
CQRS with Axon Framework

Allard Buijze – allard.buijze@trifork.nl

An introduction to scalable architectures

Allard Buijze

Software Architect at Trifork

Formerly known as Orange11 / JTeam

Organizers of GOTO Amsterdam

~15 years of web development experience

Strong believer in DDD and CQRS

Developer and initiator of Axon Framework

Java Framework for scalability and performance

www.axonframework.org

Evolution of Software Complexity

Evolution of Software Complexity

Evolution of Software Complexity

Layered architecture

Method invocation Cache

Worker pools

Web Cache Session replication

Distributed 2nd level cache Query Cache

Designed for … ?

Technical complexity

http://royal.pingdom.com/2008/01/09/the-worst-cable-mess-ever/

CQRS – Did you mean cars?

Command – Query Responsibility Segregation

And then there was CQRS

Command model Projections

Complexity

CQRS as a weapon in the battle against complexity

Our domain model

Find products ordered by customer

SELECT …

FROM Customer

 LEFT JOIN Order …

 LEFT JOIN OrderLine …

 LEFT JOIN Product …

WHERE Customer.id = :customerId

WHOOPS…

 AND Order.status = “Accepted”

Update a user’s address

UPDATE Customer

SET Address = :newAddress

WHERE Customer.id = :customerId

WHOOPS…

 What about the invoices and orders?

Let’s update a product price

UPDATE Product

SET Price = :newPrice

WHERE Product.id = :productId

WHOOPS…

 What about the invoices and orders?

The source of complexity

Order Pickers

Which products do I need to fetch from the warehouse?

Finance

Which invoices are overdue?

Management

What is our revenue this year?

Customer

Where is my order?

Real life example

private static final String PLAYER_COCKPIT_WATERFALL_ITEMS_QUERY =

 "(" +

 "select id, " + EntityType.NEWS_ITEM.ordinal() + " as entity_type, publish_date as sort_date " +

 "from news_item " +

 "where active = true and (" +

 "poster_player_id = :playerId " +

 "or poster_player_id in (" +

 "select destination_friend_id from friendship where origin_friend_id = :playerId " +

 ") " +

 "or project_id in (" +

 "select distinct project_id " +

 "from donation " +

 "where donor_participant_id = :playerId and status = 'OK'" +

 ")" +

 "or project_id in (" +

 "select project_id from ambassador_project where player_id = :playerId " +

 "))" +

 ") union all (" +

 "select id, " + EntityType.DONATION.ordinal() + " as entity_type, approval_date as sort_date " +

 "from donation " +

 "where status = 'OK' and (" +

 "donor_participant_id = :playerId " +

 "or donor_participant_id in (" +

 "select destination_friend_id from friendship where origin_friend_id = :playerId" +

 ")" +

 "or raised_via_player_id = :playerId " +

 "or raised_via_player_id in (" +

 "select destination_friend_id from friendship where origin_friend_id = :playerId" +

 ") " +

 ") " +

 ") union all (" +

 "select id, " + EntityType.FRIENDSHIP.ordinal() + " as entity_type, created as sort_date " +

 "from friendship " +

 "where origin_friend_id = :playerId or (origin_friend_id in (" +

 "select destination_friend_id from friendship where origin_friend_id = :playerId " +

 ") and destination_friend_id <> :playerId)" +

 ") ";

UNION ALL

UNION ALL

NEWS_ITEM

DONATION

FRIENDSHIP

SELECT

status = ‘OK’

or raised_via_player in (…

or project in (…

or project in (…

status = ‘OK’

SELECT *
FROM waterfall_items
WHERE relevant_to = :user_id
ORDER BY timestamp DESC
LIMIT :num_items

Decoupling domain models

Optimize each model for your exact needs

Updating

Operational information

Management information

Clearly defined API

Commands

Events

Keep the models in sync using Events

 Event:

Notification that something relevant has happened within the domain

CQRS and EDA – Basics

EDA: Emit an event when something important has happened

CQRS + EDA: Raise an event for each change in the command model

Command model Projections

Events

CQRS and EDA – Architecture

Complexity measures

Source: Axon case study presentation by Aktive Reply srl

Event Sourcing

The business value of history

Event Sourcing

Event Sourcing

Don’t store state, store history

State Storage

Order

• id: 123

• items

– 1x Deluxe Chair - € 399

• status: return shipment rcvd

Event Sourcing

1. OrderCreatedEvent

– id: 123

2. ItemAddedEvent

– 2x Deluxe Chair - € 399

3. ItemRemovedEvent

– 1x Deluxe Chair - € 399

4. OrderConfirmed

5. OrderShipped

6. OrderCancelledByUserEvent

7. ReturnShipmentReceived

Event Sourcing or not…

Data staleness…

User makes a change. A big one.

System: Sorry, someone else has made a change too. Try again…

With Event Sourcing, the system knows what the other user did,

and can try to merge the changes

Event Sourcing

Reporting…

Manager: I need to know how long it takes us to process an incoming

order

Developer: we’re not recording that right now. We’ll build it now, deploy it

in 2 months, and you’ll have reliable reports 3 months after.

 Event Sourcing: Data from day 1 is there. Simply analyze past events…

Event Sourcing as Business Case

Event Sourcing has less information loss

Event Store contains information that can be used in different ways in the

future

Event Store is a reliable audit log

Not only state, but also how it is reached.

Event Sourcing increases performance

Only deltas need to be stored.

Caches prevent reads.

Performance

Speed through simplicity

Isolating performance bottlenecks

How do you identify –and then isolate– the
components that need performance tweaking?

Isolating performance bottlenecks…

Addressing Performance

Separation of command and query components

Focus on the performance where it’s needed

Driven by non-functional requirements

Non-functional requirements (example)

Queries: 100.000 /s, max 100ms

Updates: 100 /s, max 500ms

Command performance

Optimize model to make quick decisions

Keep required data in-memory

Local cache

Use Event Sourcing

Appending small amounts of data to Event Store

Execute Processing and Event Storage in parallel

Query Performance

Store data as required

Simple queries run much faster

Cache for often-accessed data

Use events to invalidate (or update) caches

Scalability

When requirements go beyond a single box

Before you scale…

Rule 1 of distributed systems: Don’t !!

Scalability != Scaling

Scalability is about the ability to scale

Scalability

(async)

(async)

Scalability – Context Based

Scalability – Context and Audience Based

Scalability – High Volume Processing

Transactions in distributed systems – CAP Theorem

Consistency

Availability
Partition
Tolerance

Transactions in CQRS

Full consistency within context

Aggregate boundaries

Guarded by transactional execution of command

Eventual consistency between contexts

Process managed by Sagas

Compensating actions on failure

Axon Framework

The fast track into CQRS

Proof of Concept – Mini webshop

 Browse products

 Place orders

 Update inventory

 Sales report

 Generic Infrastructure

1 day of development – few lines of code 2 days of development – dozens lines of code 3 days of development – hundreds lines of code

0 Lines of Business logic code



Axon Framework

Java framework for CQRS

Puts the CQRS theory to practice

Commercially backed Open Source project

Provides the common CQRS building blocks

Command and Event Buses

Complex Transaction Management (Sagas)

Simple configuration of Event Listeners

No need to worry about infrastructure components

Clear separation of business logic and infrastructure

Infrastructure through configuration

CQRS Components

Command Bus

SimpleCommandBus  In-Process

AsyncCommandBus  In-Process Async

DisruptorCommandBus  High performance async

Event Bus

SimpleEventBus  In-Process – Sequential

ClusteringEventBus  Configurable behavior

Event Sourcing in Axon Framework

Decision making

State changes

Creating an Event Handler

Sagas

Declarative Testing

Given: a set of historic events

When: I send a command

Then: expect certain events

Axon in production…

Finance

Process automation in a top 50 bank

Trading engine for ETF (index trackers) trading

Pension fund calculations at a large bank

On-line payment processing

Gaming

On-line bridge platform (bridgebig.com)

On-line casino (casumo.com)

Healthcare

Electronic Medical Record for the Geriatric Healthcare

Tracking and Tracing of equipment for dental implants

etc…

Using Axon in your project

Download full package from website:

www.axonframework.org/download

Maven

<dependency>

 <groupId>org.axonframework</groupId>

 <artifactId>axon-core</artifactId>

 <version>2.0</version>

</dependency>

Build from sources

www.axonframework.org/sources/

The future of Axon

New features

API Simplification

Point-to-point Command- and Event Busses

Distributed Saga Manager

Custom DSL for Event and Command declaration

More Event Store implementations

Exactly once command processing

Set validation

Operations Tooling

Management and Monitoring

Questions?

More information:

http://www.axonframework.org

abu@trifork.com

