
Wednesday, July 27, 2011

<Insert Picture Here>

Java SE 7: The Platform Evolves
Dalibor Topić
Java F/OSS Ambassador

Wednesday, July 27, 2011

Priorities for the Java Platforms

Grow Developer Base

Grow Adoption

Increase Competitiveness

Adapt to change

Wednesday, July 27, 2011

Java Communities

Wednesday, July 27, 2011

http://www.netbeans.org/
http://www.netbeans.org/
http://www.netbeans.org/
http://www.netbeans.org/
http://www.netbeans.org/
http://www.netbeans.org/
http://www.netbeans.org/
http://www.netbeans.org/
http://www.netbeans.org/
http://www.netbeans.org/
http://www.netbeans.org/
http://www.netbeans.org/
http://www.netbeans.org/
http://www.netbeans.org/
http://www.netbeans.org/
http://www.netbeans.org/
http://www.netbeans.org/
http://www.netbeans.org/
http://www.netbeans.org/
http://www.netbeans.org/
http://www.netbeans.org/
http://www.netbeans.org/
http://www.netbeans.org/
http://www.netbeans.org/
http://www.netbeans.org/
http://www.netbeans.org/

How Java Evolves and Adapts

Community Development of
Java Technology

Specifications

Wednesday, July 27, 2011

JCP Reforms

• Developers’ voice in the Executive Committee
• SOUJava
• Goldman Sachs
• London JavaCommunity
• Alex Terrazas

• JCP starting a program of reform
• JSR 348: Towards a new version of the JCP

Wednesday, July 27, 2011

 7

Evolving the Language
From “Evolving the Java Language” - JavaOne 2005
• Java language principles
– Reading is more important than writing
– Code should be a joy to read
– The language should not hide what is happening
– Code should do what it seems to do
– Simplicity matters
– Every “good” feature adds more “bad” weight
– Sometimes it is best to leave things out

• One language: with the same meaning everywhere
• No dialects

• We will evolve the Java language
• But cautiously, with a long term view
• “first do no harm”

also “Growing a Language” - Guy Steele 1999
 “The Feel of Java” - James Gosling 1997

Wednesday, July 27, 2011

 8

So you want to change the language?

Wednesday, July 27, 2011

 9

Java SE 7 Release Contents

• Java Language
• Project Coin (JSR-334)

• Class Libraries
• NIO2 (JSR-203)
• Fork-Join framework, ParallelArray (JSR-166y)

• Java Virtual Machine
• The DaVinci Machine project (JSR-292)
• InvokeDynamic bytecode

• Miscellaneous things
• JSR-336: Java SE 7 Release Contents

Wednesday, July 27, 2011

 10

<Insert Picture Here>

Section Divider
Small

Language
Changes

Project Coin

Wednesday, July 27, 2011

 11

coin, n. A piece of small change
coin, v. To create new language

Wednesday, July 27, 2011

 12

Project Coin Constraints

• Small language changes
• Small in specification, implementation, testing
• No new keywords!
• Wary of type system changes

• Coordinate with larger language changes
– Project Lambda
– Modularity

• One language, one javac

Wednesday, July 27, 2011

 13

Better Integer Literal

• Binary literals

• With underscores for clarity

int mask = 0b101010101010;

int mask = 0b1010_1010_1010;
long big = 9_223_783_036_967_937L;

Wednesday, July 27, 2011

 14

String Switch Statement

• Today case label includes integer constants and
enum constants

• Strings are constants too (immutable)

Wednesday, July 27, 2011

 15

Discriminating Strings Today

int monthNameToDays(String s, int year) {

 if("April".equals(s) || "June".equals(s) ||
 "September".equals(s) ||"November".equals(s))
 return 30;

 if("January".equals(s) || "March".equals(s) ||
 "May".equals(s) || "July".equals(s) ||
 "August".equals(s) || "December".equals(s))
 return 31;

 if("February".equals(s))
 ...

Wednesday, July 27, 2011

 16

Strings in Switch Statements
int monthNameToDays(String s, int year) {
 switch(s) {
 case "April": case "June":
 case "September": case "November":
 return 30;

 case "January": case "March":
 case "May": case "July":
 case "August": case "December":
 return 31;

 case "February”:
 ...
 default:
 ...

Wednesday, July 27, 2011

 17

Simplifying Generics

• Pre-generics
List strList = new ArrayList();

Wednesday, July 27, 2011

 18

Simplifying Generics

• Pre-generics
List strList = new ArrayList();
• With Generics
List<String> strList = new ArrayList<String>();

Wednesday, July 27, 2011

 19

Simplifying Generics

• Pre-generics
List strList = new ArrayList();
• With Generics
List<String> strList = new ArrayList<String>();
List<Map<String, List<String>> strList =
 new ArrayList<Map<String, List<String>>();

Wednesday, July 27, 2011

 20

Diamond Operator

• Pre-generics
List strList = new ArrayList();
• With Generics

• With diamond (<>) compiler infers type

List<String> strList = new ArrayList<String>();
List<Map<String, List<String>> strList =
 new ArrayList<Map<String, List<String>>();

List<String> strList = new ArrayList<>();
List<Map<String, List<String>> strList =
 new ArrayList<>();

Wednesday, July 27, 2011

 21

Copying a File

InputStream in = new FileInputStream(src);
OutputStream out = new FileOutputStream(dest);

byte[] buf = new byte[8192];
int n;

while (n = in.read(buf)) >= 0)
 out.write(buf, 0, n);

Wednesday, July 27, 2011

 22

Copying a File (Better, but wrong)

InputStream in = new FileInputStream(src);
OutputStream out = new FileOutputStream(dest);

try {
 byte[] buf = new byte[8192];
 int n;
 while (n = in.read(buf)) >= 0)
 out.write(buf, 0, n);
} finally {
 in.close();
 out.close();
}

Wednesday, July 27, 2011

 23

Copying a File (Correct, but complex)
InputStream in = new FileInputStream(src);
try {
 OutputStream out = new FileOutputStream(dest);
 try {
 byte[] buf = new byte[8192];
 int n;
 while (n = in.read(buf)) >= 0)
 out.write(buf, 0, n);
 } finally {
 out.close();
 }
} finally {
 in.close();
}

Wednesday, July 27, 2011

 24

Copying a File (Correct, but complex)
InputStream in = new FileInputStream(src);
try {
 OutputStream out = new FileOutputStream(dest);
 try {
 byte[] buf = new byte[8192];
 int n;
 while (n = in.read(buf)) >= 0)
 out.write(buf, 0, n);
 } finally {
 out.close();
 }
} finally {
 in.close();
}

Exception thrown from
potentially three places.

Details of first two could be lost

Wednesday, July 27, 2011

 25

Automatic Resource Management

try (InputStream in = new FileInputStream(src),
 OutputStream out = new FileOutputStream(dest))
{
 byte[] buf = new byte[8192];
 int n;
 while (n = in.read(buf)) >= 0)
 out.write(buf, 0, n);
}

Wednesday, July 27, 2011

 26

The Details

• Compiler desugars try-with-resources into nested try-
finally blocks with variables to track exception state

• Suppressed exceptions are recorded for posterity
using a new facillity of Throwable

• API support in JDK 7
• New superinterface java.lang.AutoCloseable
• All AutoCloseable and by extension java.io.Closeable

types useable with try-with-resources
• anything with a void close() method is a candidate
• JDBC 4.1 retrefitted as AutoCloseable too

Wednesday, July 27, 2011

 27

More Informative Backtraces

java.io.IOException
 at Suppress.write(Suppress.java:19)
 at Suppress.main(Suppress.java:8)
 Suppressed: java.io.IOException
 at Suppress.close(Suppress.java:24)
 at Suppress.main(Suppress.java:9)
 Suppressed: java.io.IOException
 at Suppress.close(Suppress.java:24)
 at Suppress.main(Suppress.java:9)

Wednesday, July 27, 2011

 28

Varargs Warnings

class Test {
 public static void main(String... args) {
 List<List<String>> monthsInTwoLanguages =
 Arrays.asList(Arrays.asList("January",
 "February"),
 Arrays.asList("Gennaio",
 "Febbraio"));
 }
}

Test.java:7: warning:
[unchecked] unchecked generic array creation
for varargs parameter of type List<String>[]
 Arrays.asList(Arrays.asList("January",
 ^
1 warning

Wednesday, July 27, 2011

 29

Varargs Warnings Revised

• New mandatory compiler warning at suspect varargs
method declarations

• By applying an annotation at the declaration,
warnings at the declaration and call sites can be
suppressed

• @SuppressWarnings(value = “unchecked”)
• @SafeVarargs

Wednesday, July 27, 2011

 30

Exceptions Galore
try {
 ...
} catch(ClassNotFoundException cnfe) {
 doSomethingClever(cnfe);
 throw cnfe;
} catch(InstantiationException ie) {
 log(ie);
 throw ie;
} catch(NoSuchMethodException nsme) {
 log(nsme);
 throw nsme;
} catch(InvocationTargetException ite) {
 log(ite);
 throw ite;
}

Wednesday, July 27, 2011

 31

Multi-Catch

try {
 ...
} catch (ClassCastException e) {
 doSomethingClever(e);
 throw e;
} catch(InstantiationException |
 NoSuchMethodException |
 InvocationTargetException e) {
 log(e);
 throw e;
}

Wednesday, July 27, 2011

 32
Wednesday, July 27, 2011

 33

New I/O 2 (NIO2) Libraries

• Original Java I/O APIs presented challenges for
developers
• Not designed to be extensible
• Many methods do not throw exceptions as expected
• rename() method works inconsistently
• Developers want greater access to file metadata

• Java NIO2 solves these problems

JSR 203

Wednesday, July 27, 2011

 34

Java NIO2 Features
• Path is a replacement for File

• Biggest impact on developers
• Better directory support

• list() method can stream via iterator
• Entries can be filtered using regular expressions in API

• Symbolic link support
• java.nio.file.Filesystem

• interface to a filesystem (FAT, ZFS, Zip archive, network, etc)

• java.nio.file.attribute package
• Access to file metadata

Wednesday, July 27, 2011

 35

Path Class
• Equivalent of java.io.File in the new API
– Immutable

• Have methods to access and manipulate Path
• Few ways to create a Path
– From Paths and FileSystem

//Make a reference to the path
Path home = Paths.get(“/home/fred”);

//Resolve tmp from /home/fred -> /home/fred/tmp
Path tmpPath = home.resolve(“tmp”);

//Create a relative path from tmp -> ..
Path relativePath = tmpPath.relativize(home)

File file = relativePath.toFile();

Wednesday, July 27, 2011

 36

File Operation – Copy, Move

• File copy is really easy
– With fine grain control

• File move is supported
– Optional atomic move supported

Path src = Paths.get(“/home/fred/readme.txt”);
Path dst = Paths.get(“/home/fred/copy_readme.txt”);

Files.copy(src, dst,
 StandardCopyOption.COPY_ATTRIBUTES,
 StandardCopyOption.REPLACE_EXISTING);

Path src = Paths.get(“/home/fred/readme.txt”);
Path dst = Paths.get(“/home/fred/readme.1st”);

Files.move(src, dst, StandardCopyOption.ATOMIC_MOVE);

Wednesday, July 27, 2011

 37

Directories
• DirectoryStream iterate over entries
– Scales to large directories
– Uses less resources
– Smooth out response time for remote file systems
– Implements Iterable and Closeable for productivity

• Filtering support
– Build-in support for glob, regex and custom filters

Path srcPath = Paths.get(“/home/fred/src”);

try (DirectoryStream<Path> dir =
 srcPath.newDirectoryStream(“*.java”)) {
 for (Path file: dir)
 System.out.println(file.getName());
}

Wednesday, July 27, 2011

 38

Concurrency APIs

• JSR166y
• Update to JSR166x which was an update to JSR166

• Adds a lightweight task framework
• Also referred to as Fork/Join

• Phaser
• Barrier similar to CyclicBarrier and CountDownLatch

• TransferQueue interface
• Extension to BlockingQueue
• Implemented by LinkedTransferQueue

Wednesday, July 27, 2011

 39

Fork Join Framework
• Goal is to take advantage of multiple processor
• Designed for task that can be broken down into

smaller pieces
– Eg. Fibonacci number fib(10) = fib(9) + fib(8)

• Typical algorithm that uses fork join

if I can manage the task
 perform the task
else
 fork task into x number of smaller/similar task
 join the results

Wednesday, July 27, 2011

 40

Key Classes
• ForkJoinPool
– Executor service for running ForkJoinTask

• ForkJoinTask
– The base class for forkjoin task

• RecursiveAction
– A subclass of ForkJoinTask
– A recursive resultless task
– Implements compute() abstract method to perform

calculation
• RecursiveTask
– Similar to RecursiveAction but returns a result

Wednesday, July 27, 2011

 41

ForkJoin Example – Fibonacci
public class Fibonacci extends RecursiveTask<Integer> {
 private final int number;
 public Fibonacci(int n) { number = n; }

 @Override protected Integer compute() {
 switch (number) {
 case 0: return (0);
 case 1: return (1);
 default:
 Fibonacci f1 = new Fibonacci(number – 1);
 Fibonacci f2 = new Fibonacci(number – 2);
 f1.fork(); f2.fork();
 return (f1.join() + f2.join());
 }
 }
}

Wednesday, July 27, 2011

 42

ForkJoin Example – Fibonacci

ForkJoinPool pool = new ForkJoinPool();
Fibonacci r = new Fibonacci(10);
pool.submit(r);

while (!r.isDone()) {
 //Do some work
 ...
}

System.out.println("Result of fib(10) = "
 + r.get());

Wednesday, July 27, 2011

 43

Client Libraries

• Nimbus Look and Feel
• Platform APIs for shaped and translucent windows
• JLayer (formerly from Swing labs)
• Optimised 2D rendering

Wednesday, July 27, 2011

 44

Nimbus Look and Feel

• Better than Metal for cross platform look-and-feel
• Introduced in Java SE 6u10, now part of Swing
• Not the default L&F

Wednesday, July 27, 2011

 45

JLayer component
Easy enrichment for Swing components

Wednesday, July 27, 2011

 46

JLayer component
The universal decorator

• Transparent decorator for a Swing component
• Controls the painting of its subcomponents
• Catches all input and focus events for the whole hierarchy

// wrap your component with JLayer
JLayer<JPanel> layer = new JLayer<JPanel>(panel);

// custom ui provides all extra functionality
layer.setUI(myLayerUI);

// add the layer as usual component
frame.add(layer);

Wednesday, July 27, 2011

 47

The DaVinci Machine Project (JSR-292)
(A multi-language renaissance for the JVM)

Better

Wednesday, July 27, 2011

 48

Languages Like Virtual Machines

• Programming languages need runtime support
• Memory management / Garbage collection
• Concurrency control
• Security
• Reflection
• Debugging integration
• Standard libraries

• Compiler writers have to build these from scratch
• Targeting a VM allows reuse of infrastructure

Wednesday, July 27, 2011

 49

JVM Specification

“The Java virtual machine knows
nothing about the Java

programming language, only of a
particular binary format, the class

file format.”
1.2 The Java Virtual Machine Spec.

Wednesday, July 27, 2011

 50

Languages Running on the JVM

51

Clojure

Tcl

JavaScript

v-language

CAL

Sather

Funnel

Mini
PLAN

Lisp

Scheme

Basic

Logo JHCR

TermWare

Drools

Prolog

LLP

JESS

Eiffel

Smalltalk

C#

G

Groovy
Nice

Anvil

Hojo

Correlate

Ada

Bex Script

Tea

PHP

Phobos
Sleep

FScript

JudoScript

JRuby

ObjectScript

Jickle

Yoix

Simkin

BeanShell

DawnWebL

iScript

Jython

Pnuts

Yassl

Forth

Piccola
SALSA

Processing

Zigzag

Tiger

Tiger

Icon Pascal

Oberon

Modula-2

Luck

E

Rexx JavaFX Script Scala

Wednesday, July 27, 2011

 51

InvokeDynamic Bytecode

• JVM currently has four ways to invoke method
• Invokevirtual, invokeinterface, invokestatic, invokespecial

• All require full method signature data
• InvokeDynamic will use method handle

• Effectively an indirect pointer to the method
• When dynamic method is first called bootstrap code

determines method and creates handle
• Subsequent calls simply reference defined handle
• Type changes force a re-compute of the method

location and an update to the handle
• Method call changes are invisible to calling code

Wednesday, July 27, 2011

 52

CallSite and MethodHandle
• invokedynamic linked to a CallSite
– CallSite can be linked or unlinked
– CallSite holder of MethodHandle

• MethodHandle is a directly executable reference to
an underlying method, constructor, field
– Can transform arguments and return type
– Transformation – conversion, insertion, deletion, substitution

Wednesday, July 27, 2011

 53

invokedynamic Illustrated
this[method_name](x, y)

invokedynamic
 [#bootstrapMethod]
 .this_method_name

class LangaugeRuntime {
 bootstrapMethod(info) {
 ...
 return new CallSite();
 }

class AClass {
 aMethod(x, y) {
 ...
 }

CallSite

Method
Handle

1. Invoke bootstrap

2. Produces
CallSite

3.Complete linkage

4. Invokes method
implementation

Wednesday, July 27, 2011

 54

Miscellaneous Things

• Security
• Eliptic curve cryptography
• TLS 1.2

• JAXP 1.4.4
• JAX-WS 2.2
• JAXB 2.2
• ClassLoader architecture changes
• close() for URLClassLoader
• Javadoc support for CSS

Wednesday, July 27, 2011

 55

JDK 7 Platform Support
• Windows x86

• Server 2008, Server 2008 R2, 7 & 8 (when it GAs)
• Windows Vista, XP

• Linux x86
• Oracle Linux 5.5+, 6.x
• Red Hat Enterprise Linux 5.5+, 6.x
• SuSE Linux Enterprise Server 10.x, 11.x
• Ubuntu Linux 10.04 LTS, 11.04

• Solaris x86/SPARC
• Solaris 10.9+, 11.x

• Apple OSX x86
• will be supported post-GA, detailed plan TBD

Note: JDK 7 should run on pretty much any Windows/Linux/Solaris.
These configurations are the ones primarily tested by Oracle, and
for which we provide commercial support.

Wednesday, July 27, 2011

JVM Convergence – Forward looking
Project “HotRockit”

• Hotspot 21
• Java SE 7 Support
• Rebranding
• Improved JMX

Agent
• Command line

servicability tool
(jrcmd)

 --- Premium ---
• Improved JRockit

Mission Control
Console support

JDK 7 GA – 07/11

• Hotspot 22
• Performance
• Enable large heaps

with reasonable
latencies

JDK 7u2

• Hotspot 23
• More performance
• Improved command

line servicability
(jcmd)

• Enable large heaps
with consistent
reasonable latencies

• No PermGen

 --- Premium ---
• Complete JRockit

Flight Recorder
Support

JDK 7uX

• Hotspot24
• Java SE 8 Support
• All performance

features from
JRockit ported

• All servicability
features from
JRockit ported
• Compiler controls
• Verbose logging
 --- Premium ---

• JRockit Mission
Control Memleak
Tool Support

• Soft Real Time GC

JDK 8 GA

Wednesday, July 27, 2011

 57

More Project Coin
Small Language Changes

Project Lambda (JSR 335)
Closures and lambda expressions
Better support for multi-core processors

Project Jigsaw (JSR-294)
Modularising the Java Platform

Java SE 8

Wednesday, July 27, 2011

 58

Conclusions

• Java SE 7
• Incremental changes
• Evolutionary, not revolutionary
• Good solid set of features to make developers life easier

• Java SE 8
• Major new features: Modularisation and Closures
• More smaller features to be defined

• Java continues to grow and adapt to the changing
world of IT

Wednesday, July 27, 2011

 59

The preceding is intended to outline our general
product direction. It is intended for information
purposes only, and may not be incorporated into any
contract. It is not a commitment to deliver any
material, code, or functionality, and should not be
relied upon in making purchasing decisions.
The development, release, and timing of any
features or functionality described for Oracle’s
products remains at the sole discretion of Oracle.

Wednesday, July 27, 2011

 60
Wednesday, July 27, 2011

