffer can take 3 elements.
Publisher will never blow up it’s buffer.

Back-pressure?

will send at-most 3 elements. This
is pull-based-backpressure.

Back-pressure?

can issue more Request(n),
before more data arrives!

e

/

Back-pressure?

can issue more Request(n),
before more data arrives.

Publisher can accumulate demand.

S |

N Kegest(? v
4‘7?9/4%% 7000‘7 %ec

(STypesafe

Back-pressure? RS: Accumulate demand

Publisher accumulates total demand per subscriber.

— D
K

\ p
/I ops/ y OO 0?/79&

/

Back-pressure?

Total demand of elements is safe to publish.
Subscriber’s buffer will not overflow.

/l 700 0y %ec
OPQ/ 70C

Back-pressure?

can issue arbitrary large requests,
including “gimme all you got” (Long.MaxValue)

0 3|

/ ©

N Ceaedrinm
4{)?9/ 700017 79&

(STypesafe

Back-pressure? RS: Dynamic Push/Pull

EmoT
X mply
speed (
\%@
ool \>%
/

| I (&

AYA
\ __)
/I OPQ/% ‘ | 7000}7/49&

Back-pressure? RS: Dynamic Push/Pull

o
< Emply
speed (

V)

% @ Easy

> 2 %

[

| I (&

AYA
\ __)
/I OPQ/% ‘ | 7000}7/49&

Demo 4

Is that really all there is to know?

* Naaaa, thereis a lot more for you to explore!

* If the existing building blocks are not enough, define
your owns.

* UsemapAsync/mapAsyncUnordered for
integrating with external services.

* Streams Error Handling.
* Handling TCP connections with Streams.
* Integration with Actors.

* Check out Akka HTTP!

(STypesafe

What now?

* Uset:

"com.typesafe.akka" %% "akka-stream-experimental" % "1.0-RC3"

* Check out the Activator template
Akka Streams with Java8 or Scala.

 Akka Streams APl doc and user guide for both
Java8 and Scala.

* Code used for the demos https://github.com/
dotta/akka-streams-demo/releases/tag/
v03_jug luzern_20150527

(STypesafe

https://typesafe.com/community/core-tools/activator-and-sbt
https://github.com/typesafehub/activator-akka-stream-java8
https://github.com/typesafehub/activator-akka-stream-scala
http://akka.io/docs/#akka-streams-and-http
https://github.com/dotta/akka-streams-demo/releases/tag/v03_jug_luzern_20150527

Next Steps

» Akka Streams 1.0 final soon.
* Inclusion in future JDK (shooting for JDK9)

* We aim at polyglot standard (JS, wire proto)
* Try it out and give feedback!

* http://reactive-streams.org/

* https://github.com/reactive-streams

http://reactive-streams.org/
https://github.com/reactive-streams

A Unified Platform for Building Modern Apps

)play Aakka B Scala :-.-_2 Java

(STypesafe

(STypesafe

©Typesafe 2015 - All Rights Reserved

