
Eclipse Buckminster

The Definitive Guide

Henrik Lindberg, Cloudsmith Inc.
Thomas Hallgren, Cloudsmith Inc.

Draft Draft

Eclipse Buckminster: The Definitive Guide
by Henrik Lindberg and Thomas Hallgren

0.6 - include/exclude patterns explained for group and action. New Examples — building product, building legacy
sites. New Troubleshooting chapter. Minor updates of reported issues. Buckminster command 'install' added in
headless install instructions.
Copyright © 2009 Cloudsmith Inc. All Rights Reserved.

This book and the accompanying materials are made available under the terms of the Eclipse Public License v1.0 which is available at http://
www.eclipse.org/org/documents/epl-v10.htmll.

http://www.eclipse.org/org/documents/epl-v10.html
http://www.eclipse.org/org/documents/epl-v10.html

Draft Draft

i

Dedication
This guide is dedicated to all software developers who have voiced their frustration with manually
putting software build systems together, and to all early adopters of Buckminster that have voiced
their frustration over the lack of examples and documentation when trying to construct an automated
system.

Stew has his first build tool experience.

Draft Draft

ii

Table of Contents
Preface .. x

Why use Buckminster? .. x
Why read this book ... x
This book’s audience .. xi
Conventions used in this book .. xi
Getting examples from this book .. xi
Request for comment ... xii
Acknowledgements .. xii

I. Introduction .. 1
1. Eclipse .. 2

Eclipse technology .. 2
Equinox ... 2
Platform .. 2
Java Development Tools (JDT) ... 2
Plugin Development Environment (PDE) .. 3
Rich Client Platform (RCP) .. 3
p2 .. 3

The Eclipse component types .. 3
Plugins, features and OSGi bundles ... 3
Fragments .. 4
Products .. 4

The Workspace ... 4
The Target Platform .. 5
Launch configuration ... 5
ANT ... 6

2. p2 ... 7
The Installable Unit ... 7
Metadata repository ... 8
Artifact repository ... 8
Combined / co-located repositories ... 9
Profile ... 9
p2 internals .. 9
Categories .. 10
Publishing .. 10
Installing .. 10

The SDK agent ... 11
The director application .. 11
The p2 Installer .. 11
The EPP wizard .. 12
The Buckminster installer ... 12

Shipping .. 12
Summary ... 13

3. Buckminster Introduction .. 14
Functional Overview .. 14
Getting Components .. 15
Component ... 20

Component attributes ... 21
Component actions .. 21
Actors ... 22
Turning something into a component .. 22
Decorating a component with additional advice ... 23

Summary ... 23
II. Buckminster ... 25

4. Resource Map ... 26
The search for the component .. 26

Draft Eclipse Buckminster Draft

iii

Creating a RMAP ... 27
Editing a RMAP ... 28
Designing a RMAP — some advice ... 28
Locators ... 28

How to write patterns .. 29
Fail on error ... 29
Parameterized locator ... 30
Redirects .. 30
Locators summary ... 31

Search paths ... 31
Providers ... 32

Reader type .. 32
Providers and authentication .. 38
Component types ... 39
Version converter .. 41
Handling indirection .. 42
PDE map — extended provider ... 44

Properties ... 44
The RMAP XML document .. 44
Summary ... 45

5. Component query .. 46
One query to get them all... ... 46
Opening an Existing CQUERY .. 46
Creating a new CQUERY ... 47
The CQUERY Editor ... 48
The editor main tab ... 48
Advisor nodes ... 49

General attributes .. 50
Attribute qualification .. 51
Special requirements .. 51
Resolution scope ... 52
Selection criteria ... 52
Override (version) ... 53
Overlay ... 54
Properties ... 54
Documentation .. 55

Materialization wizard .. 55
Advanced settings ... 58
Watching the paint dry... .. 59

Resolve and materialize .. 60
Summary ... 60

6. Components .. 61
The component’s anatomy .. 61

CSPEC and CSPEX ... 63
The CSPEC editor ... 63
Viewing a CSPEC ... 64
Creating a CSPEC, or CSPEX ... 65
Name and version ... 66
Attributes ... 67
Reference to the component itself ... 69
Artifacts ... 69
Groups .. 71
Actions .. 75
Generators .. 84
Dependencies .. 86
Automatically generated meta data ... 88
Bookmarks ... 89

7. Bill of Materials (BOM) ... 90

Draft Eclipse Buckminster Draft

iv

The BOM’s anatomy ... 91
Materializing a BOM .. 91
Viewing a BOM ... 91
Summary ... 92

8. MSPEC — Materialization Specification ... 93
Creating a MSPEC .. 93
Editing a MSPEC .. 94
The MSPECModus Operandi .. 94
MSPEC in XML ... 94

Using properties .. 95
Rules ... 96

Materializing a MSPEC .. 96
Summary ... 96

9. Versions ... 98
Omni Version introduction .. 98
Buckminster and Omni Version ... 99
Buckminster’s named formats .. 99
Version ranges .. 99

10. Properties .. 101
Property expansion .. 101
Setting property value with “property” .. 102
Using “propertyElement” .. 102
Property functions .. 102

Replace function .. 103
Split function .. 104

Precedence ... 104
Typical property use .. 105

11. Buckminster User Interface .. 106
Component explorer ... 106
Component outline ... 107
New file wizards ... 107
BOM visualizer ... 108
Invoking actions .. 109
Editors ... 110
Preferences ... 110

12. Troubleshooting ... 113
Installation Issues .. 113
Headless issues ... 114
Resolution issues ... 114
Materialization issues ... 115
Execution issues .. 115
Component issues .. 115

III. Examples .. 116
13. Building a p2 Update Site .. 117

Creating the content ... 117
Creating the plugin .. 117
Creating the feature .. 117
Creating the site feature .. 117

Building the site .. 118
Using the update site .. 119

14. Building a Legacy Update Site ... 120
15. Hello XML World .. 126

Without Buckminster .. 127
With Buckminster in use ... 127
The RMAP ... 128
The CQUERY ... 128
Running the example .. 129
How the code is structured .. 129

Draft Eclipse Buckminster Draft

v

org.demo.worlds .. 129
org.demo.xml.provider .. 131

16. Building RCP Products .. 134
Getting the code .. 134
Structure .. 135
The RMAP ... 136
Using ‘useBuild’ ... 138
Building the update site .. 138
Installing the product .. 138

Installation using the p2 installer .. 138
Creating an installable zip ... 140

The CSPEX .. 140
17. POJO Projects ... 141
18. Non Java Projects ... 142
19. RMAP Examples .. 143

The ‘dogfood’ RMAP .. 143
IV. Reference .. 147

I. Component Types ... 148
buckminster ... 149
eclipse.feature ... 150
jar .. 155
maven, maven2 .. 156
osgi.bundle ... 157
PDE (abstract) ... 160
POJO (abstract) ... 162

II. Actors ... 163
ant actor ... 164
copyTargetAction actor .. 167
eclipse.build actor ... 168
eclipse.clean actor ... 169
executor actor .. 170
fetcher actor .. 172
jarprocessor actor ... 174
jdt.ant actor .. 176
null actor ... 177
p2SiteGenerator actor .. 178
simulation actor ... 179

III. Buckminster ANT tasks .. 180
filesetgroup support .. 181
buckminster.importResource .. 183
buckminster.lastTimestamp .. 184
buckminster.lastRevision ... 185
buckminster.substitute ... 186
buckminster.versionQualifier .. 187
buckminster.signatureCleaner ... 189
buckminster.perform ... 190

IV. Filters .. 191
target.arch .. 194
target.os ... 195
target.nl ... 196
target.ws .. 197

V. Headless Commands .. 198
buckminster .. 199
listcommands (lscmds) .. 202
build (make) ... 203
clean ... 204
get preference (getpref) ... 205
import (resolve) ... 206

Draft Eclipse Buckminster Draft

vi

list preferences (lsprefs) .. 207
perform .. 208
set preference (setpref) ... 209
unset preference (unsetpref) ... 210
import target definition (importtarget) .. 211
list target definitions (lstargets) .. 212
export preferences (exportprefs) ... 213
import preferences (importprefs) ... 214
install .. 215
list site ... 216
uninstall ... 217

VI. Buckminster XML Schemas .. 218
bc (Common-1.0) .. 219
cs (CSpec-1.0) .. 220
cq (CQuery-1.0) .. 221
md (MetaData-1.0) ... 222
mp (MavenProvider-1.0) ... 223
opml (OPML-2) .. 224
pmp (PDEMapProvider-1.0) .. 225
rm (RMap-1.0) .. 226
xh (xhtml) .. 227
xi (XMLSchema-instance) ... 228

V. Appendixes .. 229
A. Installation ... 231

Installing for Eclipse SDK .. 231
Installing the Headless Product .. 232
Connectors ... 234

Subversion (SVN) ... 234
Perforce (P4) ... 234

Configuring Eclipse for XML Editing ... 234
B. Extending Buckminster ... 235

Core extension .. 235
Version type ... 235

RMAP extensions .. 235
Extending Reader Type .. 235
Extending Component Type .. 235
Extending Version Converter ... 235

CQUERY Extensions .. 236
Custom resolver .. 236

C. Omni Version Details ... 237
Introduction .. 237
Background .. 237
Implementation ... 238

Version .. 238
Comparison .. 238
Raw and Original Version String .. 239
Omni Version Range .. 239
Other range formats ... 240

Format Specification .. 240
Format Pattern Explanation ... 242
Examples of Version Formats .. 244
Tooling Support .. 246
More examples using ‘format’ ... 247
FAQ .. 248
Resources ... 250

D. Bookmarks and OPML ... 251
Bookmarks ... 251
Authoring OPML .. 252

Draft Draft

vii

List of Figures
2.1. Anatomy of an IU .. 8
2.2. p2 in action ... 9
3.1. Buckminster from 10.000 ft .. 14
3.2. Transitive Materialization ... 15
3.3. Resource Map and Repositories ... 15
3.4. Federation of Resource Maps .. 16
3.5. Resource Map routes ... 17
3.6. Materialization Types ... 17
3.7. Telling Buckminster what to get .. 18
3.8. Ordering at “Bucky Burger” .. 18
3.9. Ordering at the Bucky Deli ... 19
3.10. Getting components — summary .. 20
3.11. Component ... 20
3.12. Component Attributes ... 21
3.13. Component Actions ... 22
3.14. Component Specification Extension — CSPEX ... 23
3.15. Buckminster Summary ... 24
3.16. Buckminster Headless .. 24
4.1. Sample content from an ibiblio page ... 37
4.2. matcher principle .. 42
4.3. match element .. 43
5.1. Materialization wizard’s first page .. 55
5.2. Wizard with target platform components shown .. 56
5.3. Wizard’s materialization page .. 57
6.1. Secret revealed — where components come from .. 61
6.2. Component anatomy .. 63
6.3. A file tree with components .. 68
6.4. Action anatomy .. 76
7.1. Dependency visualizer ... 92

Draft Draft

viii

List of Tables
10.1. Materialization property value precedence .. 104
10.2. Action invocation property value precedence .. 105

Draft Draft

ix

List of Examples
4.1. locator and search path .. 27
4.2. fail on error ... 30
4.3. locator with parameterized search path .. 30
4.4. Using redirects ... 31
4.5. provider ... 32
4.6. using svn provider ... 34
4.7. url reader ... 37
4.8. version converter ... 41
4.9. Using PDEMapProvider ... 44
5.1. Default Suffix and Renaming .. 59
9.1. An OSGi version expressed in raw ... 99

Draft Draft

x

Preface
Software development is becoming software assembly, with components sourced from around the
world and based on a wide range of implementation technologies. The Eclipse Plug-In Development
Environment (PDE) does a great job of streamlining development componentized plug-ins and fea-
ture-sets when using the Eclipse IDE interactively. However, the PDE manages only those compo-
nents implemented as Eclipse plug-ins, and uses a different way of building when automating builds
in “headless fashion”. There is also only limited support in Eclipse for materializing the project
workspace per se — i.e. fulfilling all external and internal component dependencies.

Buckminster’s objective is to leverage and extend the Eclipse platform to make mixed-component
development as efficient as plug-in development, and to make automated building as simply a choice
of invoking the one and only build definition from within the graphical user interface, or from the
command line. To accomplish this, Buckminster:

• introduces a project-agnostic way of describing a development project’s component structure and
dependencies

• provides a mechanism for materializing source and binary artifacts for a project of any degree of
complexity and

• builds the end result by orchestrating the execution of built-in and user-provided build and test
actions.

Why use Buckminster?
As a developer, you want to stay focused on the construction of your code, you expect it to be built
interactively giving you instant error feedback. Once your code compiles, you expect to instantly be
able to run/debug it — and when you make changes to the code it hot deploys into the running instance.
At some point the edit/debug cycle is over — you have a set of components, and unit tests.

But you're not really done, of course. You still need to share what you've done so it can be integrated
and built on a build server, tested, fixed, rebuilt, retested etc. The vision for Buckminster is simple —
the system should just take care of all this for you automatically!

Most of the information needed is already formally expressed in your code, so Buckminster can figure
out a lot about the components and how things should be put together. There are certain choices you
made as a developer that are almost impossible for Buckminster to figure out on its own. So, a little
work is still required on your part. But hopefully a lot less. Another important set of benefits comes
from Buckminster's ability to run the same actions both interactively in the IDE and headlessly on a
server. This is particularly useful for organizations implementing continuous build integration and test
automation, as well as for open source development where anyone should be able to build the source.

Why read this book
We've attempted to make this book a clear, concise and definitive reference. We've tried to cover the
bases regarding using Buckminster in the most typical usage scenarios. We've also tried to provide
enough detail to serve as a starting point for more specialized scenarios, including customizing Buck-
minster itself. Following are the key topics we address:

• The general nature of Buckminster. Not everyone wants to learn Buckminster from the bottom
up by working through the XML schemas. So we will quickly get you up to speed on Buckminster's
architecture and what it can do for you.

• How to get and install Buckminster.

Draft Preface Draft

xi

• How to get software components from various sources. Buckminster provides the mechanisms
to get software components in source and binary form from a variety of sources such as source code
repositories, Eclipse p2 update sites, and Maven.

• How to invoke actions that perform builds and other common tasks.

• Best practices when working with Eclipse plug-in projects, and when building RCP applications.

• Publishing the built result so it can be consumed by users.

• Solution cookbook with examples of how to solve various common issues when building software.

• Setting up continuous integration with Hudson and Buckminster.

• Unit testing.

• Extending Buckminster.

• Reference documentation.

This book’s audience
We expect that most readers have familiarity with Eclipse in general. When describing Buckminster
features that directly related to developing Eclipse plugins, OSGi bundles in general, writing complete
RCP applications, managing p2 repositories, or using Buckminster for C++ development, we expect
the reader to have an understanding of development using the respective technology. Although we do
provide introductions to the technologies surrounding Buckminster, as it would otherwise be difficult
to understand the full picture, these introductions are by no means intended to serve as anything but
starting points for further explorations.

Conventions used in this book
Most books show you all the conventions used, but there are only a few things that needs to be men-
tioned...

Manually inserted line breaks

Examples in XML tends to get quite wide, and line breaks must be inserted or the lines will be truncated.

When this is the case, we include a ↵ where the line is broken, and one or several ¬ characters on the
subsequent line to denote that what follows is a continuation of the previous line. Here is an example:

http://somwhere.outthere.com:8080/with/long/path/and/parameters/like↵

¬?thisOne=withAValue&andThisOne=withAnotherValue↵

¬&thisThirdParameter=withYetAnitherValue↵
¬&soForth=untilTheLineNeedsToBeBrokenUpAgain&andThenSome=extraStuffAtTheEnd

If you type in one of these examples, you should remove everything from the ↵ to the last ¬ (inclusive)
on the next line and and have no line breaks.

Replaceables

Replaceables denote text that is variable in nature — the replaceable part is something you would
type, or that is generated by the system. We use the guillemots characters « and » around the part that
should be replaced e.g. copy «fromName» «toName».

Getting examples from this book
The examples in this book can be obtained from the Buckminster source code repository. Up to date
information is found at the general Buckminster project page at Eclipse.

Draft Preface Draft

xii

The Buckminster project page is located at http://www.eclipse.org/buckminster.

Request for comment
Please help us improve future revisions of this book by reporting any errors, bugs in examples, con-
fusing or misleading statements, or examples that you would like to see included.

Please report issues with this book in the Eclipse Bugzilla under the category Tools → Buckminster

→ documentation. The Eclipse Bugzilla is found at https://bugs.eclipse.org/bugs/.

Acknowledgements
Buckminster has been in development for quite some time. A precursor to Buckminster was developed
in 2000, at the company Frameworx Inc. with the purpose of supporting the company’s distributed
development of a “software as a service” framework. Ironically, the component that resonated the
most with the company’s clients was the possibility to use this internal component, for traditional
development. Many thanks to Kenneth Ölwing, who at Frameworx was the driving force behind this
system.

BEA Systems, and more specifically the BEA Java Runtime Products Group, home of the JRockit
JVM (now part of Oracle), is an early adopter of Buckminster. They have developed (and continue to
develop) a set of tools for Eclipse and needed a convenient way to execute headless builds of these
tools in orchestration with building the JVM itself. BEA sponsored development of Buckminster for
a period of two years and provided real world production issues that helped increase the usability,
stability and overall quality of Buckminster. Special thanks to Marcus Hirt for his enthusiasm, and
continued support.

Bjorn Freeman-Benson helped write the first introductions to Buckminster, and had the courage to use
Buckminster when assembling the update site for the Ganymede release. The interest in the “Gany-
matic” helped increase the awareness of Buckminster and we noted a lot more traffic on the Buckmin-
ster newsgroups and we got many new users.

Early adopters among the Eclipse projects include STP, and ECF. Many thanks to Oisin Hurley, and
Scott Lewis for the confidence in letting Buckminster build their projects.

Oisin Hurley, and Marcus Alexandre Kuppe are worth special thanks as they have never missed an
opportunity to get hurt by the latest experimental Buckminster features and thereby helping us sort
out the useful from the stuff that never should have been written. Thanks for all the great feedback!

David Williams, the Galileo build master, is using Buckminster’s repository aggregation functionality
to assemble and verify the repository for the Galileo release. We are grateful for the confidence and
the help we received from David tracking down the cause of issues, which is not an easy task in a
system as large as Eclipse. Also, special thank you to the p2 and PDE teams in resolving issues when
things were getting rough.

Finally, without all the valuable feedback from the Buckminster user community in form of bug reports
and patches — a big thank you! Buckminster would not be what it is without your help.

We are also very grateful to Cloudsmith Inc, our current employer, and its investors for making it
possible for us to work on Buckminster.

TO-DO: It is not yet possible to acknowledge those that helped putting this documentation together...

http://www.eclipse.org/buckminster
https://bugs.eclipse.org/bugs/

Draft Draft

Part I. Introduction
This part is intended as a quick introduction to Buckminster’s functional domain which includes provisioning,
building, sharing, testing and publishing software components.

Central concepts such as the Eclipse workspace and target platform, OSGi and the Eclipse Plugin Development
Environment (PDE), and the Eclipse provisioning platform (p2), are explained and put into context. Specifically,
this chapter discusses how Buckminster works.

Draft Draft

2

1
Eclipse

This chapter contains a brief overview of selected Eclipse technology and how it relates to
Buckminster’s domain of composing component based systems.

An overview of Eclipse concepts such as the workspace, target platform, component types such as
plugins and features, is also found in this chapter.

You will also find a brief introduction to ANT, although not strictly Eclipse technology, it is still used
by Eclipse and Buckminster.

Eclipse technology
A selection of Eclipse Technology explained.

Equinox
Equinox is the name of the OSGi runtime underlying the Eclipse IDE. It is a general purpose OSGi

runtime. Equinox is (among many things) responsible for the loading (and unloading) of components.
It functions as the container for the rest of the system.

For more technical information about OSGi — see http://www.osgi.org/About/Technology.

Platform
The Eclipse Platform provides the core frameworks and services upon which all plug-in extensions are
created. It also provides the Equinox runtime in which plug-ins are loaded, integrated, and executed.
The primary purpose of the Platform is to enable other tool developers to easily build and deliver
integrated tools.

Java Development Tools (JDT)
Java Development Tools (JDT) is the set of tools build on top of the Eclipse platform for developing in
the Java programming language. It includes a rich set of functionality for editing, compiling, debug-
ging and running java code.

When used alone, created projects are “plain java” and management of dependencies is handled in a
manual fashion and with this comes all the classic java issues with specifying a class path, and making
sure all the required parts are available when running the code.

You will find more information about using Buckminster with “plain java” in Chapter 17, POJO
Projects.

http://www.osgi.org/About/Technology

Draft Eclipse Draft

3

Plugin Development Environment (PDE)

The Plugin Development Environment (PDE) is a set of tools built on top of the Eclipse platform
and JDT for developing Eclipse Plugins as well as more general OSGi bundles. PDE has a rich set of
functionality to work interactively with the additional meta data found in plugins and bundles and
supports all required operation from construction to publication.

The relationships between Eclipse plugins, features, and OSGi bundles is further addressed in the sec-
tion called “The Eclipse component types”.

PDE also includes PDE-build, which consists of generation of ANT scripts that are then used to build
software headlessly.

Buckminster provides a much more convenient way of invoking the various build actions in PDE than
the script based PDE-build, as Buckminster does not generate scripts.

Rich Client Platform (RCP)

The Rich Client Platform (RCP), is the name for the Eclipse technology that makes it possible to write
general purpose applications based on the Eclipse platform. The term “RCP application” is often used
to denote the top level product such as the Eclipse IDE. Two well known open source applications built
on RCP are the bittorrent client Vuze (Azureus), and the RSS reader RSS Owl. There are also many
smaller RCP application in the Eclipse family, such as the p2 and Buckminster installers, the p2 agent,
i.e. small independently packaged utilities with a user interface.

Many companies build their internal applications using Eclipse RCP.

Buckminster provides support for building complete RCP-products with a minimum of effort.

p2

Equinox p2 is the relatively new provisioning platform (introduced in Eclipse 3.4 Ganymede), de-
signed to be a platform for many different kinds of provisioning solutions, and specifically designed
to be a replacement for the Eclipse Update Manager. In Eclipse 3.5 Galileo p2 is both functionally
rich and well tested with over a year of use, and with close to 2000 unit tests having been constructed.
In 3.4 it existed in parallel with the Update Manager, and in 3.5, p2 has replaced it completely.

As p2 is heavily used by Buckminster, and p2 also defines the format of the typical end result (an
installable system, or plugins to such a system) we have included a somewhat longer description in
Chapter 2, p2 as we believe this technology to be new to most users.

The Eclipse component types
The Eclipse system contains several types of “components”; OSGi bundles, plugins, features, frag-
ments, and products. In this section we present an overview of what they are, and the role they play
in the composition of a software system built on Eclipse.

Plugins, features and OSGi bundles

The terms “plugin”, “feature”, and “bundle” (short for OSGi bundle) refers to Java components that
contains meta data information that makes it possible to manage their life cycle. The terms “plugin”
and “feature” are specific to the Eclipse platform, and “bundle” is the generic software component
handled by an OSGi runtime. Since Eclipse is built on the Equinox OSGi runtime, it can make use of
all three types; bundles, plugins, and features.

Draft Eclipse Draft

4

Bundle

A bundle is the fundamental type. In addition to being the container for the code it has meta data
describing its dependencies on other bundles, and requirements on packages expected to be present
when using the bundle.

Plugin

A plugin, is also an OSGi bundle. What makes it special is that it also can contain information that
makes use of the Eclipse extension mechanism — a declarative way to define that a bundle contains
code that extends functionality in some other bundle.

Feature

A feature, is a grouping of plugins and other features. It defines a unit of what should be installed
together. The feature is a configuration — a bundle may specify that it requires that a certain java
package must be present, but the bundle says nothing about where this package should come from. This
can be specified in the feature. This separation allows a bundle to be used in different configurations
without requiring that the bundle itself needs to be changed.

Fragments
A fragment is a special kind of bundle with what could be called a “reverse dependency” on a host
bundle. Fragments are typically used to implement optional code that is included in a configuration,
often filtered on parameters like installed language, operating system, hardware architecture and user
interface technology. As an example, a fragment could contain code that is only needed during testing
or debugging, contain features available only on a particular platform, or for a particular language.

A fragment can also have normal dependencies — these come in effect if the fragment is selected
for inclusion.

Fragments are included in a configuration by requiring them in a feature.

Products
A product is a special grouping mechanism used to define a “top level” product (such as the Eclipse
IDE itself). Unfortunately, the tools that help maintain the group aspect of the product definition are
somewhat lacking (in comparison to the same functionality for features), and we recommend that
the product definition is used only to define the product aspect, and that all grouping is defined in a
single feature that is referenced by the product. An examples of how to do this is found in Chapter 16,
Building RCP Products.

When a product definition also acts as a grouping mechanism, it is referred to as a “bundle based
product”, and when it refers to feature(s) (we recommend using only one) it is said to be “feature
based”.

In addition to referring to the feature(s) or bundles being the configuration for the content of the
product, the product also has a reference to a “branding bundle” that contains items such as the splash
screen and icon for the product.

The Workspace
The Eclipse Workspace contains projects. These projects can be specialized (i.e. plugin project, feature
project etc.). When you are looking at content in the Eclipse Navigator, or Package Explorer you are
looking at content in projects.

You can get content into the workspace by:

Draft Eclipse Draft

5

• creating new projects and importing files manually

• importing a complete projects from somewhere on disk

• importing one or several projects from a source code repository

• linking to content in the correct format somewhere outside of the workspace

• importing from a “team project set” file, which contains a list of projects to check out from a source
code repository.

• importing from source bundles (this is primarily used for debugging and patching).

As you can see, there is only one option that is suitable for automation — using the team project set.
Many set up their projects to include such a file in a “meta project” and users begin by checking out
this project and then importing using the team project set.

The pitfalls is that the team project set must be maintained manually. As dependencies are added or
removed, the set of files required in the workspace may differ, and there is no way to control loading
some projects from a branch or a tag.

Solving this particular problem was actually one of the very first requirements for Buckminster — as
you will see later, Buckminster provides convenient population of the workspace for the typical case,
and it is quite easy to load particular parts from branches and tags.

The Target Platform
The target platform is a definition of the set of features/plugins to use when running the code being
built. You can say that the code is built for a particular target platform. By default, the target platform
is defined to be the same as the Eclipse IDE — this means that when you are running your code in the
self hosted environment you will not encounter missing bundles. When however you export and run
the code separately, you will almost certain be hit by surprises.

Prior to Eclipse 3.5 there was no good way of managing a target platform in the IDE. A target platform
was simply an Eclipse configuration in a directory.

In 3.5 the functionality to handle management of the target platform has been added. Multiple Target
Definitions can be created. A definition can be saved to file (for later loading). It is also possible to
make one definition the active target platform. The new Target Definition defines a set of locations.
Each location can be one of:

Directory A directory in the local file system.

Installation An installation (such as an Eclipse SDK) in the local file system.

Features One or more features from an installation.

Software Site Downloads plug-ins from a p2 repository.

The preferred way of handling target platforms in 3.5 is to create one (or several) with the IDE and
then save the definition to a file. Buckminster can use such definitions, and you can also materialize
a target platform using Buckminster.

Launch configuration
A launch configuration is a definition of how to launch/run/debug something from within Eclipse.
There are multiple classes of launchers for Eclipse covering running plugins, OSGi frameworks, tests,
etc. Launch configurations can also launch servers or just run external commands.

Draft Eclipse Draft

6

Don’t confuse launch configuration with target platform. The (eclipse type) launcher launches the
active target platform definition with the configuration specified in the launch configuration. This
makes it possible to switch target platforms, build for that target, and then launch what was built for
testing.

Many developers use the Eclipse IDE itself as the target platform, and then define the set of features/plu-
gins to run in the launch configuration. In Eclipse 3.5, where target platform management has been
improved, it is better to define an exact target platform and then have a simpler launch configuration
that just use what is in the workspace and everything enabled in the target platform. This separation
of concerns is valuable as the target platform definitions are reusable across many products/launchers,
and makes it easier to migrate components to newer targets.

ANT
Apache ANT is a Java based build tool that is both well known and widely spread. ANT is integrated
with Eclipse, and Buckminster.

The Buckminster integration consists of:

• Buckminster actions can be implemented as ANT scripts.

• It is possible to invoke Buckminster actions from ANT-scripts.

Draft Draft

7

2
p2

An introduction to the Eclipse provisioning platform

Equinox p2 is the relatively new provisioning platform introduced in (Eclipse 3.4 Ganymede) designed
to be a platform for many different kinds of provisioning solutions, and specifically designed to be a
replacement for the Eclipse Update Manager. In Eclipse 3.5 Galileo p2 is both functionally rich and
well tested and it has now replaced Update Manager completely.

Equinox p2 is still new technology, and does not yet have an official API, and much work remains
in utilizing its full potential. Replacing the use of the Update Manager in Buckminster with p2 was
a big task since Buckminster and p2 in part are overlapping in functionality. Buckminster also steps
outside of the OSGi domain which is the primary focus in p2 and PDE. The transition has been very
successful thanks to the cooperation of the p2 and PDE teams — all three projects have gained from
this; Buckminster can now use the much richer p2 to perform provisioning, and have access to PDE

functionality via APIs — gone are the mysterious paths taken to overcome deficiencies in the old
Update Manager. Equinox p2 has gained increased generality by the addition of the Omni Version
capability which makes it possible to use p2 to resolve dependencies for non OSGi components. The
Omni Version is covered in Appendix C, Omni Version Details

This chapter is only a brief introduction to p2 meant to establish the key concepts.

The Installable Unit
The central concept in p2 is the Installable Unit (IU). It is an entity named in a name-space having a
version e.g. the org.eclipse.equinox.bundle named org.myorg.helloworld having version
1.0.3.

Draft p2 Draft

8

Figure 2.1. Anatomy of an IU

Dependencies are handled by declaring required capabilities which are matched with provided capa-
bilities also declared in a IU. Specifically, all IUs have a declaration that they provide themselves as a
capability. This makes it possible for one IU to require another. The dependency mechanism is very
flexible as it allows addition of new capability types. Capability types for Eclipse related types (i.e.
plugins, bundles, features, java packages, etc.) have already been defined and are used by p2.

An IU’s artifacts — i.e. the content the IU is describing, is referenced via name and type, and when the
artifacts are needed, they are looked up in a p2 artifact repository.

The IU also contains touchpoint instruction; actions that are invoked in specified phases of a provi-
sioning job e.g. when installing of uninstalling. The instructions can be things like copying files, un-
ziping an archive, changing startup parameters etc.

If an IU requires special installation instructions these must naturally be installed before an attempt
is made to install the IU itself. A mechanism called meta requirements allows an IU to declare these,
and can then trust p2 to handle resolution and installation of these when an installation of the IU itself
is requested.

Metadata repository
The meta data describing components — i.e. the IUs, are stored in a p2 meta data repository. Techni-
cally, a meta data repository is an interface and there are several implementations delivered with p2.

• A simple meta data repository stored in a file system directory

• A composite meta data repository that references other meta data repositories

• An Update Site based repository (i.e. the structure used by the older Eclipse Update Manager)

• Specialized repositories that enable the current installation (among other things) to be used as the
meta data repository.

Artifact repository
An artifact repository contains the contents of IUs such a files, zip archives, jar files, etc. Technically
an artifact repository is an interface and there are several implementations delivered with p2. The
available repository implementations are similar to the meta data repositories (i.e. simple, composite,
update manager based, and special).

Draft p2 Draft

9

There are many advanced options such as controlling how artifacts are physically stored and sent over
the wire; verbatim, packed, or as a delta.

Combined / co-located repositories
Although p2 is capable of handling that meta data and artifact repositories are stored in completely
different locations (anywhere addressable by a URI), the most common set up (and the only one sup-
ported from the Eclipse SDK’s user interface) is a combined (or co-located) repository where a meta
data repository and an artifact repository is addressed via a single URI.

Profile
The p2 profile is a central concept — an installation of a product is described by a profile. It contains
the meta data for everything that is currently installed. Thus, installation always takes place into a
p2 profile.

A profile maintains a history, and it is possible to roll back to a previous configuration. As you may
guess, a profile can also function as a repository, making it possible to “copy” parts of an installation
from one profile to another.

p2 internals
Internally, the provisioning work is divided up between p2’s major parts. The director handles provi-
sioning requests such as installing or uninstalling one or several IUs. The director performs the work
by using the meta data available in a profile, combined with the meta data in associated meta data
repositories (those that have been used to install components from, or repository references just about
to be added to the profile). This information is then fed to the planner which is responsible for re-
solving all requirements (dependencies). The resulting plan is fed to p2’s engine which executes the
work in phases (in simple terms — it collects items, downloads/mirrors artifacts, installs, and then
configures them).

Figure 2.2. p2 in action

Draft p2 Draft

10

The planner uses SAT4J to handle the complicated NP-complete problem of resolving requirements. It
is interesting to note that there is a guarantee that if there is a solution, it will be found, and it will be an
optimal solution (i.e. optimal in the sense of a defined set of weights such as “later version is better”).
The use of SAT4J is a major leap forward compared to the old Update Manager (may it rest in peace).

Categories
From an end user perspective, an important part of p2 is the handling of categories. They are used to
group related features and arrange them in a structure that makes sense for a human installing software.
The features (although one level up above the (to a user) almost incomprehensible very technical plugin
names) are still often quite technical in naming, and it can be very difficult for a user to understand the
purpose of a particular feature. You have probably already seen the use of categories, as they enable
you to browse the content under labels like “java development”, and “modeling” as opposed to just
seeing a long alphabetical list with project names.

Prior to Eclipse 3.5, categories were authored in the Update Manager’s site.xml file stored in an
update site. Such category information is read by p2 when it reads an older update site. When producing
new p2 repositories however, the category information needs to be authored differently. In Eclipse 3.5
there are three ways; use the new Category Editor which creates a file that PDE makes use of when
exporting to a p2 repository, use the (provisional) p2 publishing advice which is stored in a p2.inf
file in the component being published, or use Buckminster which supports definition of categories in
build properties.

Publishing
The act of making components available for consumption by p2 is referred to as “publishing”. It is
an area that overlaps with three key technologies; p2, PDE, and the Eclipse platform, and if you look
under the covers, you will see that they work in close cooperation.

PDE understands the source components, the meta data that makes the java projects be plugins, features
or products. These are translated into the p2 form (IUs), containing information and instructions that
makes it possible to install them and control the startup of the equinox environment.

Publishing components as p2 repositories does not require any additional authoring of p2 specific
artifacts. More specifically, you do not need to author the IUs — this is done by the PDE specific
publisher.

Prior to Eclipse 3.5, publishing was done by first producing an update site, and then generating the p2
combined repository from the output. This is basically what p2 does when it encounters an old style
Update Manager site — “publishing” if you like, the update site on the fly. Although this interpretation
of update sites is still supported, the recommended way of publishing is via the p2 publisher as it has
more information available. (As you will see later, Buckminster provides a very convenient mechanism
to execute p2 publishing).

Installing
Installing from p2 repositories (or update sites adapted by p2) can be done by a user of the Eclipse SDK

directly in the SDK’s “install new software” dialog. With update manager, this was the only (managed)
choice — most experienced users simply dropped the required files into the Eclipse installation folder
structure (and this worked most of the time). Now, with p2, an install is fully managed to ensure
that all requirements are met and that needed actions such as setting startup levels, and modifying
initialization parameters take place during installation. This ensures that things actually have a chance
of working, be updated, and eventually uninstalled.

With p2, the options are many, especially since p2 does not require that the system being installed
into is active when performing the install — it can be done by an external p2 “agent” (there is a utility

Draft p2 Draft

11

application called the “p2 agent” which is one example of such an agent. The “p2 installer” is another
such example, and the SDK itself also has such an agent).

Note

The various agents all share the same p2 code — the difference is that they are designed to
be used in different situations, and thus they expose only information required to support
the particular task they were design to handle.

Since users have become accustomed to “dropping in” things that should be installed, this is also
supported in p2, but the plugins and features are now dropped in a special folder that is monitored
by p2. When it encounters new material in this folder, p2 will perform the same type of managed
installation as when installing from repositories. There are several caveats when using drop-ins to
install, and it is not the recommended approach as the higher quality meta data provided by publishing
is unavailable.

The SDK agent
The p2 SDK agent manages installations into the SDK when used from the user interface. But the func-
tionality of this agent can also be accessed from the command line to perform installation as an exter-
nal agent. This is referred to as “running the embedded director app”.

Users of Eclipse will typically not use this embedded agent, and instead perform installation work via
the user interface. The user interface and backing functionality can also be used in RCP applications,
and there are many configuration option available to cater to different installation and update policies
(on demand, automatically on startup, completely hidden from the user, update only (no new install,
no uninstall), lock down of used repositories, etc.

The SDK agent allows the user to add and remove repositories (under Eclipse → Preferences), or
directly in the “install new software” dialog. The user can see what is installed, select new features to
install from selected repositories, perform the installation, and much more.

Since the SDK agent is designed to install into the running SDK itself, many of the advanced features,
such as installing into an arbitrary profile, control advanced repository layout through the use of bundle
pooling and shared installs are not present in the user interface. One of the other agents should be
used for this purpose.

The director application
The director application is part of every Eclipse SDK and can be invoked from the command line. The
director app is also packaged as a separate headless product with a reduced footprint. The headless
director application is maintained by the Buckminster project. (See Appendix A, Installation, for how
to obtain it).

The director application makes it possible to control the more advanced features in p2, while still
having convenient command line options available for the most common operations.

We will shown examples where the headless separate director application is used and how to get it is
explained in the section called “Installing the Headless Product”.

The p2 Installer
The p2 installer should be seen as an exemplary implementation of an installer, its user interface is
quite unsophisticated, and it lacks many production grade qualities such as detailed progress informa-
tion, and error reporting. That said, it is still a very useful utility when a user interface based installer
is wanted.

Draft p2 Draft

12

The p2 installer in its default configuration is designed to install the Eclipse SDK. It is pre-configured
with all the parameters, and when invoked after downloading, all that is required by the user is to tell
the installer where it should install the SDK.

It is however possible to feed the p2 installer a different set of parameters by providing a properties
file with the information regarding what to install from where, and then modifying the startup of the
installer to override the built in default. This requires far less effort than creating a custom installer
and may be sufficient for many smaller applications.

The p2 installer is used in one of the examples to install a RCP application — see Chapter 16, Building
RCP Products.

The EPP wizard
Finally, the Eclipse Packaging Project (EPP) has written an application called the EPP-wizard, a RCP

application with a RAP user interface which is driven by meta data to allow a user to select between
high level EPP packages such as “Eclipse classic”, or ”Web development”, and then add support for
optional technologies (such as Buckminster).

At the end of the process, the EPP-wizard provides the user with a configured p2 installer, that when
downloaded and invoked will install exactly what the user picked from the available options.

The Buckminster installer
The Buckminster project also provides an experimental installer. It is designed to be started via Java
Web Start or via a Java applet and it gets its initial parameters indirectly via a URL. Originally this
installer used Buckminster’s provisioning capabilities and before p2 this was one of very few options
available when an external, web startable installer was wanted.

The Buckminster installer also includes a JSON client, and is capable of engaging in a dialog with an
smart repository and thereby present more information about what is being installed, manage a sign-
in dialog, branding, and much more.

The Buckminster installer is however not yet considered released — its API may need further changes
to be suited for general use, and testing is limited. Using this installer requires setting up the server
side correctly and this part is not included in the installer, and no documentation is provided.

Shipping
By shipping we mean making the published material available to the intended consumers. You may
think of this as “publishing” (i.e. making something publicly available), but this term is already used
to mean making the internal meta data found inside projects public to the outside world in the form
of p2 repositories.

In fact, there is no support in Eclipse to handle the steps required once such publishing has taken place.
The resulting folder structure with files in them are simply written to disk, and there everything ends.

The most common way of shipping is making the published result available on a web site. And in
cases when what is shipped is supposed to be installed into the Eclipse SDK, or consists of plugins for
some other RCP application, this is as simple as just copying the result written to disk by the publisher
to the appropriate directory where a web server picks it up.

If creating a complete application however there are more to consider. Users will typically not have
the application installed to begin with, so user must start by downloading something. As seen in the
section called “Installing” there are several installers available that can serve as a starting point —
from the headless director application, to the interactive Buckminster installer. The benefit of using
these is that there is no need to ship the complete application pre-configured for different platforms —
as this is handled by the installer. Unfortunately, as the various installers were all created for a specific

Draft p2 Draft

13

purpose, and some being more “exemplary”, you may find that they may not suffice if you are going
to ship a more high profile application, and you may want to write your own installer.

Your options for shipping includes:

• Pre-configured installations per platform. To do this, you typically run the headless director app —
telling it to install for one particular configuration (operating system, window system, architecture,
language, etc.) into a location on disk. The result is then zipped-and-shipped.

• An installer configured to install the application from a remote repository. This has advantages as
the initial download is small, and the bulk of the installation is performed by p2 which supports
parallel downloading, selection of mirrors, and compressed artifacts. It is also very simple to add
download of newer versions as everything is stored in a central repository.

• Zipping up a p2 repository with everything and a configured installer. The benefit is that the user
will download everything that is needed to local disk, and can perform the install while not being
connected to the Internet. The downside is that the repository contains components that are never
used on the platform where it is installed.

This form is suitable if you are shipping on a CD/DVD.

• Delivering application via a Linux package manager such as RPM creating a read only and shared
installation that is then extended via an embedded p2 agent.

• Hybrid form, where the basic application is downloaded using one of the above mechanisms, but
where bulky extras are installed via a p2 agent embedded in your application (like the Eclipse SDK
p2 agent), or via an external installer.

In addition to deciding on how to ship — you must also decide on how you want to compose the
required repositories. Your options include:

• Creating a composite repository with a reference to the main Eclipse repository for everything that
is used from the Eclipse platform. This has the advantage that “your site” is always up to date with
the latest repository content, and you do not have to store copies of everything in your repository.

• Creating an aggregated meta data repository that contains the meta data from the Eclipse main
repository as well as your site(s), but uses the existing artifact repositories via a composite artifact
repository. This has the advantage over the simplest form in that all of the meta data is obtained
in a single download, and since you are reconstructing the meta data, you also have more control
over the categorization of features.

• Mirror everything you need to your repository and then deliver everything from your servers. The
benefit is that you have full control, but you do not make use of the Eclipse mirrors, and you must
periodically update your mirrors.

Buckminster has support for aggregating sites — this functionality has been used in the Eclipse 3.5
Galileo release to compose the final Galileo repository. The Buckminster site aggregator is not de-
scribed in this book.

Summary
Equinox p2, is a provisioning platform and as such has a rich and flexible feature set. Being rich and
flexible also means that it is complex. It is complex in itself as it is solving a very difficult problem, and
it is doing so with OSGi technology that under the covers need to perform complex tasks so developers
can focus on the functionality instead of the mechanics of configuring a dynamic system — all in order
to provide consumers of the resulting software with a high quality software provisioning experience
— simply click install, and run automatic updates.

In the following chapters we will show how Buckminster, p2 and PDE work together, and how you
can used Buckminster to handle some of the complexities.

Draft Draft

14

3
Buckminster Introduction

This chapter is an overview of the functionality in Buckminster. You probably want to read this chapter
before continuing with the second part of this book.

Functional Overview
The highest level description of what Buckminster does is simply as follows. You want to build some-
thing, and have nothing of the material you want to build. You tell Buckminster to materialize the
component you are going to build, and then you tell Buckminster to build it. This produces output
within your workspace, or somewhere on disk.

Figure 3.1. Buckminster from 10.000 ft

Materialization fetches components so they can be
worked on. Actions such as build can then be performed.

When you request the component to build (A, in the example above), Buckminster will not only fetch
this component, but also resolve all of its dependencies transitively.

Draft Buckminster Introduction Draft

15

Figure 3.2. Transitive Materialization

When requesting component A, it in turn requires B, and C — they both re-
quire D, B requires F, and F in turn requires G, similarly C, requires E and H.

Getting Components
The first two questions are usually, Where does Buckminster get the components? and Where does
Buckminster store them?

Figure 3.3. Resource Map and Repositories

Components are looked up in a resource map (RMAP) which
holds the rules for accessing different types of repositories.

When Buckminster needs a component, a lookup is performed in a Buckminster resource map (RMAP).
The RMAP contains rules how to translate a request for a component of some particular type and version
to a repository location of a particular repository type, and how to address the component within this
repository.

Buckminster supports a wide variety of repositories, and it is possible to extend Buckminster with
new types.

• CVS — it is possible to reference components found in HEAD, in branches and via timestamps.

• SVN — it is possible to reference components found on trunk, branches, and named tags.

Draft Buckminster Introduction Draft

16

• Update Site — components published on a Eclipse Update Site in the format specified by the
Update Manager (in use up to Eclipse 3.5). In Buckminster for Eclipse 3.5, update sites are read
via p2.

• p2 — components available in a p2 repository can be fetched.

• Maven — components stored in a maven repository can be fetched.

• URL — a single component can be fetched from a given location.

• Workspace — the components currently in the workspace (probably in source form) are also avail-
able to Buckminster’s resolution process — naturally there is no need to actually fetch them, but
their presence may override resolving to the same component in binary form in some other repos-
itory.

• Target Platform — the components in a target platform are available to Buckminster’s resolution
process — these are also not fetched, but affect the resolution process.

The resource map does not have to be a single map. It is possible to reference other maps.

Figure 3.4. Federation of Resource Maps

A federation of resource maps, including a platform base builder map.

It can be useful to organize the overall resource map in a distributed fashion. You may want that
different projects maintain a map of their components — which is especially important if projects are
following different naming standards, and when they are performing refactoring of repositories. An
important feature for projects at Eclipse is that the platform base builder maps are directly supported.
This is important because many Eclipse projects include components from the Eclipse Orbit repository
and a platform base builder map is provided for this repository, and it can be directly used. Some
projects, that are currently building with the platform base builder naturally also benefits as it is easier
to transition to Buckminster by directly being able to use existing maps1.

1Although not required, if you are using the platform base builder maps it is recommended that you switch to a Buckminster resource map as
it is easier to maintain if you are following typical project naming standards.

Draft Buckminster Introduction Draft

17

Figure 3.5. Resource Map routes

Resolution can take different routes depending on rules and parameters.

When Buckminster resolves a component it can take parameters and rules into account when selecting
the route through the map (single map, or federation). You can for instance organize the maps so that
users looks up components from a local repository rather than always going to a central repository, and
you can organize the map so this can be done when the component name matches a regular expression
(and much more).

Figure 3.6. Materialization Types

Buckminster can materialize (store) fetched components in different types of locations.

When Buckminster materializes components, they can be stored in different types of locations. Buck-
minster supports Eclipse related locations, and the file system, but can be extended with other types
of locations.

• Workspace — typically projects are materialized to the workspace, but it is also possible to bind
binary components (this was common practice prior to Eclipse 3.5 because of difficulties with man-
aging the target platform)

• Eclipse — i.e. installing tools into an Eclipse based product such as the Eclipse SDK or an RCP

application. Prior to Eclipse 3.5, this was done by using the Update Manager. Since 3.5 this is
performed using p2.

Draft Buckminster Introduction Draft

18

• Target Platform — i.e. installing into a definition against which components are built. Prior to
Eclipse 3.5 the target platform had to be created separately, and then referenced in later operations.
In 3.5, a target platform can be dynamically created and installed into.

• File System — i.e. storing the component on disk.

Now you have seen how Buckminster gets components, and where they are stored when materialized.
But how do you tell Buckminster what you want?

Figure 3.7. Telling Buckminster what to get

Getting things is done by submitting a Component Query.

Figure 3.8. Ordering at “Bucky Burger”

Telling Buckminster what you want can be as easy as ordering a meal at Bucky Burger...

Most of the time, the only thing needed is to state the name of the component you want. Buckmin-
ster will then find the latest version of the component. But sometimes you may have very detailed
requirements on your meal.

Draft Buckminster Introduction Draft

19

Figure 3.9. Ordering at the Bucky Deli

Getting picky at the Bucky Deli. (Are you sure that pepper is south Brazilian?)

As you will see later, Buckminster has a very powerful query mechanism where you can specify many
options:

• Do you require source, or prefer source, but can work with binary, or only require binary form.

• Do you require source that can be modified and checked in (given that you have authority to do
so naturally).

• Do you want to load some components from a branch or tag and override the default.

• Do you want to override certain component-version combinations even if requirements in the com-
ponents say otherwise.

• You may want to specify that a search should use a particular path in the resource map for certain
components — perhaps loading them from a central repository instead of a local mirror.

• You may want some components from a release repository, but some should be picked from a
nightly build repository.

Buckminster component queries are entered and edited in a CQUERY-editor — which is explained in
detail in the section called “The CQUERY Editor”.

Draft Buckminster Introduction Draft

20

Figure 3.10. Getting components — summary

Summary of getting a component — a query is resolved and compo-
nents fetched from repositories, and materialized into different locations.

Component
We have already introduced the term Component without any further explanation. Now is the time to
look a bit closer at what is meant by a component in Buckminster.

Figure 3.11. Component

Component is an abstraction — a named and versioned piece of content.

A component is an abstraction of a unit in a software system having a name, a type and a version. A
component typically has content 2— and it can exist in multiple forms — such as source or binary.
When Buckminster obtains the definition of a component, and subsequently its content, a Component
Reader matching the component instance’s physical shape is used to interpret the component’s meta
data and translate it into a Buckminster Component Specification (CSPEC). This translation takes place
each time the component is requested — there is no need to save the result. This has some important
benefits:

• No round trip engineering is required. The meta data at the source is used directly.

• Does not require restating already expressed facts such as dependencies.

A Component is not tied to any particular implementation technology — Buckminster works just as
fine with Java, C, PHP, as with just a collection of files. Even if it is possible to turn just about anything
into a leaf component, in order to be really useful however, there must be some meta data available
that describes the component and its dependencies.

2A component without content functions as a configuration or grouping mechanism.

Draft Buckminster Introduction Draft

21

Buckminster have component readers for several meta data formats, and it is possible to add extensions
for additional types. And in case you wonder, it is possible to combine different types of repositories
with different types of component readers (although some combinations are nonsensical as certain
type of meta data may only exist in certain types of repositories). Here is a list of available component
readers:

• Eclipse types: plugin, feature, product, fragments

• OSGi types: bundle

• Maven: maven POM (version 1 and 2)

• Buckminster: Buckminster’s CSPEC and Component Specification Extension (CSPEX). Both which
are further explained below.

Component attributes

Components have attributes which are similar to concepts like member variables of a class, or the
properties of a bean. The attributes represents either static data, or are dynamically computed by an
action.

Figure 3.12. Component Attributes

Component A’s compile action requires the lib and headers attributes from component B.

The type of an attribute is always an path group which represents a (possibly empty) collection of
files. So, when the lib attribute in Figure 3.12, “Component Attributes” is read in the compile action
it will get a collection of the lib files in component B.

It is also possible to declare an attribute to be an aggregation of other attributes (and actions, as you
will see in the next section).

Component actions

Components have actions which are similar in concept to methods of a class. The return type is always
a collection of files. From the requester’s view there is no difference between a static attribute and
an action, its value is simply requested — there is no need to know if the returned list of files is a
static list, or a computed value.

Using the example in Figure 3.12, “Component Attributes” — the attribute lib could simply by turned
into an action that computes the list of files to return instead of being a static declaration.

Using the group mechanism makes it possible to do advanced constructs that includes the result of
both static attributes and results from invoking actions.

Draft Buckminster Introduction Draft

22

Figure 3.13. Component Actions

Private action invoked to produce the value of the lib attribute.

Attributes can be marked to be private, which means that they can only be used from other attributes
in the same component. Public attributes can be read, and public actions can be invoked (i.e. read) by
other components. In Figure 3.13, “Component Actions” the compile action in A get the value of
lib in A. The attribute lib is declared to be a group containing the value of the action makeLib. As a
result, the compile action gets the list of files produced by makeLib without knowing it was invoked.
The lib attribute could also include the result of other actions, or static attributes.

The ability to encapsulate private actions is very important. Most build technologies do not provide
this distinction and this creates maintenance headaches as it is almost impossible to know where and
how build actions may be used. The end result is usually that no-one dares to make any changes to the
build system because they don’t know what they will break.

Actors
You may already have wondered how the body of an action is implemented — What language are they
written in? The answer is that an actions body is made up of an Actor, and Buckminster has several
types of actors available. Additional actor types can be added as extensions.

Buckminster has several types of actors:

• Java — compile, jar, etc.

• PDE — build bundles, features, fragments and products, pack, sign

• p2 — build a repository

• General — fetch files and execute system commands

• ANT — invoke ANT tasks. This is very useful for integrating with existing build systems written
using ANT.

Turning something into a component
As you have seen earlier, there is nothing you have to do if the software unit you are interested in
already has meta data for which there is a component reader available (as it is for all the Eclipse related
types; bundle/plugin, feature, and product).

When this is not the case what you need to do depends on if there is meta data available at all, and if
the meta data is rich enough to be useful — if that is the case, you are probably best of by adding a new
component reader by extending Buckminster. For more information about how to extend Buckminster
see Appendix B, Extending Buckminster. If however, the meta data is missing, or is poor, or you just
don’t want to create an extension, it is possible to use Buckminster’s native CSPEC XML format. The
Buckminster Reader expects to find a CSPEC file inside the component in a particular location. The
file is created with the Buckminster CSPEC editor. This is explained in detail in the section called “The
CSPEC editor”. There is also a hybrid solution possible, for some reason it may not be possible to

Draft Buckminster Introduction Draft

23

insert the meta data into the actual component, then you can construct an extension that still uses the
CSPEC format, but where it is stored in an external location. This is much easier to implement than a
full reader, as it only requires handling the association between the two — the meta data format and
parsing can be reused.

Note

It is only in fairy tales a frog turns into prince by a mere kiss.

Decorating a component with additional advice
Buckminster has an extension mechanism for component specifications that allows you to decorate a
component with additional advice. This is useful in several situations:

• adding additional actions to the component

• overriding faulty meta data

• adding dependencies to underspecified components

• hooking actions that should be executed as a component is materialized

• wrapping existing action to some additional work before or after the original action

Figure 3.14. Component Specification Extension — CSPEX

All component types can be extended with a CSPEX.

An extension is made by storing a CSPEX file inside the component — all available component readers
are capable of handling this extension. The CSPEX is using the same format as the CSPEC.

Summary
Buckminster gets units of a software system called components from repositories by looking them
up in a resource map, reading and translating them into a common form, and then materializing them
into different locations such as the workspace or target platform. When the components have been
materialized Buckminster runs actions defined in the components such as building a product or a
repository of plugins.

Draft Buckminster Introduction Draft

24

Figure 3.15. Buckminster Summary

Buckminster builds a product.

Figure 3.16. Buckminster Headless

Look Ma — No head!

The Figure 3.16, “Buckminster Headless” illustrates the most important feature of them all — the
ability to build exactly the same thing in a headless configuration without having to do any additional
authoring!

Reading on. You have now seen an overview of Buckminster and how it relates to other Eclipse
technologies. You should now have a high level understanding of the capabilities. The rest of this book
is not intended to be read from start to finish (although you may still want to), but instead provide
detailed drill down in the various parts, as well as examples, and reference material.

Draft Draft

Part II. Buckminster
In this part, we take a deeper look into Buckminster. The chapters are not intended to be read in sequence, although
we try to follow a logical sequence — starting with the resource map, as that is probably the first thing you want
to set up. Alternatively, you may want to start by installing Buckminster as described in Appendix A, Installation,
and then running through some of the examples in Part III, “Examples”.

Draft Draft

26

4
Resource Map

In this chapter we take a closer look at the resource map and how its features can be used to map
component names to resources in different types of repositories.

The resource map is one of the first things you are required to set up. Without a resource map, Buck-
minster can only find resources already in your Eclipse IDE.

You can find several examples of resource maps in Part III, “Examples”, and some of these may be
immediately useful to you as they map many of the components found at Eclipse.

The work required to create the resource map for your project or or organization depends to a large
degree on how well naming standards have been enforced, and in what type of repository components
are found. If your components are in p2 repositories, update sites, or in CVS, SVN or Perforce, and you
have followed recommended repository layout, and named your projects after the component names,
then the work is quite straight forward.

On the other hand, if you are pulling in components by downloading them from download pages found
somewhere on the Internet, and you need to scrape the HTML content returned in order to find the
correct URL for a particular version, platform, language, etc. then you naturally have more work setting
up the map. Luckily — you also have the most to gain in automating such a manual task.

The search for the component
In the resolution process Buckminster finds that an already found component requires some oth-
er component. As an example say that the component org.myorg.hello requires the component
org.myorg.world. Buckminster must now find that component to get its requirements (and so forth),
and starts the process by looking up org.myorg.world in the resource map. In addition to the com-
ponent name, the component also has a type, and possibly a version range that further constrain the
search.

The objective is to find a reader type (how to read the content of the repository), and a component
type (how to interpret content), and then a location to visit to get the actual content.

Buckminster tries to find these by searching through a list of specified locators. The locators are
searched in the order they are defined. The locator has a pattern that is used to match against the name
of the component. If the name is matched by the pattern in the locator, the search continues in a named
search path. The search path specifies a list of component providers.

A provider specifies that it is capable of looking up components using a particular reader type, and
component type from a particular name to location transformation (specified by a URI with additional
rules).

Draft Resource Map Draft

27

Let‘s take a look at what that can look like in a RMAP
1.

Example 4.1. locator and search path

<searchPath name="dash">

 <provider readerType="cvs"

 componentTypes="osgi.bundle,eclipse.feature,buckminster"

 mutable="true"

 source="true">

 <uri format=":pserver:anonymous@dev.eclipse.org:/cvsroot/technology,org.eclipse.dash/{0}">

 <property key="buckminster.component" />
 </uri>
 </provider>
</searchPath>

<locator searchPathRef="dash" pattern="^org\.eclipse\.eclipsemonkey([\.\-].+)?"/>
<locator searchPathRef="dash" pattern="^org\.eclipse\.dash(\..+)?" />
<locator searchPathRef="dash" pattern="^org\.mozilla\.rhino" />

A search path is declared and named “dash”.
Then, look at the locators — the search path “dash” is reused by all the locators. Different patterns
are needed to match the different component names found in the dash repository. In case you
are wondering about the patters; org.eclipse.dash.somepart.hello could be the name
of a component.
A provider is declared with a ‘cvs’ reader type
The reader types are declared — we are interested in OSGi bundles (plugins, and plain bundles),
eclipse features, and components that use Buckminster meta data.
The attribute mutable is set to true because we want searches for mutable source (i.e. projects
checked out from CVS that can be worked on and checked in again) to also use this search path.
Note that in this example we are using an anonymous user so in order to be able to actually check
things in again, someone with write access would have to use the IDE’s team CVS functionality
to relocate the projects with their user id once they have been materialized to the workspace.
You will see later how to create entries using authentication — see the section called “Providers
and authentication”.
The attribute source is set to true because we do want the source (as opposed to some binary
incarnation of the component — we are perhaps even running an older version of the component).
The uri specifies the location of the component name under the org.eclipse.dash root in
the eclipse technology project’s CVS repository. Note the {0} at the end, which specifies the use
of a parameter.
The property buckminster.component, (which always contains the name of the component
currently being looked up), is used as an argument to the uri in .

Creating a RMAP

A resource map is defined in an XML file. The extension ‘.rmap’ is used to make it decorated with
the appropriate icon when handling this file in eclipse.

You can naturally start by copying an existing RMAP that contains something similar to what you want,
or you can start from scratch.

The Buckminster User Interface, has defined New File Wizards for the Buckminster artifacts. So you

can use File → New → Other... → Buckminster → Resource Map file to create a ‘new_rmap.rmap’
in a project of your choice. The created file contains XML name space declarations, but is otherwise
empty.

Once the file has been created, it is opened for editing.

1the XML name space declarations, and use have been omitted to increase readability.

Draft Resource Map Draft

28

Editing a RMAP
There is unfortunately no graphical editor available, so editing of the resource map is done using an
XML editor for Eclipse (or naturally some other XML editor of your choice).

As with every XML artifact used in Buckminster, the RMAP is described by an XML schema (see Buck-
minster XML Schemas). If you make an XML editor aware of the location of the schema, it will be able
to help you with automatic code completion, validation, and valid attribute values (see the section
called “Configuring Eclipse for XML Editing”).

Designing a RMAP — some advice
When you are creating your first RMAP, you are probably going to just “hack away” until you have
something that works for your project. As you are doing so you are getting to learn how the RMAP

can be used.

Our experience is that organizations (and individuals) over time has created lots of components where
strict adherence to naming standards has not been followed. We have come across things like:

• Some users thought the names were too long — “I don‘t want my Eclipse project to be called
com.mycompany.someroot.myproj.titanic.module-a.mybundle, I want to name them af-
ter me, and then the name of the bundle!”

• Well, the product was called “titanic” earlier, but marketing did not like that name, so we changed
it to “titan”, we modified the name of the root in the source code repository, but did not bother with
all the other names — except in some parts of the repository.

• “Some of our projects have misspelled project names, and it is just hell to change all the scripts.
Oh, and some have misspelled components too :)”

So — faced with reality, what should you do? Should you try to create maps that map everything
in a repository, and deal with all the peculiarities in this repository across different projects? Should
you delegate the work to the respective project and compose a master resource map out of what the
projects provide? Should you undertake a large “naming standard hygiene” project to clean up all the
past sins and mistakes?

Well, only you can tell what is appropriate for you. Fixing the odd mistake in naming in a smaller
project is probably doable at a low cost and risk and well worth doing in order to reduce complexity.
However, in an environment with many components handled by a geographically distributed engi-
neering organization and in many repositories, and with a multitude of handcrafted build scripts —
well, you could always try to get a budget...

A pragmatic balance is probably the best advice — map what you need, focus on getting your project’s
build automated and leave the rest unchartered. Pick things to automate where you have the most to
gain and then continue with the next. Once things are automated, it is much easier to change the bad
naming if you want to perform some cleanup. In some cases (depending on the source code manage-
ment system used), it can be difficult to move things around so you may just have to live with having
to handle the complexities in the mapping. The good news is that once projects are automated, users
can rely on Buckminster’s resolution to do the work for them, rather than having to ask a colleague
where in the repository a particular component may be located. (“You were looking for version 3... I
thought you said 4 — well, the project was called “titanic” back then, and it was before we cleaned
up the references, and oh, yes, it is in the old source code control system — let me see if I remember
the URL and the branch name we used for maintenance on the released 3.5a...”).

Locators
The locators are the entry point into the map — the patterns you provide for matching on component
names controls where the lookup continues.

Draft Resource Map Draft

29

The absolutely simplest locator would direct everything to a single search path:

<locator searchPathRef="everything.found.here" />

Omitting the pattern is perhaps not very useful on its own, but becomes useful when you want to
continue trying with more locators as shown in the section called “Fail on error”.

How to write patterns

The locator patterns are based on Java regular expressions. If you need a primer, or more informa-
tion about Java regular expressions look at this tutorial [http://java.sun.com/docs/books/tutorial/es-
sential/regex/].

Lets look at an example:

<locator ... pattern="^org\.eclipse\.eclipsemonkey([\.\-].+)?"/>
<locator ... searchPathRef="dash" pattern="^org\.eclipse\.dash(\..+)?" />

Both patterns start with a ^ which means that the matching is anchored at the start of the input (and
the input in this case is a component name). The pattern then continues with explicit name parts where
period delimiters in the name are escaped with \ since a . otherwise means “any character”.

At the end of the second pattern you see (\..+)? which means zero or more occurrences of a literal
period followed by a sequence of one or more characters. This is a good pattern to use when projects
(i.e. component containers) are named after the component names and period is the only separator
used.

At the end of the first pattern you see the construct ([\.\-].+)? which accepts a hyphen or a period
as separator.

This rule was created because the component org.eclipse.eclipsemonkey-feature could not
be matched with the simpler rule (\..+)? since that rule requires a period after eclipsemonkey.

Tip

Although your patterns only have to be precise enough that they discriminates between
the providers, you may later want to compose larger maps and it is a good idea to make
sure that your patterns exclude what is outside of your map’s domain. Start your patterns
with ^ and your unique prefix (e.g. org.yourorg...).

Fail on error

When a locator has directed to a search path, a component will either be found by one of the providers
on the path, or the lookup will fail with an error. By default, the search will stop on an error, but
it is possible to tell the RMAP that the search should continue with the next locator. Let’s look at an
example, where we look things up in the Eclipse Galileo2 and Orbit3 repositories.

2Galileo is the name for the Eclipse 3.5 release, and the Eclipse Galileo repository contain the official coordinated release.
3Orbit is the name of the Eclipse repository of external (3d party) components that have been approved for use and redistribution from
eclipse.org. i.e. components with acceptable license and pedigree.

http://java.sun.com/docs/books/tutorial/essential/regex/
http://java.sun.com/docs/books/tutorial/essential/regex/
http://java.sun.com/docs/books/tutorial/essential/regex/

Draft Resource Map Draft

30

Example 4.2. fail on error

<locator searchPathRef="myWay" pattern="^org\.myorg(\..+)?"/>

<locator searchPathRef="org.eclipse.galileo" failOnError="false" />

<locator searchPathRef="orbit" />

Everything beginning with org.myorg is directed to myWay. If not found, the search fails.
Everything else is directed to the path org.eclipse.galileo (a path that looks things up in
the Eclipse Galileo repository). Here failOnError is set to false as we don’t want to set
up patterns for Galileo and/or the Orbit repository. (As the eclipse.import reader caches an
index of the repo, the omission of the pattern does not have a negative effect — it can quickly
determine if a component is in the repository. You only need a pattern if you wanted to exclude
some components from being looked up by this locator).
If we did not find the component in the Galileo repository, the search continues with the orbit
search path (there is no pattern). This is our last stop before giving up so we want to fail on error
(the default setting).

Parameterized locator
So far, we looked at static declarations that picks a search path based on only the component name.
But what if you want to pick up certain components from one repository such as a nightly build, and
get the rest from the release repository? Clearly, you could insert a new locator with a pattern to match
the particular component and direct it to a search path for the nightly build, but this is discouraged as
it requires you to actually change the RMAP, and is specific to a particular case. The next time around
you may need several components, and some other user will be needing another mix.

A parameterized locator is simply a locator that references a search path based on a property value. As
you will see later, it is possible to set property values, and associate property values with individual (or
groups of) components at the time when you are requesting them (see the section called “Properties”).
In simple terms, this means, that instead of requesting “Give me component A”, you will request “Give
me component A, but pick B from nightly repo”.

Example 4.3. locator with parameterized search path

<locator searchPathRef="myWay" pattern="^org\.myorg(\..+)?"/>

<locator searchPathRef="org.eclipse.platform.${useBuild}" failOnError="false" />
<locator searchPathRef="org.eclipse.galileo" failOnError="false" />
<locator searchPathRef="orbit" />

The ${useBuild} inserts the value of the property useBuild in the search path name.

As you see in Example 4.3, “locator with parameterized search path”, you can include property values
in the string that is a reference to the search path. What you need to do is simply to set up one search
path for each alternative repository you are interested in.

A common setup is to have repositories that reflect the software process. The projects at Eclipse typi-
cally set up a series of repositories for nightly, integration, milestone and release builds — so suitable
values for the useBuild property could be NBUILD, IBUILD, MBUILD, and RBUILD.

As an example, the search path org.eclipse.platform.MBUILD would be set up to access the
platform’s milestone build repository.

Redirects
As mentioned earlier, it is possible to reference one RMAP from another and thus build a federation of
maps. This is done by using a redirect element instead of a locator — it works like the locator, but
instead of continuing in a search path, it imports a referenced RMAP (referenced with a href attribute),
and continues with the imported map’s locators. You can only have one redirect, and it must appear
last.

Draft Resource Map Draft

31

Note

You can use parameterized references for redirects as well.

Example 4.4. Using redirects

<!-- Example A ->

<locator searchPathRef="myWay" pattern="^org\.myorg(\..+)?"/>

<redirect href="http://www.myorg.org/maps/ourmap.rmap" failOnError="false" />

<!-- Example B -->
<locator searchPathRef="myWay" pattern="^org\.myorg(\..+)?"/>

<redirect href="http://www.myorg.org/maps/eclipsemap.rmap" />

A locator for my things in my project
A redirect to a map on myorg’s web server that maps all projects at myorg.
A redirect to a map on myorg’s web server that maps all the eclipse projects.

Locators summary
The list of locators is the entry point in the map and they are used to direct the search to a search path
with declared providers or to a different RMAP via a redirect. It is possible to parameterize the search
and thus create support for common use cases such as:

• Select between repositories like nightly, or release, globally, or on a per component basis.

• Select between different maps based on user’s location by having a property that selects an appro-
priate repository mirror.

• Let a committer property control if you get mutable source or source bundles for debugging.

• Make per developer overrides when experimenting by using a local RMAP that ends with redirect
to the official RMAP for the project or organization.

Search paths
A search path is a reusable element in a RMAP that defines how a component name is looked up in a
repository and transformed into useful meta data. The search paths can be declared in any order —
the search is conducted in the order specified by the locators.

The search path consists of one or several provider declarations where the provider defines a com-
bination of a reader type (how to access the content in the repository), a component type (how to
interpret the content found), a location to the repository, and a means to locate a component within
the repository.

A search path is in itself quite simple — in addition to having a name, and a list of provider elements,
it can have an optional documentation element where a description of how the path is supposed to be
used, what it references etc. can be included.

A search path must have at least one provider. A search path typically contains one provider, but
it is possible to specify more than one — in which case the provider capable of returning the component
with the highest matching score compared against the request will be used. If two providers return
the same score, the provider declared first is used. When making a request, options can be set that are
compared to attributes set in the provider declarations to reach the score.

Request options. The request options indicate the wanted shape (mutable source, source, or binary),
and if the request can be relaxed (i.e. if source is not mutable, is it ok with unmutable source, and if
source is not available at all, is it ok with a binary result). The request options are set in advisor nodes
when making the request. This is explained in detail in the section called “Advisor nodes”.

Draft Resource Map Draft

32

Providers
A provider declares a combination of a reader type (how to access the content in the repository), a
component type (how to interpret the content found), a location to the repository, and a means to locate
a component within the repository. A provider also declares attributes that are used when calculating
a matching score used when determining which provider to use among several in a search path.

Example 4.5. provider

<provider readerType="eclipse.import"

 componentTypes="osgi.bundle,eclipse.feature"

 mutable="false"

 source="false">

 <uri format="http://download.eclipse.org/eclipse/updates/3.4?importType=binary"/>
</provider>

The readerType attribute contains the name of a reader for a particular type of repository (a
connector to a particular repository type such as CVS, SVN, or p2, or something specialized like
the eclipse.import reader used in this example).
The componentTypes attribute contains a comma separated list of component types this
provider can handle. Naturally, this provider will not be considered if a request is made for some
other component type.
This is a declaration that this provider is incapable of producing mutable components (i.e. source
that can be modified and committed back to a source code repository).
This is a declaration that this provider is incapable of producing buildable source for the com-
ponent.
This is a declaration of the location of the repository. A format attribute contains a string where
parameter replacement can take place. Since we are using the eclipse.import provider, the
protocol is given, the only thing needed is the URI to the location, and an option in the URI that
indicates importType=binary.

Selection of a reader type, and component types is straight forward, and so is the specification of mu-
table and source. It starts to get complicated when it comes to the combination of a reader/component
type, and the specification of the location. For well structured content with rich meta data, it is as
simple as in the example, but it can also get quite complex with very detailed mapping for something
available via a download URL.

Reader type
The readerType attribute specifies the reader that Buckminster should associate with this provider.
The value of this attribute must specify the fully qualified name of a reader4.

The Buckminster framework provides reference implementations5 for the following reader types6 (all
which are explained in more detail in subsequent sections).

Available Reader Types

cvs A reader capable of navigating and reading CVS repositories.

svn A reader capable of navigating and reading Subversion repos-
itories. The SVN repository reader assumes that any reposito-
ry contains the three recommended directories trunk, tags and
branches.

p4 A reader capable of navigating and reading Perforce reposito-
ries.

4The name originates in the plugin that provides the reader.
5meaning that these implementations could be replaced by other plugins providing a compatible implementation.
6The name in bold is the name of the reader as it should appear in the readerType attribute.

Draft Resource Map Draft

33

maven, maven2 The maven reader can read Maven 1 repositories, and maven2
reader has support for reading Maven 2 repositories. Both read-
ers are capable of navigating and reading Maven repositories.
It is based on the url.catalog reader.

(site.feature) Deprecated in Eclipse 3.5. Use eclipse.import instead.

eclipse.import A reader capable of reading anything that can be read by p2
(i.e. p2 repositories, and the older eclipse update sites), as well
as being capable of reading a PDE map-file.

This reader is replicating the Eclipse SDK capability to import
features and plugins from an arbitrary site. NOTE that the type
of import (binary, or source) is controlled using a URI parameter
in the repository locator.

url A reader capable of reading one single file appointed by an URL

(typically a jar, dll, or other pre-compiled artifact).

url.catalog Reads files from a specific catalog (folder) appointed by a URL.
Currently only supports the file URL scheme.

url.zipped Reads individual files from a zip archive appointed by a URL.

local The local reader is capable of reading existing components (i.e.
previously materialized) just using the component meta-data.

If you are interested in extending Buckminster with a new reader type — there is more information
in the section called “Extending Reader Type”.

Note

The different reader types have different capabilities, and use the location URI in different
ways. Please consult the specific section for each of the reader types.

CVS reader

The cvs reader is capable of reading content from a CVS repository. This reader is integrated with the
team CVS support in Eclipse. This means that authentication is integrated, and you have several differ-
ent options how to handle passwords as described in the section called “Providers and authentication”.

You must have the Buckminster cvs feature installed to use this reader.

Here is an example:

<provider readerType="cvs"
 componentTypes="eclipse.feature,osgi.bundle,buckminster"
 source="true"
 mutable="true" >

 <uri format=":pserver:anonymous:secret@example.org:/cvsroot/test,teststuff/{0}" >
 <bc:propertyRefkey="buckminster.component" />
 </uri>
</provider>

The cvs reader can use the :pserver protocol to talk to CVS. Here the user named anonymous.
with password secret connects to the CVS root /cvsroot/test. It prepends all component
names with /teststuff/ to get to the location. Although it is usually possible to add elements
to the root (e.g. /cvsroot/test/teststuff,{0}), it is not always possible to do the reverse
(e.g. /cvsroot,test/teststuff/{0}) as there may be restrictions on access to the directory
stated as the root.

Draft Resource Map Draft

34

SVN reader

The svn reader is capable of reading content from a Subversion (SVN) repository. This reader is in-
tegrated with the team svn support in Eclipse. This means that authentication is integrated, and you
have several different options how to handle passwords as described in the section called “Providers
and authentication”.

You must have one of the Buckminster SVN features installed to use this reader. Your choice depends
on if you are using Subclipse, or Subversive as your SVN client. See Appendix A, Installation for
details regarding SVN installation and configuration.

Example 4.6. using svn provider

<provider readerType="svn"
 componentTypes="osgi.bundle,eclipse.feature,buckminster"
 mutable="true” source="true”>

 <uri format="http://dev.eclipse.org/svnroot/tools/org.eclipse.buckminster/trunk/{0}↵
¬?moduleAfterTag&moduleAfterBranch">
 <bc:propertyRef key="buckminster.component" />
 </uri>
</provider>

The SVN repository reader assumes that any repository contains the three recommended directories
trunk, tags, and branches. A missing tags directory is interpreted as no tags being available. A
missing branches directory is interpreted as no branches being available.

Different organization choose to handle the structure under branches and tags differently — i.e. either
you find the named things (modules) under trunk, tags, and branches, or you find trunk, tags, and
branches under the named module. A single project repository typically has trunk, branches, and tags
at the top level. Repositories with many top level projects typically use the top level projects as the
first level in the repo, with trunk, branches, and tags under each top level project. The SVN connector
can not figure this out on its own — it needs a bit of help.,

The URL used as the repository identifier must contain the path element trunk. Anything that follows
the trunk element in the path will be considered a module path. The repository URL may also contain
a query part where the order of module vs. trunk/branches/tags can be declared. The query part may
have four different flags:

moduleBeforeTag When resolving a tag, put the module name between the tags
directory and the actual tag (e.g. .../tags/module/tagged-
ByMary).

moduleAfterTag When resolving a tag, append the module name after the actual
tag (e.g. .../tags/taggedByMary/module).

moduleBeforeBranch When resolving a branch, put the module name between the
branches directory and the actual branch (e.g. .../branch-
es/module/marysBranch).

moduleAfterBranch When resolving a branch, append the module name after the
actual branch (e.g. .../branches/marysBranch/module)

A fragment (#) in the repository URL will be treated as a sub-module. It will be appended at the end
of the resolved URL (e.g. /trunk/x?moduleBeforeTag#y becomes /tags/x/myTag/y).

Credentials. The SVN connectors support putting the user name and password directly in the URL

using the standard URI notation.

http://yourname:yourpassword@example.org/svnroot/...
https://yourname:yourpassword@example.org/svnroot/...
svn://yourname:yourpassword@example.org/svnroot/...
svn+ssh://yourname:yourpassword@example.org/svnroot/...

You can naturally use parameters for name and password

Draft Resource Map Draft

35

<uri format="https://{0}:{1}@example.org/svnroot/trunk/{2}";>

 <bc:propertyRef key="example.user" />
 <bc:propertyRef key="example.password" />
 <bc:propertyRef key="buckminster.component" />
</uri>

The example.user is a property that is passed in via one of the available mechanism for settings
properties. See Chapter 10, Properties.

Perforce (P4) reader

The perforce (p4) reader is capable of reading content from a perforce repository. You must naturally
have the Buckminster perforce connector as well as Perforce itself installed. See Appendix A, Instal-
lation, for details regarding installation of Perforce support.

<uri format="p4://{0}:{1}@example.org/depot/module/{2}";>

 <bc:propertyRef key="example.user" />
 <bc:propertyRef key="example.password" />
 <bc:propertyRef key="buckminster.component" />
</uri>

The example.user is a property that is passed in via one of the available mechanism for settings
properties. See Chapter 10, Properties.

Maven 1 and 2 readers

The maven reader is used to read binary artifacts that have Maven meta data, in the form of a maven
POM file. Use the maven2 reader if the repository is using the Maven 2 format. You must have the
Buckminster Maven connector installed to use a Maven reader.7

Advanced maven mapping

The maven reader can be given extra information in the provider element to handle mappings between
component names and the maven dual identifier form8. Components mapped from Maven are given
a component name where group id and and artifact id are concatenated with a separating /. Normally
there is no need to perform mapping between the two forms — but in some cases, like when a com-
ponent exists in source form with a flat structured name (like x.y.z), it is not possible to automatically
map this as it is impossible to determine where the group id ends, and the artifact begins — (it could
be x/y.z or x.y/z).

The advanced mapping requires a maven provider extension kept in a separate XML schema, so the
RMAP document should contain the following name space declaration:

<rm:rmap
 <!-- other name space declarations go here -->
 xmlns:mp="http://www.eclipse.org/buckminster/MavenProvider-1.0";
>

To use these, the provider element itself must be declared to use:

xi:type="mp:MavenProvider"

(as the normal provider element does not allow the maven extension elements as children), then to
add the mapping — place a mp:mappings entry in the provider, with child mp:entry elements, one
per mapping. (In case there is any doubt, the mp:entry name attribute is the component name).

<provider
 xsi:type="mp:MavenProvider"
 readerType="maven"
 componentTypes="maven,osgi.bundle" mutable="false" source="false">
 <uri format="http://repo1.maven.org/maven2"/>
 <mp:mappings>
 <mp:entry

7A contribution to Buckminster from the Maven project to give Buckminster full maven 2 is currently stuck in Eclipse IP review.
8Maven uses a group identity and an artifact identity as the unique component identity.

Draft Resource Map Draft

36

 name="org.apache.activemq.core"
 groupId="org.apache.activemq"
 artifactId="activemq-core"/>
 <mp:entry
 name="slf4j.log4j12"
 groupId="org.slf4j"
 artifactId="slf4j-log4j12"/>
 </mp:mappings>
 <!-- more stuff ... -->
</provider>

Eclipse import reader

The eclipse.import reader can read anything that can be read with Equinox p2 (see Chapter 2, p2).
In its standard configuration, p2 is capable of reading both p2 repositories and older update sites. It is
also possible to extend p2 with other types of repositories, but this is transparent to Buckminster.

Note

The type of import (binary, or source) is controlled using a URI query parameter in the
repository locator.

An example is shown in Example 4.5, “provider”. Note that the URL uses an URL query to define if the
import is binary or source (importType="source", or importType="binary").

The eclipse.import reader mimics the behavior of the Eclipse IDE’s ‘import features or plugins’.
The result of the import is that a project is created in your workspace and the class path of that project
is set up to include any jar file included in the project. If the plugin has source, the source will be
unfolded into the project.

The eclipse.import reader is also capable of reading PDE maps that use the the map file formats
referred to in PDE-build as: “Map file entry for CVS”, “Map file entry for other repositories” and “ANT
‘GET,url’-format”9, and treat them as a repository. One such map is found at:

http://download.eclipse.org/tools/orbit/downloads/drops/R20090529135407/orbitBundles-R20090529135407.map

It has content that looks like this (partial sample):

plugin@com.ibm.icu,3.6.1=GET,http://download.eclipse.org/tools/orbit/downloads/↵
¬drops/R20090529135407/bundles/com.ibm.icu_3.6.1.v20080530.jar

plugin@com.ibm.icu,3.6.0=GET,http://download.eclipse.org/tools/orbit/downloads/↵
¬drops/R20090529135407/bundles/com.ibm.icu_3.6.0.v20080530.jar

plugin@com.ibm.icu,4.0.1=GET,http://download.eclipse.org/tools/orbit/downloads/↵
¬drops/R20090529135407/bundles/com.ibm.icu_4.0.1.v20090415.jar

plugin@com.ibm.icu,4.0.0=GET,http://download.eclipse.org/tools/orbit/downloads/↵
¬drops/R20090529135407/bundles/com.ibm.icu_4.0.0.v20081201.jar

plugin@com.ibm.icu,3.8.1=GET,http://download.eclipse.org/tools/orbit/downloads/↵
¬drops/R20090529135407/bundles/com.ibm.icu_3.8.1.v20081217.jar

plugin@com.ibm.icu,3.4.5=GET,http://download.eclipse.org/tools/orbit/downloads/↵
¬drops/R20090529135407/bundles/com.ibm.icu_3.4.5.jar

This behavior in the eclipse.import reader is triggered if the URI ends with ‘.map’ .

URL reader

The url reader is used in situations where you want to get a single artifact. You can either refer
directly to the component with the uri element, or use a matcher element to parse/scrape the content
of the URL to get a list of possible URLs to components to match against. A good example is a ftp
URL to a directory. (Contrast this with that you would have to specify a separate provider/reader for
each separate file).

9You can read more about PDE map files in this Eclipse Help file for Eclipse 3.5 called PDE Build Advanced Topics/Fetching from Repositories
[http://help.eclipse.org/galileo/index.jsp?topic=/org.eclipse.pde.doc.user/tasks/pde_fetch_phase.htm]

http://help.eclipse.org/galileo/index.jsp?topic=/org.eclipse.pde.doc.user/tasks/pde_fetch_phase.htm
http://help.eclipse.org/galileo/index.jsp?topic=/org.eclipse.pde.doc.user/tasks/pde_fetch_phase.htm

Draft Resource Map Draft

37

The matcher is quite smart — an attempt is made to read the content as valid XML (many sites deliver
what is stated to be XML or XHTML, but it may still not be valid), and if this fails, the content is treated
as “rogue” HTML and is scanned as flat text. In both cases (structured valid XML, or flat text), a search
is made for elements, and the referenced URLs are collected into a list of “catalog
content”.

You still have to pick something from the resulting list of URLs, and this is done with a matcher
element. A matcher is a powerful mechanism10, and is explained in more detail in the section called
“Handling indirection”.

Example 4.7. url reader

<provider readerType="url"

 componentTypes="jar"

 mutable="false"

 source="false">

 <uri format="${matchedURL}"/>

 <matcher

 base="http://mirrors.ibiblio.org/pub/mirrors/apache/myfaces/binaries/"

 versionFormat="...">

 <match name="matchedURL" ... />
 </matcher>
</provider>

The reader type is set to url
We expect the found URLs to lead to jar files
We set both source and mutable to false as we do not expect to find references to source
projects that we can bind to the workspace, nor make changes and commit them back.
We expect to be reading the component at a URI that gets its value in the parameter matchedURL
— see .
A matcher element is used — it defines the base URL (i.e. the “page to read”) and how a resulting
version string should be turned into a processable version.
The base is the URL to the “page” to read — here a page from ibiblio.org, containing a mirrored
apache repository. A sample is show in the figure below, but you can visit the URL in a browser
to see its full content.

Figure 4.1. Sample content from an ibiblio page

myfaces-commons12-1.0.0-bin.tar.gz.asc 15-Sep-2008 19:57 197
myfaces-commons12-1.0.0-bin.zip 15-Sep-2008 19:57 1.2M
myfaces-commons12-1.0.0-bin.zip.asc 15-Sep-2008 19:57 197
myfaces-core-1.1.6-bin.tar.gz 16-Aug-2008 13:01 2.9M
myfaces-core-1.1.6-bin.tar.gz.asc 16-Aug-2008 13:01 197
myfaces-core-1.1.6-bin.zip 16-Aug-2008 13:01 4.7M
myfaces-core-1.1.6-bin.zip.asc 16-Aug-2008 13:01 197
myfaces-core-1.1.7-bin.tar.gz 05-Jun-2009 15:06 2.9M

// ...

In this example we expect the versions used on the page to use a non OSGi version format. See
Chapter 9, Versions, for more information about version formats. If no version format is speci-
fied, the version strings must be in a format that can be directly parsed by omni version — i.e.
OSGi or omni version’s raw format.
We use a match element to search through the list of generated links found at the matcher’s base
URL — the final URL that is matched becomes the value of the property declared in the match
element’s name attribute — i.e. matchedURL. (The body of the match element is not shown
here, only how the result of a match is returned to . In fact, to really parse the page in this
example, we need to use something more powerful than the match element — but the principle
is the same. The real matching is shown in later examples).

10Which is a nicer way to say that they are a bit complex...

Draft Resource Map Draft

38

URL catalog reader

The url.catalog reader is used in situations where you have a content in your file system11 in a
format suitable for interpretation by one of the available component types.

Note

The uri attribute should be a reference to a directory.

URL zipped reader

The url.zipped reader is used in situations when the component you are interested in is an item
inside a zip file. The content of the zip file should be in a format that can be understood by the selected
component type.

Note

The uri attribute should be a reference to the zip file.

Local reader

The local reader is used in situations when the material you are interested in already exists in the
file system in the form you want. In this case, Buckminster does not materialize anything (i.e. no
downloads or copying takes place — contrast this with the url.catalog reader). Instead, Buckmin-
ster simply reads the meta data available in the appointed location and binds the location into the
workspace as a project.

You can use this mechanism for different purposes — here are some of the things we know this has
been used for:

Using an unsupported Source Code Control System. Buckminster currently supports CVS, SVN

and Perforce, but you may already be using some other source code control system and do not want
to implement support for your tool. What you can do is to use your tool to create the wanted layout in
your file system (i.e. check things out, or whatever the terminology is in the tool you are using), and
then simply point to that location using the local reader.

Performance Optimization. When Buckminster is used as part of a larger build systems, other
actions may already have materialized many of the things needed. Materializing them again just wastes
cycles when you are sure the material is already there. It does not matter how the material ended up
in the location — it could have been Buckminster that materialized them earlier.

Structured Download. You are using material downloaded from different sites such as individual
jar files. You can point to them directly in your RMAP, but this means that they will be downloaded
from the original site each time they are requested (and not in your cache). Instead, you may want to
set up a separate Buckminster materialization of the things you will be using in your organization. The
materialized result can then be made available in different forms. Many use a distributed file system
— and can hence be accessed with the local reader.

Note

The uri attribute should be an absolute file system path without the scheme.

Providers and authentication
Some providers/readers may require authentication to connect to the repository. You have different
options in this area and the solution to use depends on your security requirements, and the type of
credentials required.

11 Currently, only the file: scheme is supported.

Draft Resource Map Draft

39

Interactive use. When Buckminster is used from within the Eclipse SDK the authentication is han-
dled the same way as when the repository is used directly. If you have already connected to a repository
(say using the team CVS or SVN functionality) and choose to have Eclipse remember the credentials
then you will not be prompted again for the same repositories. If the Buckminster action triggers re-
quest for credentials, it will be handled and remembered the same way as when using the team func-
tionality. In essence, there is nothing extra/special that you need to do.

Credentials in the RMAP. You can store the credentials directly in the RMAP. It is not as crazy and
unsecure as it may sound since this is very useful in cases where you do need to authenticate, but
the user and password are a publicly known — i.e. “anonymous/anonymous” or similar. Also, if you
take care protecting the RMAP it may still be a viable solution even if the RMAP has user name and
password in clear text.

Credentials in template. You can pre-populate a workspace and keystore by using the SDK, and
then distribute this “template configuration” to the servers where you are building headlessly. You still
have to protect against someone using these templates to run unauthorized actions. What you need to
include in the template may wary as readers may be different in their handling of storing credentials.

Credentials in properties. You can store the credentials in properties and use property values in
the RMAP. This way the RMAP is reusable, and different users can supply their own properties.

Component types
As you may recall, component types allows you to specify a list of the types of components a provider
is capable of producing. Each component type is a fully qualified name of an implementation that
provides translation of the native/external meta data associated with the component to the internal
format used by Buckminster.

It is possible to extend the component types as described in the section called “Extending Component
Type”.

Buckminster has reference implementations12 for the following component types (see the reference
guide “Component Types“ for details):

component types

osgi.bundle Standard component type for software assets maintained with
Eclipse (i.e. something that has an Eclipse .project or
plugin.xml files). Essentially, an Eclipse plugin.

eclipse.feature An Eclipse feature component.

(eclipse.site) Deprecated.

jar Refers to components that are JAR files and can be treated as
components in their own right. Buckminster will generate a
CSPEC that has no dependencies. This type is intended to be
used when you want to depend on a JAR known to be found
using a common URL.

maven Basically an extended JAR type but assuming Maven repository
dependency information contained in a maven POM.

buckminster Refers to software assets that have no derivable component
specification information, or where a plugin for the particular
component type has not been created. Assumes that the own-

12these are referred to as reference implementation since they can be replaced by a compatible implementation.

Draft Resource Map Draft

40

er of the asset has added a manually created (and maintained)
CSPEC inside the software asset. The reader will expect an in-
cluded buckminster.cspec to contain the meta data.

(site.feature) Deprecated.

bom Refers to a component which is a Buckminster Bill of Materi-
als (BOM) artifact as produced by the Buckminster resolution
process. When this is used, the resolution process accepts the
referenced BOM as the resolved solution.

This is very useful in situations where a dynamic res-
olution is unsuitable. As an example the component
‘org.sloppy.enfant.terrible’ may be difficult to re-
solve as many special paths needs to be taken through the RMAP.
With a pre-resolved “static” BOM there is no need to repeated-
ly specify the complicated advisor nodes and property settings
required to make the poorly specified enfant.terrible resolve —
just because it is required by other components. When (even-
tually) the bad component is fixed, it is easy to switch back to
a dynamic approach again since the change takes place only in
the RMAP.

Another example is when some other system is producing a
configuration, and it should be used “as is” — rather than try-
ing to transform this system’s meta data into Buckminster com-
ponent specifications and then letting Buckminster repeat the
resolution process, it is instead possible to directly produce the
BOM. This can be especially useful when interacting with or
migrating from a legacy dependency management system.

Tip

Use the bom type when you don’t want dynamic
resolution of everything.

unknown Indicates components for which no dependency information
can be inferred or has been made available. The component is
still useful, but it only has a name.

Advice regarding components with no meta data

If you need to handle components where there is no meta data, or the meta data is not in a form that
can be handled by Buckminster, you still have a few options.

If you are the owner of the component, or can persuade the owner — the meta data can be added where
it should be added — at the source. It does not matter which meta data format the component owner
adds — it could be OSGi, or Maven, just as well as Buckminster meta data.

If it is not possible to add the meta data at the source. The component type unknown can be used in a
provider, but a separate component is needed to keep track of the dependencies. In many cases, you
probably have a configuration of such components that should go together, so you can probably create
a feature/grouping component to reference the component with unknown meta data, and then use this
group component elsewhere in your system.

You can naturally also repackage a component, include the required metadata, and then distribute it
instead of the original. Many do this even if it requires maintaining an internal version of the same
component (with the obvious problems if it is mixed with external packages that does not use the
internally repacked version).

Draft Resource Map Draft

41

Version converter

When Buckminster gets components from a source code repository and interprets their version, there
are three cases to consider:

• There is meta data in the component that specifies the version to use (e.g. osgi.bundle), and you
want to use the component reader’s ability to set this version as the version of the component.

• There is meta data, but you want the name of a branch or a tag to reflect the version of the component

• There is no meta data in the component, and the only choice is to derive it from a branch or a tag.

You can handle this by using a version converter in the provider specification. You have to decide if
you want the transformation to be based on a branch or a tag, and the version format (i.e. version type).
You then have to specify how a version such as triplet 3.0.1 is translated into a branch or tag name
(perhaps to v3_0_1). You also need to specify the reverse — how to transform a branch or tag name
into a valid version string for the selected version type — e.g. how to go from v3_0_1 to triplet 3.0.1.

Example 4.8. version converter

<versionConverter type="branch" versionFormat="..." >

 <transform

 fromPattern="\."
 fromReplacement="_"
 toPattern="_"

 toReplacement="."
 />

 <transform

 fromPattern="^(.*)$"

 fromReplacement="v$1"

 toPattern="^v(.*)$"

 toReplacement="$1"
 />

</versionConverter>

A version converter is declared to convert versions on a branch — the versionFormat at-
tribute is not needed if the version is of OSGi type (or if the version happens to be in the Omni
Version raw format). Otherwise, a version format should be used — see Chapter 9, Versions.
Two transformer elements are used — the first handles transformation between ‘.’ and ‘_’ as
separator, and the second transforms between a prepended ‘v’ and “no v”.
Since this is a regexp pattern the literal period ‘.’ must be escaped with \. When doing the
reverse at , the replace string is not a regexp — and the escape is not needed.
This pattern makes everything; ‘.*’, between the beginning ̂ and the end $ captured in a regexp
segment (the ‘()‘)
The segment from is used in the replacement string (i.e. ‘$1’)
This pattern should look familiar — everything is matched in a segment except the ‘v’, and the
replacement is the matched segment.

Tip

The terms ‘to’ and ‘from’ are quite confusing as the transformation is bidirectional. What
you have to repeat to yourself are “I am converting from a version to a branch/tag-name
using from”, and “I am converting to a version from a branch/tag-name using to”.

You can extend Buckminster with additional version converter types (if branch and tag are not
enough). See the section called “Extending Version Converter”.

Draft Resource Map Draft

42

Handling indirection
As you have seen in the examples up to this point the locations of repositories (or a single file as in
the case of the url reader) have been known, and we have simply entered the location in the uri
element parameterized with the component name. But there are many situation where the only known
address is to a web page where downloadable items are listed. In this section we take a look at how you
can handle this situation without having to periodically and manually revisit the web-page with the
listing and then manually update the RMAP. (If you are looking for a mechanism to handle indirection
to source code, see the section called “PDE map — extended provider”).

Buckminster has a matcher that operates as a “content-scraper”, picking out URLs and matching them
against patterns to determine if they represent a component.

The primary intended use for the matcher is for picking a URL to a single artifact, but it can also be used
if you find yourself in the odd situation where the only way to get a repository URL is via an indirection.

You can ignore this entire section if you are just skim reading, it is all about details how to write
patterns that pick out the interesting parts from URLs — perhaps looking something like this:

http://someForge.org/downloads/download.php?project=eggnogg&file=eggnogg_1_0_0-osx-x86-en.tar.gz

Content is matched using a matcher element that contains a regular expression composed out of a
structure of match and group elements.

The matcher

The matcher element defines the content to scan, and the version format to use when converting a
found version string into a version. The version format can be omitted if an OSGi versioning scheme
is used (or if the version string happens to already be in the Omni Version raw format). For other
formats see Chapter 9, Versions.

<matcher base="http://someForge.org/downloads/view.php?project=eggnogg"
 versionFormat="..." >
 <!-- match and group elements go here -->
</matcher>

The nested match and group elements are used to compose a regular expression.

Although it would be possible to write a single regular expression to do all the matching, the resulting
expression containing many segments would be very hard to write, and even harder to read — it would
also require figuring out the segment indexes to use when putting the mapped pieces together.

Figure 4.2. matcher principle

<matcher ... >
 <match pattern "a" />
 <match pattern "b" />
 <group name="theNumbers" >
 <match pattern "1" />
 <match name="theTwo" pattern "2" />
 </group>
</matcher>

In Figure 4.2, “matcher principle”, a very simple regular expression is constructed that matches a
string containing “ab12” — the construction is equivalent to the regular expression ab(1(2)), and
in addition the property theNumbers gets associated with the segment matching 12, and the property
named theTwo is associated with the segment matching the digit 2.

So, the matcher element, as well as the group element, creates a regular expression pattern out of
its children by simply concatenating them (in the order they are stated).

The match element. The match element defines part (a fragment) of the regular expression. It also
has a convenient way to declare literal prefix and postfix string matches where special characters does
not have to be escaped.

Draft Resource Map Draft

43

Figure 4.3. match element

<match

 name="aPart"

 pattern="[a-z0-9_]+"

 optional="true"

 prefix="http://somewhere.org/downloads/download.php?file="

 postfix="&format=binary"
/>

name can be used to make the matched result available in a property — here the value will be
available in the property aPart.
The pattern is a required attribute (all others are optional) and it used for a regular expression
pattern fragment. Special characters must be escaped with \ if they are to be used literally.
The optional attribute indicates if the the entire match defines an optional part in the overall
matching pattern it is part of. The default is false.
The prefix is a literal prefix. The effect of using prefix is the same as if the prefix string was at
the beginning of the pattern, but with all special characters escaped (i.e. there is no need to escape
special characters in the prefix). In the figure, the first part of the URL is matched this way.
Similar to prefix, but at the end. In the figure, an extra parameter in the URL is matched.

The group element. The group element is basically just a grouping that may have a name. The
resulting pattern is the concatenation of the match and nested group elements contained in the group.

Extracting meta data from the URL. As a scan for a URL to a component takes place, a mechanism
is needed to determine if the URL potentially is a match (with respect to version, architecture, os,
language, etc.) without having to read all the contents and look for meta data. It may even be the case
that there is no meta data inside the component, so all the search mechanism has is the URL string.
So, these elements have dual use — they act as part of the textual match (is this a URL of interest at
all), and the resolution (should this component be selected). The metadata-extracting elements can
only be used in a group element, and their individual names can not be set. Several of the elements
define values for a target filter — see Filters. Even if these elements have predefined meaning, their
patterns must be defined.

meta data extracting elements

arch Matches and sets the target filter for architecture. Example
x86.

os Matches and sets the target filter for operating system. Example
macosx.

nl Matches and sets the target filter for natural language. Example
en_US.

ws Matches and sets the target filter for windowing system. Exam-
ple cocoa.

name Matches and sets the name of the matched component candi-
date.

version Matches and sets the version of the matched component candi-
date.

revision Matches and sets revision information for the component can-
didate. The revision is used when a request is made for compo-
nents in a particular revision.

timestamp Matches and sets timestamp information for the component
candidate. The timestamp is used when a request is made for
components having a particular timestamp.

Draft Resource Map Draft

44

Note that using matcher’s revision and timestamp extractors is equivalent to what takes place
in the source code control repository readers when a file is found —there the meta data regarding
timestamp and revision is always available and is always provided to the resolution process. If selection
is made based on these values is a different issue.

PDE map — extended provider
The PDEMapProvider is a provider extension that allows a PDE releng source map to be used as an
indirect declaration of cvs and svn readers. To use this extension, the XML schema must be declared.

<rm:rmap
 <!-- other name space declarations go here -->
 xmlns:xi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:pmp="http://www.eclipse.org/buckminster/PDEMapProvider-1.0"
>

Example 4.9. Using PDEMapProvider

<provider xi:type="pmp:PDEMapProvider"

 readerType="cvs"

 componentTypes="osgi.bundle,eclipse.feature"

 mutable="false" source="true">

 <uri format=":pserver:anonymous@dev.eclipse.org:/cvsroot/rt,↵
 ¬org.eclipse.ecf/releng/org.eclipse.ecf.releng.maps"
 />
</provider>

The provider element is declared to be an extended element of type PDEMapProvider.
The readerType is a reference to the reader used to read the releng map.
The componentTypes refer to the component types looked up in what is mapped in the releng
map.
The mutable and source attributes refers to the content mapped in the releng map.
The uri refers to the location of the releng map — the releng map has a format defined by PDE

and is a map from component names to source code locations in CVS and SVN.

Note

The PDEMapProvider extension can be used with any reader type capable of producing
a single file (e.g. cvs, svn, p4, and url readers).

Properties
We have already used properties throughout this chapter, but there is much more you can do with
properties. Property capabilities are shared across RMAP and CQUERY artifacts, and are therefore cov-
ered in a separate chapter. See Chapter 10, Properties, for details.

Properties are declared at the top level in the RMAP document, but the properties declared there are
not the only properties available when the map is used by the Buckminster resolution process — the
system properties, properties defined in the CQUERY being resolved, etc. can all be used.

As an example, you can set a property like this:

<property key="buildType" value="RBUILD" />

The RMAP XML document
The RMAP XML document needs to be declared to be an XML document, and the schemas used should
be declared along with a namespace. Here is a declaration that includes all schemas (the xi, mp, pmp
are optional).

Draft Resource Map Draft

45

<?xml version="1.0" encoding="UTF-8"?>
<rm:rmap
 xmlns:xi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:rm="http://www.eclipse.org/buckminster/RMap-1.0"
 xmlns:mp="http://www.eclipse.org/buckminster/MavenProvider-1.0"
 xmlns:pmp="http://www.eclipse.org/buckminster/PDEMapProvider-1.0"
 xmlns:bc="http://www.eclipse.org/buckminster/Common-1.0"
>
<!-- The definition of the RMAP -->
</rm:rmap>

For more information about schemas see Buckminster XML Schemas.

Summary
As you have seen in this chapter, setting up an RMAP can be as simple as entering a handful of lines in
XML, at the same time as the RMAP has a lot of expressive power to deal with the real world complexities
of locating components, handling underspecified and erroneous meta data, and handling the required
flexibilities when requiring different configurations of a particular set of components taken from tags
or branches in source code repositories, or from different binary repositories.

You will find complete annotated RMAP examples in Part III, “Examples”.

Draft Draft

46

5
Component query

In this chapter we take a closer look at the Buckminster Component Query (CQUERY), and how it
specifies the request to get components — covering both the simple bucky-meal way (“I am hungry,
never mind where the cheese came from...”), as well as the the deli-counter equilibrist meal order
(“...only include cheese from milk produced from macrobiotically grazed sheep with ISKCS — Q, G
or R karyotypes, please”).

You can start issuing component queries as soon as you have installed Buckminster. The queries will
then be resolved against the content in your Eclipse workspace, and target platform. This is possible
since Buckminster scans the environment, and keeps itself updated as your configuration or workspace
content changes. Buckminster can not however correctly guess where everything came from, nor does
it have any knowledge about any repositories. In order to make your queries resolve against reposito-
ries (source code or binary), you need to construct a Buckminster Resource Map (RMAP) as described
in Chapter 4, Resource Map.

One query to get them all...
Running a CQUERY is what starts off the resolution and provisioning process carried out by Buckmin-
ster. A CQUERY is expressed in XML and is stored in a file ending with ‘.cquery’. You can either use
an existing file, perhaps one published on a web site, or you need to create a new.

When querying, you always query for a (single) root component, and Buckminster will resolve all of
its dependencies. As soon as you entered the query, you can execute it, it is possible to preview and
modify the result, you may also save the resulting resolution in a Bill of Materials (BOM) file that can
be used in various ways — see Chapter 7, Bill of Materials (BOM). As the final step the query can also
carry out the materialization step — i.e. perform the creation of material in your workspace, install
into your Eclipse IDE, or target platform, or place files in your file system.

Most of the time, there is already some master feature that defines your product, or main feature that
includes everything that is required. But sometimes, you may need to construct this extra configura-
tion component. It does not matter which one of the supported component types you use for such a
configuration, but we recommend the use of a plain java project with Buckminster meta data, or an
Eclipse feature-project depending on the circumstances.

Opening an Existing CQUERY

You can open and execute existing CQUERY files. When Buckminster is installed in your Eclipse IDE,
it understands that files with the suffix ‘.cquery’ should be opened with the CQUERY editor1. This

1The CQUERY file itself is in XML format, and may be edited with an XML editor, but you should not have to do that unless you have a
craving for a dose of XML.

Draft Component query Draft

47

applies to files in your workspace, in your local file system, and general URLs2. If you have a URL to a

CQUERY file you use the File → Open a Component Query... which opens a small dialog where you can

enter the URL. (If you are running on Windows, you can use File → Open File... as it also opens a URL).

Creating a new CQUERY

A new CQUERY is created by using File → New → Other... → Buckminster → ######### ##### #### .

Click on Next, and enter (or browse the workspace and select) the location for the file. You can name
the file anything, but you must keep the extension ‘.cquery’, or Buckminster will not associate it
with the correct editor.

2i.e. you do not have to separately download them to disk, and then open them as files.

Draft Component query Draft

48

The CQUERY Editor
The CQUERY editor allows you to edit all aspects of the CQUERY, and is also used to execute the query.
The editor is associated with files ending with ‘.cquery’, and open automatically as the default editor
for such files.

When executing the query, it is possible to preview the result, edit the result, and also to save choices
made regarding edits, and installation destinations.

The editor main tab

Name and Component type. This is where you enter the name of the (top/root) component,
and select the component type from the drop down list. (When the editor opens for a newly

Draft Component query Draft

49

created file, the Component name reflects the filename (here new_query), which you need to
change to the name of the component you want to materialize).
Version, range and version type. In this section you can enter a version, or version range
for the component you are requesting. The drop down has entries for ==, >=, and four different
‘between’ entries (i.e. if from and to should be inclusive or not). When values for both from and
to are required, an extra field appears. If you leave version empty, the default search is for the
latest available version.
Property File. There are several ways to set properties (see Chapter 10, Properties). This
mechanism allows you to set properties from a properties file. The properties set this way over-
ride properties in the CQUERY itself. If the properties file does not exist, it is ignored (but the
issue is logged). One use of this could be to create a “dormant” override system; with a reference
to the properties like ${user.home}/.projectX.properties, then users can provide their
property settings (like user name and passwords to repositories) in that file. The reference is a
URI, so it is possible to reference a properties file using a URL.
Resource Map. This section allows you to reference a resource map (RMAP) that maps be-
tween component names and repositories. It is possible to enter a URI, and system properties like
${user.home} can be used. If a RMAP is not used, the resolution takes place against the content
of the workspace and target platform.
Editor Tabs. The tabs along the bottom gives access to editing the details of the query —
the final tab allows the resulting XML to be viewed. All the tabs are explained in more detail in
the later sections.
Processing. The processing section allows you to run the query — all in one go, or interac-
tively. There are also option to save the result. A check box allows you to control if the process
should stop as soon as an error occurs, of if the process should continue to the end anyway.

Advisor nodes
The Advisor Nodes tab allows you to edit the CQUERY Advisor Nodes. They are so named because
they provide advice to the Buckminster resolution process.

Turn lef t here
You only need to provide information in advisor
nodes if you want to modify how an individual com-
ponent (or groups of components) are handled. Ex-
amples include setting properties to control that some
components should be picked from a nightly build
repository rather than the release repository, overrid-
ing dependency metadata (widening or constraining
ranges, skipping an unwanted version, etc), selecting
a subset of a component’s full dependency graph, and
much more.

Draft Component query Draft

50

Advisor node tab parts

Node list. The node list shows a list of advisor nodes. Each entry is identified by the name
pattern the node is set up to match — in this example you see org.demo.myprog.* and
com.test.* which tells you there are two nodes. The category column reflects component type
(e.g. eclipse.feature, osgi.bundle, buckminster, maven, etc.). You can create a new
node, remove a node, or rearrange the order of the nodes with the buttons at the bottom of the list.
‘Attribute group selector’. The attribute group selector lets you see a group of advisor node
attributes at a time — as you can see there are 8 different entries, and there are several options
behind each — simply click on an entry, and the corresponding fields and values are shown to
the right of the list. In the example the ‘General’ attributes group was selected. (Note that all
attributes are for the currently selected advisor node).
Node Attributes. This section shows the attributes in the selected attribute group. In the ex-
ample the ‘General’ attributes are selected, and here you see the name pattern (a regular expres-
sion pattern), matched component type, if matching components should be skipped, and if circu-
lar dependencies should be allowed or not.

General attributes
You can see a screenshot of the general attributes in ‘the section called “Advisor nodes”’, at ‘Node
Attributes’. The general attributes are used as follows:

Name Pattern This is a regular expression pattern that is used to select the
components that should receive the advice provided in this ad-
visor node. You need to consider the order — the first match-
ing advisor node is used, and the remaining nodes are not con-
sulted.

Component Type You can also match on component type — a drop down list
lets you select from the list of component types known to your
current Buckminster configuration. (If you provide extensions
to buckminster, make sure the extensions are installed when
editing, or you will not be able to select your extensions). If
you leave this blank, the node will match any component type.

Skip Component If you check skip component, then any component that matches
the name pattern, and component type (if any), will be exclud-

Draft Component query Draft

51

ed from the resulting resolution, and the excluded component’s
dependencies are not resolved. This is useful when a configu-
ration brings in a component with broken/faulty/old dependen-
cies (and you are going to fix the problem), or when a compo-
nent is brought in and you know it is not used.

Allow Circular Dependency Normally, circular dependencies are treated as an error as it
makes it impossible to determine the correct build order. By
checking this box, a dependency that references an ancestor
will simply be ignored.

Attribute qualification
The attribute qualification allows you to only resolve the subset of dependencies that are required
by the stated attributes. By default, all dependencies are resolved. This is useful when you only need
the value of a particular attribute from a component, and do not want to materialize everything the
component depends on (e.g. runtime parts, test data). You can enter several attributes separated by
comma.

Attributes
A list of attributes for which the de-
pendencies should be resolved.

Prune According to Attributes
An advanced setting that results in a
pruned component specification. Do
not check this unless you know exact-
ly what you are doing.

Advanced Topic — Attribute Pruning

Pruning attributes means that the resulting component specification CSPEC’s content is reduced
to only include requested attributes and the dependencies required by those attributes.

Note that materialization to a workspace in combination with pruning is quite meaningless since
the component meta data is kept in sync with the component’s actual content — the pruning
performed in the resolution process is thereby lost.

Unless you have very special needs, you should not use pruning.

Special requirements
The special requirements3 lets you control how to deal with source vs. binary, and the shape of the
source (just available, or as mutable/‘modifiable’ projects).

Mutable level
Controls how the resolution should
make a choice between mutable and
non mutable components.

Source level
Controls how the resolution should
make a choice between component in
source or binary form.

3This is a really bad term — there is nothing special about these requirements at all — think of them as ‘source requirements’.

Draft Component query Draft

52

The possible values for mutable level and source level are:

INDIFFERENT
The resolution process is allowed to pick whatever it thinks is best. (This is the default, and the
default if you have no advisor node at all).

REJECT
The resolution process is not allowed to select a component with this trait (i.e. mutable or source
form).

DESIRE
The resolution process should value a component with this trait higher (i.e. deliver mutable/source
if it is available).

REQUIRE
The component must have this trait. The resolution will fail if such a component is not found
(even if it exists without the trait).

Resolution scope

The Resolution Scope lets you control what resources the resolution process should consider when
performing the resolution.

Target Platform
Should components found in the target
platform be used.

Workspace
Should components found in the
workspace be used.

Materialization
Should Buckminster materializations
be used (i.e. things previously down-
loaded).

Resolution Service
Should Buckminster talk to a map ser-
vice (see below).

The default is to include all in the resolution scope. Some common scenarios where it is important to
control the scope are: — when you do not want to find binary versions in the target platform when you
are working on code that should go into the platform and need to have them in binary form in your
workspace — skip earlier materializations in preference of contacting repositories again.

Resolution Service. Buckminster can talk to a RMAP service via a JSON protocol. It is possible to
turn the resolution service on/off in Buckminster preferences, see the section called “Preferences”, and
to specify a provider of such a service. The default preference setting for resolution service is ‘off’.

Selection criteria

The selection criteria attributes lets you control if components should be picked from the default branch
in repositories or from a named branch, tag, timestamp or revision. Not all repositories are capable of
this — there is for instance no notion of branches or revisions in a p2 repository.

Draft Component query Draft

53

Branch/Tag path
This is a search path specification for
branches and tags to be searched.

Timestamp
Enter a string in timestamp format.

Revision
Enter the name of a revision

Branch/Tag path
The branch tag path is used to define a search path. The branches and tags in this comma separated
list are searched in the specified order. Branches are entered by simply stating their name, and
tags are entered with a leading slash ‘/’ character. The special keyword ‘main’ is used to refer to
the repositories notion of main branch (e.g. ‘trunk’ for SVN, ‘head’ for CVS, etc.). As an example
‘bug17,/release3,main’ would first look for the component on branch ‘bug17’, and if not
found there, look in the tag ‘release3’, and finally if not found there either, look in the repository’s
main branch.

Timestamp
The timestamp is always in UTC and should be entered in a format corresponding to Java
DateFormat.getDateTimeInstance(SHORT, SHORT) for the current Locale. For the US lo-
cale that would be ‘M/d/yy h:mm a’.

Revision
Specifying a revision means that only content with a revision smaller or equal to the specified
revision should be considered. The support for revision can be different in different repositories,
and the revision identifier translates to the closest concept. For SVN the repository revision number
is used, and for P4 the change set identity . In CVS, the revision is ignored, as CVS does not support
identifiable revisions. Also note that SVN and P4 can combine branch/tag with revision.

Override (version)

2.5

I don’t like 2.5

I heard that...

The override allows you to override the requested ver-
sion/version range of components matched by the ad-
visor node. As an example if you want all requests
for the component ‘X’ to use the range 3.0 to 4.0 irre-
spective of what is stated in the components that have
a dependency on X, you create an advisor node that
matches X and specify the override for the range 3.0
to 4.0.

You have to be careful when creating the pattern — if you specify something like ‘.*’ and 1.0.0 you
have stated that every request for every component should request version 1.0.0. It is best to specify
the full name of the component you want to override to avoid future surprises.

Draft Component query Draft

54

Override version
Turns override on if checked.

Designator
Select if version should be ==, >= or
between two versions (inclusive/ex-
clusive).

Version
The version to request. (Two fields
open for the range cases).

Type
Select a version type from the drop
down list.

The version(s) should be entered in accordance with the selected version type format. See Chapter 9,
Versions

Overlay
It is possible to specify an overlay folder (in your file system) that will overlay the found component
during resolution — files in or under the overlay folder are used instead of the corresponding file in
the component. This is mostly intended for experiments or temporary workarounds, but can be used
to solve some tricky issues.

Advanced Topic — Meta Data Patching with Overlay

A very advanced use of overlay is to first materialize a patch that fixes meta data problems
in some other component, and then use the materialized patch location as the overlay when
materializing the component in need of patching.

Folder
The path to an overlay folder.

Properties
This part allows you to modify the properties while a component matching the advisor node selection
is being processed. See more information about properties in Chapter 10, Properties

Property List
Shows the properties that will be set
for matching components.

New / Edit / Remove
For adding, changing or removing en-
tries in the list.

Draft Component query Draft

55

A very common use of property settings in an advisor node is to set values that are used to select a
particular repository in the RMAP. See the section called “Parameterized locator” for an example in the
RMAP. In the screenshot above you can see an example of repoType being set to RBUILD.

Documentation
The documentation part can be used to document what the advisor node does. This is valuable when
a complex query is constructed and it can be hard to understand the particular purpose of a node. The
documentation is currently not used anywhere but in the CQUERY editor.

Materialization wizard
The Materialize to Wizard runs the resolution and materialization under the control of the materializa-
tion wizard, where you can influence the process. It also gives you the opportunity to save the settings
you are making for future use. (Your other choice is to select “Resolve and Materialize” which will
run the entire process in one step — see the section called “Resolve and materialize”). This wizard is
also used when materialization is performed as an import of a MSPEC, BOM, or CQUERY, i.e. using File

→ Import... → Other → Buckminster → ‘Materialize from a Buckminster MSPEC, CQUERY or BOM’

Figure 5.1. Materialization wizard’s first page

Draft Component query Draft

56

This area shows the result of the resolution. By default components from ‘target platform’ are
not shown in the resolution tree. In this example though, we explicitly asked for a component
from the platform, so it still shows up.
This list shows the dependencies in the selected component. You can see the requested range,
and component type.
In this section you can select if you want to see all components from the target platform in the
tree above. The buttons ‘re-resolve’ and ‘unresolve’ lets you retry the resolution. If you had
turned on ‘continue on error’ you can see red dots for unresolved nodes, and you may try to re-
resolve them. This is useful when facing network issues with some components, or where you
are repeatedly tweaking some information in the repository where the component is supposed
to be found. The ’unresolve’ simply forgets the previous resolution for the component and lets
you perform a ‘re-resolve’.
These buttons allow you to save the resolution result as a Buckminster Bill of Materials (BOM)
file. You can save it in a project in your workspace, or somewhere external (in the file system).
You can read more about the BOM file in see Chapter 7, Bill of Materials (BOM).

Figure 5.2. Wizard with target platform components shown

Here, target platform components are also displayed in the tree. Green dots means re-
solved, and gray dots means that the component was first resolved to satisfy some

other dependency. Red dots (not shown here) indicate that the resolution failed.

Once you are happy that the resolution contains what you wanted, you continue to the next step where
you can specify where components should be materialized/installed.

Draft Component query Draft

57

Figure 5.3. Wizard’s materialization page

Here you control the ‘global’ settings where the materialization should go, and what should hap-
pen if the selected destination is not empty when the materialization takes place. These settings
apply to all the components except those that are handled individually in the section below.

Available materializers

file system A location in your file system.

p2 This materializer is used to create a platform agnostic tar-
get platform. (This is not the same as performing a p2 in-
stall, as such an installation is always for a particular plat-
form). The location is a directory in your file system for
the p2 artifact repository. The p2 materializer essentially
performs the same task as the PDE repo2runnable ANT-
task, but with more advanced selection criteria (the Buck-
minster resolution process vs. copy entire repository).

(site.mirror) Deprecated in Eclipse 3.5. Used when materializing using
the now deprecated Update Manager. Still supported in
the editor for older artifacts.

(target platform) Deprecated in Eclipse 3.5, and is now an alias for p2 ma-
terializer. Use the p2 materializer instead. Still supported
in the editor for older artifacts.

workspace The materialization will go into a workspace. If loca-
tion and workspace fields are both empty then the current
workspace is used (this would be the normal case). If only
location is specified the materialization treats the location
as a workspace. If both location and workspace are stat-

Draft Component query Draft

58

ed, then the materialization is made to location, and the
location is linked to the stated workspace.

‘on non empty install’ Here you can control what should happen when the desti-
nation is not empty when the materialization takes place,
you select between update, fail (i.e. report an error), re-
place (remove before materialization), and keep (use what
is already there, do not update).

The list shown is the result of the resolution — the Bill of Materials (BOM). You see component
name, version, and the two columns ‘Present’ (if the component has been materialized), and
‘Bound’ (if it is bound to the workspace). The text ‘N/A’ indicates that the component is a fixture
— it can not be materialized — it exists in a form/location that is simply used.
Here you can control if the selected component should be skipped — i.e. not materialized, and if
you want to use the default location (as set in the area (1)). In the example, this button is grayed
out because a component from the target platform is selected, and its location can not be changed.
Unchecking ‘use default’ enables the ‘Advanced...’ button, and the settings made in the
dialog that appears are used instead of the default.
The two buttons allows you to save the resulting Materialization Specification (MSPEC) in a
workspace file, or in a file somewhere in your file system. The MSPEC is a Buckminster XML

artifact that adds the final pieces of information in a materialization; i.e the what goes where-
information that is edited on the wizard page. The MSPEC is described in more detail in Chapter 8,
MSPEC — Materialization Specification .

Note

As a side of effect of saving a MSPEC, a BOM may also saved, with the same name
as the MSPEC, but with the extension ‘.bom’, and a reference is made in the saved
MSPEC to this file. (If the file referenced in the MSPEC is already available, the BOM

does not get written. See more details in Chapter 8, MSPEC — Materialization
Specification .

Advanced settings
The Advanced Settings for selected components, is simply individual settings that do not use the default
settings. The dialog that appears looks like this:

Destination type This is the same list of destination types as in the default set-
tings (i.e. file system, workspace, etc.).

Draft Component query Draft

59

Parent folder This is the same as location in the default/‘global’ settings —
i.e. the folder where the component will be materialized.

Leaf Artifact You can rename the file/folder that will be created by the mate-
rialization by entering the new name in this field. (When used in
combination with unpack, this is the name of the created fold-
er).

On non empty install location This is the same choice as in the default settings (i.e. update,
fail, etc.).

Unpack Unpack implies two things: deflate which turns a ‘x.tar.gz’
into a ‘x.tar’, and expand which turns ‘x.tar’ into a folder
‘x’. When selecting unpack, deflate is always implicit and ex-
pand is enabled by default. You can disable the expand if you
only want deflate.

Expand When a component is unpacked, it can also be expanded. See
Unpack above.

Default suffix The default suffix is used when it is impossible to automatically
determine the file name (and hence the suffix) of the remote
file. The suffix is only used to determine the content type of
what is being read (it does not directly affect the resulting name
of files or folders written in your file system). You can enter
suffixes with multiple parts, i.e. ‘tar.gz’ as this is important
if you are doing both a deflate and expand of the content (see
Unpack).

Workspace This is the same as the workspace setting in the default/‘global’
settings.

Project name When materializing into a workspace a project name can be
stated (if you want it to have a different name than the compo-
nent). Ignored for other types of materializations.

Example 5.1. Default Suffix and Renaming

The combination of default suffix and renaming can be a bit confusing, so here is an example to clarify.
If you are downloading monkey.zip, it will be expanded into a folder called monkey in the location
folder (no surprise). If you are downloading 123xe4a56_45-4 (and this is the content of the monkey
zip-file, but where you only see the key used by the download service) you set the default suffix to
zip, and the leaf artifact to monkey.

Watching the paint dry...
The final step of the process is to materialize the result of the query4, possibly controlled by addi-
tional specification regarding skipped components, special treatment per component etc. You will see
progress reported like this:

4Although, you do not have to perform this step if the purpose of running the wizard was to create a BOM or MSPEC for later use.

Draft Component query Draft

60

Resolve and materialize
The Resolve and Materialize runs the entire process in one step. Use this when you are happy with the
defaults, and have no need to save intermediate results or settings. (See the section called “Materializa-
tion wizard” if you want more control). You will see a progress dialog that looks something like this:

Summary
In this chapter you have seen the details of the CQUERY, how a query is created and edited with the
CQUERY-editor resulting in a file that can be directly executed to materialize components, or to create
more specialized artifacts (a Bill of Materials (BOM), or a Materialization Specification (MSPEC) for
later more specialized use).

We did not show you the XML schema details of the CQUERY. The only reason to deal with the XML

directly would be if you are generating queries or have specialized editing/refactoring needs. Please
refer to the Part IV, “Reference” for the details.

Draft Draft

61

6
Components

In this chapter we take a closer look at Buckminster’s view of Components, what they are, how they
come into existence, and how they are used to manage configurations and building them.

Central to Buckminster’s description of a component is the XML artifact Component Specification
(CSPEC), and its extension mechanism CSPEX. These are explained in detail in this chapter.

Depending on what you are working with, you may not ever need to deal with authoring a CSPEC since
for many component types (e.g. OSGi bundles, Eclipse features and products) the availability of the
specification is immediate and automatic, and you can simply make use of the component’s actions.

Figure 6.1. Secret revealed — where components come from

Your IDE is already expecting...

You can find several examples of CSPEC and CSPEX use in Part III, “Examples”, and some of these
may serve as templates for things you may want to do.

In the simplest cases, components are just there, but you may want to author new configurations, add
or override actions in automatically created CSPECs, reuse existing actions in ANT, or in some external
build system.

The component’s anatomy
To Buckminster, a Component is described by the following meta data:

name The name of a component is the primary identifier and is con-
sidered to uniquely identify a component when combined with
component type.

Draft Components Draft

62

type The type of component. See the section called “Component
types”.

version The version of the component using an Omni Version as de-
scribed in Chapter 9, Versions.

dependencies A component contains declarations of dependencies on other
components. A dependency is expressed in terms of component
name, component type, version range, and optionally include a
filter that defines the applicability of the dependency in a par-
ticular environment (e.g. a dependency may only be valid when
resolving for a particular operating system).

documentation A short description (typically one line of text suitable for dis-
play in a list), as well as a longer description where XHTML can
be used is included in a CSPEC.

attributes An attribute of a component as seen from the outside is a named
list of references to files . On the inside, an attributes is defined
using one of the following:

artifacts
Used for static lists of artifacts.

actions
Used for dynamic/computed attributes. Typically some
sort of build that produces new artifacts. Some actions are
capable of producing more than one result where results
needs to be independently reachable. To handle this, an
action can declare additional attributes that corresponds to
such results.

groups
Used to aggregate other attributes (i.e. artifact, action, or
other groups).

filter A component’s filter is used to determine the component’s ap-
plicability/inclusion in a resolution in a particular environment
(e.g. for a particular operating system, CPU architecture, etc.).

Advanced topic — Generators

generators A component can act as a generator of “virtual” compo-
nents. This is useful when a component is brought into
existence by an action/build step and it is impossible to
locate such a component via the RMAP.

Draft Components Draft

63

Figure 6.2. Component anatomy

A component with four public attributes a, b, c, f, and private attributes d, e, de-
pendencies on other components, and a generated component. Illustration al-

so shows that attribute a is a group consisting of attribute b, d, e and f. The at-
tributes b, c, and d are simple static lists of artifacts, whereas e and f are generated.

CSPEC and CSPEX

Buckminster standard configuration includes support for several component types. Such an adapter
interprets the existing meta data in its original form, and translates it into the CSPEC model. All com-
putations done on components by Buckminster are done in terms of CSPECs. The actual CSPEC data is
not persisted — it is created each time it is needed (although technically it may be cached for perfor-
mance reasons). Even if the generated CSPEC is not persisted by default, it is still possible to generate
the CSPEC in XML form for viewing, printing, or possibly for interchange with other systems.

A component that does not have any meta data to translate, or where there is no adapter for this
particular component type can use Buckminster’s CSPEC XML format for meta data to describe the
component. This is done by placing a buckminster.cspec file in the component’s root.

It is possible to extend/decorate an automatically generated CSPEC by placing a file called
buckminster.cspex in the component’s root.

Warning

Although technically possible to also extend a component that is described with a
buckminster.cspec, such a construction is not recommended as it just makes it more
difficult to author the meta data.

Both CSPEC and CSPEX are expressed in XML (see Buckminster XML Schemas), and the CSPEX is
based on the same schema as the CSPEC, but adds capabilities to replace and remove information
by using various alterXXX and remove XML elements. Elements in a CSPEX that are not marked
with alter or remove are additions to the referenced CSPEC.

The CSPEC editor
Buckminster includes a graphical CSPEC editor/viewer. As a viewer it is capable of showing the result-
ing component model (i.e. the combination of the automatically generated CSPEC and a CSPEX). As an
editor it can be used to edit a CSPEC artifact.

Draft Components Draft

64

Note

There is currently no graphical editor for a CSPEX. Editing is done using an XML editor.
See the section called “Configuring Eclipse for XML Editing”. One alternative approach
is to create a CSPEC and edit it with the graphical editor, and then modify the resulting
XML file into a CSPEX — which may save you some time if you are new to Buckminster,
and have a lot to author.

When the CSPEC editor is used as a viewer, it is in read-only mode with editing functions turned off.
You can see that the editor is in view mode by looking at the title in the editor tab (it says “(read
only)”), and in the File menu all operations that saves are disabled.

The editor is a multi-tab editor where different parts of the CSPEC are shown/edited on separate tabs.
Here is a screenshot of what it looks like when the editor is opened:

The editor opens with its main tab selected (for editing the fundamental information; name and ver-
sion). Along the bottom, you see all the tabs that takes you to different parts in the editor.

In this book we have taken the approach to explain the editor concept by concept, showing how the
editor works, together with an explanation of the resulting CSPEC XML, and how it can be extend-
ed with a CSPEX (as opposed to dealing with the same concept multiple times — we hope this saves
time jumping between sections).

Viewing a CSPEC
To view the resulting CSPEC for a component you have several options. The CSPEC editor can be opened
in view mode (read only) on the resulting CSPEC of a component by:

Draft Components Draft

65

• Selecting File → View a selected CSpec... which opens a dialog with a list of all components known
to Buckminster in your current workspace. Select the component you want to view.

• Right click on the project folder or any file within the project in the Eclipse Package Explorer, or

the Eclipse Navigator views. In the context menu that appears select Buckminster → View CSpec...
and the CSPEC for the associated component is opened.

• A CSPEC can be opened from two of Buckminster’s views — the Component Outline View, and

Component Explorer. They are both found by selecting Window → Show View → Other... → Buck-
minster, and then the respective view. The Component Outline View shows information about the
component currently selected, and the Component Explorer shows information about all known
components. In either view, the context menu for a Component node presents the choice Open,
which will open the CSPEC.

Note

It is not currently possible to open components via dependencies.

If you want to open a CSPEC (or CSPEX) for editing, you should locate the file in the workspace and
then open it for editing as you normally open other files for editing. The “View a CSpec...”-actions
always open the editor in view-mode (read-only).

Creating a CSPEC, or CSPEX

To create a CSPEC, or a CSPEX, simply invoke File → New → Other... → Buckminster, and then select

one of → Component Specification file, or → Component Specification Extension file, which will
prompt you for the name of the file, and then create it with the required XML declarations.

The resulting CSPEC looks like this initially (using OSGi version1.0.0 by default):

<?xml version="1.0" encoding="UTF-8"?>
<cs:cspec
 xmlns:cs="http://www.eclipse.org/buckminster/CSpec-1.0"
 name="org.demo.ExamplesForBook"
 componentType="buckminster"
 version="1.0.0"
/>

As you are editing, the editor will add needed name space declarations. If you edit the file using an
XML editor, you need to add the namespace declarations yourself. See Buckminster XML Schemas for
more information.

And the resulting file for a CSPEX should look like this:

?xml version="1.0" encoding="UTF-8"?>
<cspecExtension
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:bc="http://www.eclipse.org/buckminster/Common-1.0"
 xmlns="http://www.eclipse.org/buckminster/CSpec-1.0"
 >
<dependencies>
 <!-- Place your Dependencies here -->
</dependencies>

<generators>
 <!-- Place your Generators here -->
</generators>

<artifacts>
 <!-- Place your Artifacts here -->
</artifacts>

<actions>

Draft Components Draft

66

 <!-- Place your Actions here -->
</actions>

<groups>
 <!-- Place your Groups here -->
</groups>

<alterDependencies>
 <!-- Place your Dependency alterations here -->
</alterDependencies>

<alterArtifacts>
 <!-- Place your Artifact alterations here -->
</alterArtifacts>

<alterActions>
 <!-- Place your Action alterations here -->
</alterActions>

<alterGroups>
 <!-- Place your Group alterations here -->
</alterGroups>

</cspecExtension>

Note

You should only create a CSPEC for a component that is not already translated into the
CSPEC model automatically. Also note that you should only create a CSPEX for compo-
nents that are automatically translated, and where you need to extend it. If you are unsure
of how this works — see the section called “CSPEC and CSPEX”.

Name and version
When opening the CSPEC editor, it opens with its main tab selected. A screenshot of this can be seen
in the section called “The CSPEC editor”.

The main tab has the following content:

Component name This is the name of the component that together with the com-
ponent type is the unique identifier for the the component. A
typical name reflects the organisation creating the component
(e.g. org.eclipse.buckminster.core).

Component Type This is one of the supported types (e.g. osgi.bundle, or
eclipse.feature). See the section called “Automatically
generated meta data” for a brief overview, and the reference
guide “Component Types” for all the details.

Version This describes the version of the component. In the user inter-
face the version is broken up into two parts; the version string in
clear text, as displayed in the version field, and a named version
format. The selection of the version format determines how the
digits, strings, and delimiters in he version string are translated
into the Omni Version instance used internally. For information
about versions and version types see Chapter 9, Versions.

Tip

If you are working with OSGi bundles, Eclipse
features or plugins you should always use OSGi

versioning. When the choice is yours, we recom-
mend also using OSGi.

Draft Components Draft

67

CSPEC XML

In XML, name and version are written like this:

<?xml version="1.0" encoding="UTF-8"?>
<cs:cspec

 xmlns:cs="http://www.eclipse.org/buckminster/CSpec-1.0"

 name="ExamplesForBook"

 componentType="buckminster"

 version="1.0.0"

 versionType="Triplet"
>

Namespace declaration for CSPEC.
The name of the component.
The component type.
The version.
Deprecated. The version type is supported for backward compatibility. Should not be used for
new artifacts.

Note

You do not have to change you pre Eclipse 3.5 CSPECs as the formats OSGi,
Triplet, String, and Timestamp, and OSGi are handled. If you however have
created your own versioning scheme you must switch to using Omni Version.

CSPEX XML

A CSPEX can override all of these except the component’s name. A CSPEC is bound to a CSPEC via
inclusion in the component’s root, and it will always extend the component in which it is embedded
— as a consequence it is not possible to alter the components name. The corresponding section for
a CSPEX looks like this in XML:

<?xml version="1.0" encoding="UTF-8"?>
<cspecExtension
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:bc="http://www.eclipse.org/buckminster/Common-1.0"

 xmlns="http://www.eclipse.org/buckminster/CSpec-1.0"

 componentType="buckminster"

 version="1.0.0"

 versionType="Triplet"
>

Namespace declaration for CSPEX is identical to CSPEC.
Overrides the component type.
Overrides the version.
Deprecated. Overrides the version type. Should not be used in new CSPEX, the version attribute
should be in Omni Version format. Supported for backward compatibility for the types OSGi,
String, Triplet, and Timestamp.

Attributes
There are three types of component attributes; artifacts, actions and groups. These are explained in
the following sections. Several concepts are common to all attributes — these are described here.

Visibility. Attributes are declared to be either private or public. The private attributes can only be
referenced from within other attributes in the same component. The public attributes can be referenced
from other components, and public actions can also be invoked from the user interface, or command
line.

In XML the visibility is declared like this:

Draft Components Draft

68

<artifacts>
 <public name="..." />
 <private name="... />
</artifacts>

<actions>
 <public name="..." />
 <private name="..." />
</actions>

<groups>
 <public name="..." />
 <private name="..." />
</groups>

This means, that in each section, an attribute of the particular type is created with public or private.

Note

Since the syntax for public and private elements is identical (except for the actual
public/private element name) the following sections are only explaining the syntax using
public elements.

Value. The value of an attribute is always an array of path groups, where a path group is a collection
of paths referencing files or directories/folders. The paths are typically expressed as relative to the
path group’s base (which by default is the component’s root, or specified explicitly), but paths can
also be absolute. A relative base is relative to the component’s root.

A path that ends with a slash ‘/’ is a reference to a directory/folder. Absolute paths begin with a ‘/’ (on
Windows an absolute path starts with either ‘\’, ‘/’, ‘drive letter:\’, or ‘drive letter:/’).

Tip

You can always use ‘/’ as the path separator as it works on all platforms, and creates
fewer issues as a ’\’ is often used as an escape character.

The artifact and action attributes always return an array with a single path group, and the group at-
tribute returns an array with all values from the grouped attributes. As you will see later, a group can
also manipulate the base path.

As the description is quite abstract — here is an illustration and some examples.

Figure 6.3. A file tree with components

tmp

X Y

component-A component-B component-C

plugins features

a b

plugins features plugins features

c d e f g h i j

Draft Components Draft

69

As an example, if you want an attribute in component-C to include the artifacts ‘g’, and ‘h’, you can
declare the attribute’s base to be an empty string (base=""), and use the paths ‘plugins/g’, and
‘plugins/h’. You get the same result if you instead set the base like this: base="plugins", and
set the paths to just ‘g’ and ‘h’. Does it matter which you use? The same files are referenced in both
cases. The answer is: yes, it matters when you are copying the result. Let’s say you copy the result to
a location ‘Z’. In the first case you would get ‘Z/plugins/g’ and ‘Z/plugins/h’, and in the second
case you would get ‘Z/g’, and ‘Z/h’.

If you in each of the components A-C create attributes that represent plugins and features you can easily
create a group that merges all plugins (with all paths relative to component root) into a plugins folder,
and all features to a features folder. If you however declared all the plugins and feature attributes to
be relative to plugins and features respectively, then the group would copy all of the a-j files
into the same location.

Reference to the component itself
All CSPECs have an implicit attribute named buckminster.component.self. The path group of
the buckminster.component.self can be in one of two forms depending on if the component is
a directory or a file; if the component is a directory, then the base of the path group is equal to the
location of the component and the array of paths is empty, and if the component is a file, then the
base appoints the directory that contains this file and the path array has one path which is the file
relative to that base.

Whenever a combination of component and attribute can be specified as a reference to an attribute,
the default component is buckminster.component.self.

The buckminster.component.self attribute removes the need for you to create an additional at-
tribute just to reference the static content of the component, and makes it easy to reference a compo-
nents content in another component as the name is always the same.

Artifacts
An attribute implemented using artifacts is a static path group; a list of paths stated in the CSPEC. The
CSPEC editor tab for editing artifacts looks like this:

Draft Components Draft

70

On the left, there is a list of declared artifact attributes, their name and visibility is displayed. Buttons at
the bottom allows for adding and removing artifact elements. To edit an element select it in the list, and
then change its values on the right. There are two sets of values to edit; General (displayed above), and
Documentation (not shown). The Documentation set consists of a single field where documentation
for the artifact can be entered (XHTML is allowed) — this documentation is for the implementor/user
of the CSPEC.

Name This is the name of the attribute. This name is used to ref-
erence the value. Examples of typical names are jarfiles,
documentation.html, documentation.pdf, headerfiles.

Public When the checkbox is checked, the artifacts attribute is de-
clared to be public. If not checked it is (not surprisingly) pri-
vate. (See Visibility).

Base Path This is the base for all paths in the Paths section. If Base Path
is empty, the component’s location is used as the base.

Paths This is a list of paths, relative paths are relative to Base Path,
and absolute paths may be used. Buttons on the side allows
adding, removing and editing entries.

Draft Components Draft

71

Note

There is no need to create an artifacts attribute for everything included in the component.
The buckminster.component.self attribute always refers to the component itself.
See the section called “Reference to the component itself ”.

CSPEC XML

In XML the declaration looks like this:

<artifacts>
 <public
 name="..."
 base="..."
 path="..." >
 <documentation>
 <p>This is documentation</p>
 </documentation>
 <path path="..." />
 <path path="..." />
 </public>

 <public ... />
</artifacts>

A short-hand notation can be used if there is only one path.

<artifacts>
 <public
 name="..."
 base="..."
 path="..."
 />
</artifacts>

Everything except the name attribute is optional.

CSPEX XML

The CSPEX can extend an artifact declaration. Additions are made using the same declaration as in the
CSPEC. Alterations are made in an alterArtifacts element. This is what it looks like in XML:

<alterArtifacts>

 <public name="..." >

 <path path="..." />

 <removePath path="..." />
 </public>

 <public ... />
</alterArtifacts>

The artifact referenced by name is overridden with the values declared in this element.
This path is added
This path is removed
An alteration to an additional attribute.

Groups
An attribute implemented using groups is a group of other attributes from the same, or other compo-
nents. The CSPEC editor tab for editing groups looks like this:

Draft Components Draft

72

On the left, there is a list of declared group attributes, their name and visibility is displayed. Buttons at
the bottom allows for adding and removing group elements. To edit an element select it in the list, and
then change its values on the right. There are two sets of values to edit; General (displayed above), and
Documentation (not shown). The Documentation set consists of a single field where documentation
for the group can be entered (XHTML is allowed) — this documentation is for the implementor/user
of the CSPEC.

Name This is the name of the group. This name is used to ref-
erence the value. Examples of typical names are jarfiles,
documentation.html, documentation.pdf, headerfiles.

Public When the checkbox is checked, the group attribute is declared
to be public. If not checked it is (not surprisingly) private. (See
Visibility).

Rebase Path By setting the rebase path, you can connect various path groups
using a common base, making all relative paths in any path
group be relative the new rebase path. The paths that are relative
to bases that are not under the new rebase path are unaffected.
As an example — look at Figure 6.3, “A file tree with compo-
nents” and say you grouped the plugins from components A-C
(all are relative to their respective component root). With a re-
base path of Y, and a copy of the result to Z the result looks
like this:

Draft Components Draft

73

Z

plugins component-B component-C

a plugins plugins

c d g h

Prerequisites This is a list of references to attributes in the same, or other
components. Buttons on the right allows adding, removing and
editing entries. When adding, or editing, the following dialog
is shown:

Component
The drop-down list shows all component that are added as
dependencies. It is not possible to group an attribute from
a component that is not among the dependencies. If Com-
ponent is left empty — it means using attributes from the
component itself.

Name
This is the name of the attribute from the selected com-
ponent. The drop down list shows the available attributes
from the selected component. If the name is left empty, it
means to use the referenced component’s default attribute
(i.e. self).

Contributor
Should be checked if the result of the referenced attribute
should be included in the group. If unchecked, the attribute
is still polled for a value and can thus trigger actions. As an
example, this is useful when an action produce unwanted
artifacts like a log-file that should not be included.

Draft Components Draft

74

Filter
A prerequisite can have a filter (see the Filters reference
guide) which makes it possible to conditionally include the
prerequisite in the result. The prerequisite is included if the
filter is empty, or evaluates to true.

Include Pattern
The include/exclude patterns are regular expressions that
are applied to the transitive scope of attributes in the pre-
requisite. The transitive scope can be thought of as a list of
«component name»#«attribute name» entries. If you
use an includePattern, only those entries that match
that pattern will be included. If you use an excludePat-
tern matching entries will be excluded. The exclude-
Pattern takes precedence in case an entry should match
both patterns. The patterns are applied to each attribute in
the transitive scope where the attribute is represented on
the form «component name»#«attribute name» (or
just «component name» in case self reference has been
used). The match must be a full match for the expression.
Partial matches does not count. (If you don’t see the in-
clude and exclude patterns in the user interface you have a
version that is too old — see Eclipse Bug 283936 [https://
bugs.eclipse.org/bugs/show_bug.cgi?id=283936]).

Note

Action prerequisites (i.e. the input to actions)
are not included in the transitive scope. If
you need to perform include/exclude input
to actions you need to do that in the respec-
tive action. If an action produces addition-
al named attributes (in addition to its normal
product value) then these are also included in
the transitive scope (if referenced).

Exclude Pattern
See Include Pattern above.

CSPEC XML

A group is declared in XML like this:

<groups>
 <public

 name="..."

 rebase="..."
 >

 <attribute

 name="..."

 component="..."

 contributor="false"

 filter="..."

 includePattern="..."

 excludePattern="..."
 />

 <attribute ... />

 <documentation> ... </documentation>
</groups>

https://bugs.eclipse.org/bugs/show_bug.cgi?id=283936
https://bugs.eclipse.org/bugs/show_bug.cgi?id=283936
https://bugs.eclipse.org/bugs/show_bug.cgi?id=283936

Draft Components Draft

75

The group’s name
The rebase path as explained for the editing field with the same name.
The reference to the attribute to include in the group
This is the name of the attribute to include from the specified component, or from ‘self’ if no
component is specified.
This is the name of the component to get the specified attribute from. May be empty.
If the value of the attribute should be included in the group, the contributor should be set to true
(which is the default if contributor is omitted).
The attributes filter, includePattern, and excludePattern as explained for the same
fields in the editor.
The second attribute to be added to the group
Documentation for the group — can use XHTML.

CSPEX XML

A group can be extended in a CSPEX. Adding groups is done by using the same syntax as in the CSPEC.
Alterations are done in XML using alterGroups like this:

<alterGroups>
 <public

 name="..."
 rebase="..." >

 <alterAttribute
 name="..."
 component=" "
 contributor="..."
 filter="..."
 includePattern="..."
 excludePattern="..."
 />

 <remove name="..." />
 </public>

 <public ... />
</alterGroups>

The name attribute is used to select the group to alter. The attributes of this element overrides
the attributes in the selected group.
An inner alterAttribute is used to alter one of the entries in the group, the name selects the
entry to modify, and the additional values override the corresponding values in the selected entry.
An entry in the group is removed by using remove, the name selects the entry to remove.
Here an additional group is altered.

Actions
An action is a dynamic attribute. It has the same type of value as other attributes — the difference
being that it can compute the value when the value is requested. Actions may also be used for the
purpose of only invoking them for their side effects (i.e. something the action does is valuable rather
than a resulting file like some log-file it may produce). An action may also produce more than one
named result.

An action attribute is a quite powerful mechanism, and there are many options and details. Here is
an illustration of the actions’s main parts (that is slightly more complicated than the simplest possible
where there is a single input, a single output, and no required properties).

Draft Components Draft

76

Figure 6.4. Action anatomy

Value of action attribute

Product

X path group

Y path group

filesystem

Actor

read(R,S,U)
write(X,Y)

properties

Prerequisites (R)

S A#attr1

A#attr2

U A#attr3

Component A

attr1

attr2

attr3

Internally, an action has an Actor that handles the execution (a plugin, or script). The actor
gets three things as input; properties (to initialize the actor, and control what it is supposed
to do), prerequisites (the input to the action), and product (the result/output path group of
the action). The illustration shows aliases (R, S, U, X, Y) — these, together with the prop-
erties can be thought of as the arguments to the actor. The actor finds the paths to the data

via the aliases; the input is found in the prerequisites’ aliases (R, S, U) which references at-
tributes in components (which in turn, eventually, will refer to path groups that references

files in the file system) — the output locations are found in the product’s aliases (X,Y) which
are path groups that references the output/result location(s) — most of the time a single path.

The CSPEC editor tab for editing actions looks like this:

Draft Components Draft

77

On the left, there is a list of declared action attributes, their name and visibility is displayed. Buttons at
the bottom allows for adding and removing action elements. To edit an element, select it in the list, and
then change its values on the right. There are four sets of values to edit; General (displayed above),
Properties, Products (shown further on), and Documentation (not shown). The Documentation set
simply consists of a single field where documentation for the action can be entered (XHTML is allowed)
— this documentation is for the implementor/user of the CSPEC.

The General Section

Name This is the name of the action. This name is used to reference
the action’s value. Pick a name that is meaningful to a user
when invoking it from a list of actions (e.g. build.javadoc).

Public When the checkbox is checked, the action is declared to be pub-
lic. If not checked it is (not surprisingly) private. (See Visibil-
ity).

Actor Name This is the name of the actor type. Currently, there are sever-
al actor types that come with Buckminster. There is one gen-
eral purpose actor that invokes ANT scripts (this actor is called
ant), and several special purpose actors for specific tasks. It is
possible to extend Buckminster with other types of actors. See
Actors reference guide for all the details.

Draft Components Draft

78

Always This checkbox is used to control the up to date policy. When
checked, this action will always be executed (i.e. it things of the
output as never being up to date). If unchecked, the specified
up to date policy is used.

Up-to-date-policy The up to date policy indicates when the actor should consider
the output to be up to date (and not run the action). This setting
is ignored if Always is checked. The possible values are:

ACTOR
It is up to the actor to determine if output is up to date.

DEFAULT
Folders are never considered to be up to date, and output
files must be younger than input files.

MAPPER
Each prerequisite is matched to a corresponding out-
put/product. The match is verbatim or using a regular ex-
pression pattern and a replacement. All files must match
and each product file must be younger then its respective
match to consider the product up to date. The Mapper poli-
cy can be combined with Count policy to indicate that there
are more files in the output (that are not present in the pre-
requisites) A count that denotes less then the number of
mapped files has no significance.

COUNT
At least the specified number of files in the product must
be younger then the youngest artifact in the prerequisites
to consider it up to date.

NOT EMPTY
The output/product is considered up to date if it has con-
tent.

File Count This value is used with the COUNT up to date policy (see
above).

Additional File Count This value is used with the MAPPER up to date policy (see
above).

Assign Console Support By default, actions are given access to the console (standard
input/output and error streams). This can be turned off for an
action that produces lots of unwanted output.

Filter The filter is used to enable an action only when the filter expres-
sion evaluates to true. This is useful when certain actions should
be ignored on certain platforms. The filter is written using LDAP

filter syntax (the same way filters are expressed throughout
Eclipse). See Filters for more information. Leave the filter field
empty if you want the action to always be enabled. As an ex-
ample, the filter expression target.os=win32) would only
enable the action when running on 32 bit windows.

Prerequisites Alias The prerequisites defines the action’s input. They are similar to
a group, but this group does not have a name that is useful. The
prerequisites alias allows you to give the prerequisites group
a name that can be used in the action (e.g. input, source,

Draft Components Draft

79

source-files, etc.). It is also possible to set aliases for in-
dividual attributes in the prerequisites group — see “Prerequi-
sites” below.

Prerequisites Rebase Path The prerequisites defines the action’s input, and is similar to a
group. The prerequisites rebase path makes it possible to set
the rebase path of this group. See “Group, rebase path” for an
explanation of how rebase works.

Prerequisites This is a list of prerequisites — buttons on the right allows,
adding, removing and editing entries. The prerequisites defines
the input to the action — and by input, we mean both a concrete
set of files, as well as any side effects that must have occurred
prior to executing the action. A difference between prerequi-
sites and a regular group is that is possible to specify aliases for
the individual attributes. Setting aliases is useful as the actor
would otherwise have to know the full names of the attributes it
is processing. See the section called “Groups” for an explana-
tion of the content of prerequisistes, and the dialog that appears
for adding/editing.

The Properties Section

The Properties section is used to edit actor proprieties — there are two sets; properties that are used
when the action invokes the actor (called General Properties), and properties that define parameters
to initialize the actor (called Actor Properties1). This is what this looks like in the editor:

Each list is a list of property entries (a key-value pair). The Actor properties are used to initialize an
instance of the specified actor type (e.g. an ant actor). The actor properties are specific to the type of
actor being used (e.g. the ant actor has properties that references the ANT build file to use). See the
Actors reference guide for information about each actor type’s properties.

On the right of each list there are buttons for adding, removing, and editing entries. When adding and
editing, a dialog pops up where key and value are entered. (A screenshot is not included).

1Which is a really bad name, since all of the properties are for an actor.

Draft Components Draft

80

The Products section
The Products section is used to define the output of the action. The output (in addition to what is
written to files as a consequence of running the action) is the path group value of the action attribute
(or in special cases, multiple attributes). This section looks like this:

Product Alias The product alias makes it possible to give the resulting output
a name that can be used in the action/actor. Without this name,
the actor would have to know the name of the component and
the name of the action. Examples of aliases could be result,
or output.

Product Base Path The output/product is similar to a group, and just as in a group,
it is possible to set the base path of the group using Product
Base Path. See Group, rebase path for more information about
the base path. The product base path is typically a reference
to the directory where the actor has written its output (e.g. the
compiled files).

In a product, an empty base is equal to the variable
${buckminster.output} which is the designated output
folder for the build of the component.

Note

This is different from an empty base in an arti-
fact. There, it defaults to the value of the vari-
able ${buckminster.home} which is the com-
ponent location.

Product Paths If Product Paths is selected, the output consists of a path group
(i.e. a list of paths relative to the Product Base Path). The but-
tons on the side of the list allows adding, removing and editing
entries. When adding or editing, a dialog pops up where the
path can be entered. (A screenshot is not included in this book).

Product Paths is mutually exclusive with Product Artifacts.

Draft Components Draft

81

Product Artifacts If Product Artifacts is selected, the output consists of a group
of generated attributes. The main differences vs. Product Paths
are that new individually addressable attributes are created, and
that each such attribute has its own base path. This is very useful
when an action produces more than one result e.g. compiled bi-
naries and documentation. By making the two results available
individually, some other group could include only the wanted
subset, or an other action could have only the wanted subsec-
tion as a prerequisite. The mechanism also provides a separa-
tion of concerns between the action producing the result, and
the result itself. At some later point you may want to refactor
the actions so that compilation does not generate the documen-
tation, and documentation is generated with its own action. By
referring to the attributes that represents the result, you would
not have to change anything where these results are used when
splitting up the actions.

Product Artifacts is mutually exclusive with Product Paths.

The dialog for adding and editing Product Artifacts is similar
to the dialog for editing attributes of artifact type.

See the section called “Artifacts”for an explanation of the fields.

CSPEC XML

The XML for actions looks like this:

<actions>
 <public

 name="..."

 actor="..."
 >

 <actorProperties>
 <property key="..." value="..." /> // *
 </actorProperties>

 <properties>

Draft Components Draft

82

 <property key="..." value="..." /> // *
 </properties>

 <documentation>...</documentation>

 <prerequisites

 rebase="..."

 alias="..."
 >

 <attribute

 name="..."

 component="..."

 alias="..."

 filter="..."

 contributor="true"

 includePattern="..."

 excludePattern="..."
 /> // *
 </prerequisites>

 <products>

 <product

 alias="..."

 base="..."

 upToDatePolicy="..."

 filecount="..." // NOT IN UI

 pattern="..." // NOT IN UI

 replacement="..." // NOT IN UI
 >

 <path path="..." /> // Simple strategy
 // *
 </product>
 </products>
 </public>
 // *
</actions>

Actions are written within an actions element. In this element, the individual actions are en-
tered using either a public or private child element. The syntax is identical for both (except
the difference in element name), and the example only shows a public element.
A public element is used for a public action — its name attribute defines the action’s name.
The name of the actor is specified with the actor attribute.
The actor properties are defined as property element children of an actorProperties ele-
ment.
The general properties are defined as property element children of an properties element.
Documentation can be provided for an action using a documentation element. It may contain
XHTML.
A prerequisites element defines the input to the action.
The prerequisites rebase path. See “Group, rebase path” for an explanation of how rebase
works.
Specifies an alias for the prerequisites that makes its content available to the actor.
Each attribute that should be part of the prerequisites (i.e. the input) is stated with an attribute
element. An attribute element references an attribute in a component.
The name attribute is the name of an attribute in some component.
The component attribute is the name of the component.
The alias attribute defines a name for the attribute that makes it possible for the actor to access
this attribute separately.
The filter attribute makes it possible to specify a filter condition that dynamically determines
if the prerequisites should contain this attribute or not.
The contributor flag can be set to true if an action is only included for its side effects. If
contributor is false, the value of the attribute is not included in the result.
includePattern, excludePattern — see the corresponding explanation for group prereq-
uisites in the section called “Groups”.

Draft Components Draft

83

A products element defines the output/result of the action. An action can produce more than
one product — the actions result is a group consisting of all such products. Each product may
also be individually available as a separate “generated” attribute.
A product element is used to define a product.
The product alias makes it possible to reference the product from the actor. This is needed to
make the actor aware of where output should be placed etc.
The base is the base path for the product.
The upToDatePolicy is the same as the corresponding setting in the user interface.
The filecount defines how many files in the product that must be present to determine that
the product is up to date in relationship to the prerequisites. This value is used if the up to date
policy is COUNT or MAPPER. When used with MAPPER, the filecount value is the number of
files that must be present in addition to the mapped files. At present, a filecount field is not
available in the user interface — see Eclipse Bugzilla Bug 283937 [https://bugs.eclipse.org/bugs/
show_bug.cgi?id=283937].
The pattern is used in combination with replacement. This is however no yet implemented in
Buckminster — see Eclipse Bugzilla Bug 283938 [https://bugs.eclipse.org/bugs/show_bug.cgi?
id=283938]. The pattern/replacement are used with the MAPPER up to date policy. It is used to
map input names to output names e.g. ‘*.c’ to ‘*.o’ or similar. Expressed as regexp, this could
be expressed like this:

pattern="(.+)\.c$"replacement="$1.o"

The replacement would be applied to prerequisites paths relative to their respective bases.
replacement — see ‘pattern’ above.
A product has one or more path elements, or has one or more public elements if individually
addressable attributes are wanted (see next example).

Alternatives for path in product:

<product ...>
 <public
 name="..."
 base="..."

 path="..."
 />
 <public
 name="..."
 base="..."
 >

 <path path="..." />
 //...
 </public>
</product>

A simple group with a single path can be defined with a public element with a path
attribute. The name is the name of a created component attribute.
A group with multiple paths can be defined with a public element with multiple path
child elements. The name is the name of a created component attribute.

CSPEC XML

The XML for actions can be extended. Just like everywhere else in a CSPEX, things you want to add
are just added using the same syntax as in a CSPEC, and the things you want to alter are handled in
alter«XXX» elements.

<alterActions>

 <remove name="..." />

 <public name="..." actor="..." >

 <alterProperties>

 <remove key="..." />

 <property key="..." value="..." />
 </alterProperties>

 <alterActorProperties>

https://bugs.eclipse.org/bugs/show_bug.cgi?id=283937
https://bugs.eclipse.org/bugs/show_bug.cgi?id=283937
https://bugs.eclipse.org/bugs/show_bug.cgi?id=283937
https://bugs.eclipse.org/bugs/show_bug.cgi?id=283938
https://bugs.eclipse.org/bugs/show_bug.cgi?id=283938
https://bugs.eclipse.org/bugs/show_bug.cgi?id=283938

Draft Components Draft

84

 <remove key="..." />
 <property key="..." value="..." />
 </alterProperties>

 <alterPrerequisites
 rebase="..."
 alias="..."
 includePattern="..."
 excludePattern="..."
 >

 <remove name="..." />

 <alterAttribute
 name="..."
 component="..."
 alias="..."
 filter="..."
 contributor="..."
 />
 </alterPrerequisites>

 <alterProducts>

 <removeProduct name="..." />

 <removPath path="..." />

 <path path="..." /> // add path

 <public
 name="..."
 base="..."
 path="..."
 >

 <path path="..." /> // add path

 <removePath path="..." />
 </public>
 </alterProducts>
 </public>
</alterActions>

A remove that removes the named action.
Defines alteration of the named action, or is a new action.
Defines alteration of the action’s general properties
A defined property is removed.
A defined property is altered, or a new property is added.
Alters the actor properties (the same way as the general properties are altered).
Alters the attributes of the prerequisites — or if no attributes are stated, just indicates that alter-
ation is wanted of the content of the prerequisistes.
A prerequisite is removed.
An attribute is altered, or a new attribute is added to the prerequisites.
Specified to alter the products.
A product is removed.
A path is removed from a simple product.
A path is added to a simple product.
Alters or adds a product that defines a new attribute.
Adds a path to the enclosing attribute
Removes a path from the enclosing attribute.

Generators
The Generators tab is used to specify that the component generates other components. This is an
advanced topic — normally components do not generate other components — see sidebar.

Draft Components Draft

85

Advanced Topic — Generators

The ability to specify that one component generates others is very useful when components are
created by executing actions. A common case is when using modelling and generating code.
A component that contains the model can have actions that generates the java code, XML
Schemas, code in some other language, a client component, a server stub component, etc. As
these are all generated, they can not simply be located in some source repository, and those
component that require the generated components needs to either specify a dependency on the
component that generates what is needed as well as specifying a dependency on the generated
component, or the configuration must already have resolved the component that generates what
is required.

In addition to making it possible to work with generated components it also serves as a de-
pendency indirection mechanism. Instead of being dependant on “X looked up in the RMAP” a
dependency to a generated component becomes “X as made available by Y looked up in the
RMAP”.

As an example A → G, and X generates G, then either A → (X, G), or C → (X, G, A), in

addition to A → G, must be specified or the resolution will fail to find G.

The editor tab for editing Generators looks like this:

The Generators tab shows a list of defined generators, and buttons on the right makes it possible to
add, remove and edit entries. When a generator is added or edited, the following dialog is used:

Draft Components Draft

86

Name The name is the name of the generated component.

Attribute The name of the attribute that produces the generated compo-
nent (typically an action, or a product of an action).

Component The component is the name of the component of the attribute.
If left blank, it means the component itself.

CSPEC XML

The XML for generators looks like this:

<generators>

 <generator

 attribute="..."

 generates="...."

 component="...."
 />
 // *
</generators>

The attribute is the name of the attribute in the generating component that produces the
generated component.
The generates attribute is the name of the generated component.
The component is the name of the generating component.

CSPEX XML

The XML for generators is the same as in the CSPEC. There are no known component types that have
generators so there is simply nothing to alter.

Dependencies
The Dependencies tab is used to define the component’s dependencies on other components. The
CSPEC editor tab looks like this:

Draft Components Draft

87

The tab shows a list of dependencies with columns for component name, component type, ver-
sion/range, and filter. Buttons on the right allows adding, removing and editing entries. The dialog for
adding and editing entries looks like this:

The fields in this dialog are similar to what is entered in a CQUERY when requesting a particular com-
ponent. You can think of a dependency as requesting the presence of another component if you like.

Name and Component type. This is where you enter the name of the requested component, and
select its component type from the drop down list.

Draft Components Draft

88

Version, range and version type. In this section you can enter a version, or version range for the
component you are requesting. The drop down has entries for ==, >=, and four different ‘between’
entries (i.e. if from and to should be inclusive or not). When values for both from and to are required,
an extra field appears. If you leave version empty, the default search is for the latest available version.
See Chapter 9, Versions for more information about handling versions and version ranges.

Filter. The filter is used to specify when this dependency is valid. If you leave the field empty, the
dependency is always valid. To restrict the validity, a filter is specified using LDAP filter syntax (just
as filters are normally expressed throughout Eclipse). As an example, if the dependency is only valid
on Mac OSx you would enter target.os=macosx). See Filters for more information. .

CSPEC XML

The XML for dependencies looks like this:

<dependencies>

 <dependency

 name="..."

 componentType="..."

 versionDesignator="..."

 versionType="..."

 filter="..."
</dependencies>

Dependencies are stated in a dependencies element.
Each dependency is stated in a dependency element. Its attributes defines the dependency.
The name is the name of a component this component depends on (requires).
The componentType is the type of component required.
The versionDesignator is a version or version range defining the constraints for the required
component. See Chapter 9, Versions, for more information about how to enter versions and ver-
sion ranges.
The versionType is one of the supported version types. See Chapter 9, Versions, for informa-
tion about version types.
The filter allows specification of a filter that dynamically determines the applicability of the
dependency. See the ‘Filters reference guide’ for more information about filters.

CSPEX XML

The XML for dependencies can be extended — it looks like this:

<alterDependencies>

 <remove name="..." componentType="..." />

 <dependency />
</alterDependencies>

Dependencies are altered within an alterDependencies element.
A dependency is removed. Currently, it is not possible to specify the componentType which
makes it impossible to alter a ambiguous dependency — see Eclipse Bug 283940 [https://
bugs.eclipse.org/bugs/show_bug.cgi?id=283940].
A new dependency is added, or an existing dependency is modified (if the name and component
type match). The syntax is the same as in a CSPEC.

Automatically generated meta data
Buckminster standard configuration includes support for several component types. Such an adapter
interprets the existing meta data in its original form, and translates it into the CSPEC model. All com-
putations done on components by Buckminster are done in terms of CSPECs. The actual CSPEC data is
not persisted — it is created each time it is needed (although technically it may be cached for perfor-
mance reasons). Even if the generated CSPEC is not persisted by default, it is still possible to generate
the CSPEC in XML form for viewing, printing, or possibly for interchange with other systems.

https://bugs.eclipse.org/bugs/show_bug.cgi?id=283940
https://bugs.eclipse.org/bugs/show_bug.cgi?id=283940
https://bugs.eclipse.org/bugs/show_bug.cgi?id=283940

Draft Components Draft

89

You will find all the details in the reference guide Component Types, but here is a brief overview:

osgi.bundle This is a component type for OSGi bundles, and Eclipse plugins.

eclipse.feature This component type understands Eclipse features.

jar A component type that is a single jar file.

maven, maven2 The maven component type translates components with maven
1 meta data in a maven POM file. The maven2 component type
handles the maven 2 POM format.

buckminster A component using Buckminster’s CSPEC XML as its metadata.

bom A component of bom type is replaced by the top component in
the BOM — this takes place in the resolution process and you
will never see or interact with a component of this type.

unknown An unknown component type is for components where there
is no meta data whatsoever. The only information available is
the component name, and its version (or possibly a null-version
when a component is not versioned). An unknown component
has no dependencies.

Bookmarks

A note about bookmarks

Buckminster supports including bookmarks containing information about web pages and RSS

feeds in the component meta data since Eclipse 3.4. The mechanism is based on placing a spe-
cial buckminster.opml file inside a component. Although still supported, our current recom-
mendation is to only use this mechanism in components devised for building and publishing
purposes. See Appendix D, Bookmarks and OPML for more information.

Draft Draft

90

7
Bill of Materials (BOM)

The Bill of Materials (BOM) is an artifact containing a packing list consisting of the exact names and
versions of all the components that were resolved by a CQUERY.

The BOM, in contrast to the other Buckminster artifacts is not something you should edit. It is generated
by the resolution process, and can be used for different purposes:

• as input to the materialization process, either directly, or referenced by a MSPEC.

• as a manifesto for what was used to build a piece of software

Draft Bill of Materials (BOM) Draft

91

• as input to visualization — a simple report, or a graphic dependency view

• as input to external tools — perhaps generating technical release documentation

• as a pre-made resolution of a component in a RMAP

At this point you have probably already figured out that this is going to be a very short chapter. It is
however still useful to know what the BOM contains in principle, even if you are not going to construct
one by hand.

The BOM’s anatomy
The BOM contains the following:

• A list of all the components in the resolution

• For each component, a copy of that component’s CSPEC as it was found/generated at the time of
resolution. This means that all of the component’s dependencies, attributes etc. are available in the
BOM without further lookup.

• For each component, a reference to where it was found.

• A copy of each provider (from the RMAP) that were used to resolve an included component.

• For everything copied, all property references are replaced with the values these properties had a
the time of resolution.

• A copy of the CQUERY that was used to produce the BOM.

Warning

Since all property values are expanded and included in the BOM you must be careful with
properties that include user name and password information. They are stored in clear
text inside the BOM.

Materializing a BOM

A BOM is indirectly materialized when executing a CQUERY, or when materializing a MSPEC that ref-
erences a BOM (as described in the respective chapters covering CQUERY and MSPEC). The BOM can

also be directly materialized1 by importing it using File → Import... → Other → Buckminster →
‘Materialize a MSPEC, CQUERY or BOM’ which opens the materialization wizard (see the section called
“Materialization wizard”).

Since the BOM contains a full snapshot (taken at the time of resolution) of all information required
to materialize the components, there is no need for the materialization process to look things up in
a RMAP.

Viewing a BOM

Buckminster keeps an up to date resolution of what is currently available in a running Eclipse SDK —
in a way you can think of this a dynamic bill of materials. This set of components can be viewed in the

Buckminster Component Explorer available via Window → Show View → Other... → Buckminster →
Component Explorer, and it is also possible to see the resolution for the component that is currently
selected in the workspace in the Buckminster Component Outline View, located next to the Component
Explorer in the menu. These views however, do not show all the details in the BOM — you can however

1naturally a resolution must first have been produced and saved into a .bom file

Draft Bill of Materials (BOM) Draft

92

see the names, versions and dependencies. If you want to see all the information you have to look at
the XML directly.

There has been some exciting development lately of a graphic dependency viewer. You can read more
about this viewer in the section called “BOM visualizer”. Here is a screenshot of what the graphic
dependency visualizer looks like:

Figure 7.1. Dependency visualizer

Summary
The Bill of Materials (BOM) is an immutable Buckminster artifact that contains a snapshot of all the
information used at the time a CQUERY was resolved. When a BOM has been produced, it can be ma-
terialized many times with exactly the same result2.

A BOM can also be used as input to a resolution process as a “pre-resolved component” which is useful
in situations where a component is difficult to resolve and the details of its resolution is a concern
that should be dealt with separately from those components that require it. (See the section called
“Component types”, for more information about using a BOM in the RMAP — see section about the
bom component type).

2provided that the components artifacts are still in the same locations and are unchanged

Draft Draft

93

8
MSPEC — Materialization

Specification

An MSPEC is just that — an order to the materialization ‘delivery agency’, in-
structing it about the details of what to put where and how — or put another way,

it is like the assembly instruction you get with every flat package from IKEA.

By default (when executing a query with “Resolve and Materialize”), the materialization goes into
the workspace. By instead using “Resolve to Wizard” you can modify the materialization settings and
direct components to different locations (and types of locations). The wizard also lets you save the
materialization settings in a MSPEC file. See the section called “Materialization wizard”.

Creating a MSPEC

A MSPEC can be created by saving it in the CQUERY Materialization Wizard. This will also create a
BOM with the resulting resolution and the MSPEC will have a reference to this BOM.

You can also create a MSPEC manually, as a new XML file. Currently there is no “New File Wizard”
for MSPEC. (As an alternative copy one created by the CQUERY wizard as a starting point).

Draft MSPEC — Material-
ization Specification

Draft

94

A MSPEC should be saved in a file ending with ‘.mspec’.

Editing a MSPEC

There is no specific editor for the MSPEC artifact although the materialization wizard sort of functions
as one, so you will most likely use use a XML or text editor. Using an XML editor is preferred as a good
XML editor can be made to understand the MSPEC schema and thus validate what you write and also
aid with code completion. See the section called “Configuring Eclipse for XML Editing”.

To edit a MSPEC in the wizard, you start by importing the MSPEC as the import will start the material-
ization wizard where you can modify the content and save it (you do not have to execute the actual
materialization).

To import use either ‘File → Import... → Other → Buckminster → Materialize from Buckminster
MSPEC, CQUERY or BOM’, (or starting with the ‘Import...’ command in the context menu over a MSPEC

file), and the materialization wizard appears. You can read more about how this wizard works in the
section called “Materialization wizard”.

The MSPECModus Operandi
A MSPEC can refer to a BOM, or a CQUERY. When the MSPEC is materialized and is referring to a BOM,
it will use this information directly. When using a CQUERY, the query is first resolved and the resulting
BOM is then materialized. (The terms static-MSPEC, and BOM-MSPEC are sometimes used to denote a
MSPEC referencing a BOM, and dynamic-MSPEC, or CQUERY-MSPEC for the CQUERY case). In both the
static and dynamic case, the result is a list of components, and these are the components that can be
controlled with the MSPEC (i.e. you can not introduce an arbitrary component into the mix in the MSPEC,
the component has to have been resolved).

(The materialization wizard understands both static and dynamic MSPECs, and if the MSPEC references
a CQUERY the query is resolved as part of the process — this is very helpful as you want to make sure
you don’t have stale rules in the MSPEC as it references components by name/name patters).

The MSPEC describes default settings for the materialization (such as type of materialization, location
and handling of conflict with existing files) — these are used if a more specific rule for a component
does not state something different. The rules use a name pattern to match components and they provide
the settings to use for components that match.

MSPEC in XML

Here is a very simple MSPEC

<?xml version="1.0" encoding="UTF-8"?>

<md:mspec xmlns:md="http://www.eclipse.org/buckminster/MetaData-1.0"

 installLocation="/Users/henrik/TMP/"

 materializer="filesysteme"

 name="ExamplesForBook:1.0.0#OSGi"

 shortDesc="This is a short description"

 conflictResolution="update"

 url="book-query.cquery"
 />

This is declared to be a MSPEC using the md name space. (See Buckminster XML Schemas).
This sets the default location for the installation.

Note

If not specified, the current workspace is assumed by the workspace materializer,
for filesystem, the file will be placed in a project called ‘.buckminster’ (the

Draft MSPEC — Material-
ization Specification

Draft

95

name is configurable under Eclipse → Preferences → Buckminster → ‘Buckmin-
ster project folder’) in your workspace.

This is the materializer to use (here ‘filesystem’).

Available materializers

file system A location in your file system.

p2 This materializer is used to create a platform agnostic tar-
get platform. (This is not the same as performing a p2 in-
stall, as such an installation is always for a particular plat-
form). The location is a directory in your file system for
the p2 artifact repository. The p2 materializer essentially
performs the same task as the PDE repo2runnable ANT-
task, but with more advanced selection criteria (the Buck-
minster resolution process vs. copy entire repository).

(site.mirror) Deprecated in Eclipse 3.5. Used when materializing using
the now deprecated Update Manager. Still supported in
the editor for older artifacts.

(target platform) Deprecated in Eclipse 3.5, and is now an alias for p2 ma-
terializer. Use the p2 materializer instead. Still supported
in the editor for older artifacts.

workspace The materialization will go into a workspace. If loca-
tion and workspace fields are both empty then the current
workspace is used (this would be the normal case). If only
location is specified the materialization treats the location
as a workspace. If both location and workspace are stat-
ed, then the materialization is made to location, and the
location is linked to the stated workspace.

A materializer must be specified.
The name of the MSPEC can be declared — it is only used for human identification (and error
messages). It is required, so declare it with a name that makes sense to you (the default name you
get when creating a MSPEC with the materialization wizard is component name, version and type)
A short description used for human understanding what the node is about (optional).
The conflict resolution is specified; a choice of update, fail (it is an error if the location is
not empty), keep (use what is there, do not update), and replace (remove existing first), can
be made.
The url attribute is a reference to either a BOM or a CQUERY that defines the set of components
to materialize. (Here a CQUERY in the same location as the MSPEC is used so the URL is relative).

Using properties

It is possible to declare properties with property, or propertyElement in an mspecNode. This
gives the ability to set default values in a rule, and to override them (in a query or on the command
line, etc.) as described in Chapter 10, Properties.

Note

You have to edit the MSPEC with an XML editor to be able to define properties, as this
is not supported by the materialization wizard. There is no restriction on using property
values in he materializer wizard fields — it is only the setting of default values that is
not supported.

Draft MSPEC — Material-
ization Specification

Draft

96

Rules

The rules are very similar to the root of the MSPEC. Each rule is described with a child mspecNode.
Here is an example

<mspecNode

 namePattern="org\.demo\.server\..*"

 materializer="filesystem"

 componentType="osgi.bundle"

 resourcePath="useThisName"

 exclude="false"

 installLocation="/usr/local/server/test"

 conflictResolution="update" >

 <unpack

 expand="true" // default == true

 suffix="tar.gz" // use if type not known
 />
</mspecNode>

The namePattern is a regular expression. All components with matching names will be materi-
alized in accordance with this rule. The first found rule that matches a component is used.
The materializer to use (e.g. filesystem).
The componentType is one of the support component types (e.g. osgi.bundle,
eclipse.feature) — see the section called “Component types”.
The resourcePath is the name of the resulting file or folder (depending on what is being materi-
alized). A relative path is relative to the installLocation. This is typically used when a repository
does not provide the real file name when reading a stream. When used with unpack this is the
name for the folder into which the unpack takes place.
A component can be skipped by setting exclude to true, the default is false.
See the default setting with the same name.
An unpack element is used to specify that an element should be unpacked, and optionally also
expanded.
If expand is set to true, an unpacked artifact is also expanded. The default is true. Example: an
artifact may be in tar.gz format, and the unpack results in a .tar file, if also expanded, the
content of the tar file becomes available.
The suffix is used to specify the content format of the artifact. This is important if the repository
does not set the name of the read artifact to reflect the type. As an example, suffix could be set
to tar.gz to indicate a tar file that is then compressed with gz. The unpack can handle multiple
uncompress, e.g. ‘jar.pack.gz’ first unpacks the gz, then, the pack, and finally (if specified
with expand set to true), expands the jar.

Materializing a MSPEC

To materialize a MSPEC use either ‘File → Import... → Other → Buckminster → Materialize from
Buckminster MSPEC, CQUERY or BOM’, (or starting with the ‘Import...’ command in the context menu
over a MSPEC file). The materialization wizard appears. You can read more about how this wizard
works in the section called “Materialization wizard”.

As with most of the Buckminster actions, you can also materialize a MSPEC headlessly. See Headless
Commands.

Summary
As you have seen, the MSPEC is a quite simple concept “specify what goes where”, even if it first
appears to be a bit daunting (“Yet another type of artifact, sigh...”) and with a somewhat roundabout
way of editing (import), and using (also import).

Draft MSPEC — Material-
ization Specification

Draft

97

The MSPEC is essential if you need to direct different parts to different places, but does not have to
be used if you do not have this need.

Draft Draft

98

9
Versions

Buckminster supports versions and version ranges from different versioning schemes. If you are work-
ing with Eclipse and OSGi based components, you are probably already familiar with how they work
— and you can continue to use both versions and version ranges expressed just like they are expressed
everywhere else in the Eclipse user interface. If you however step outside of the OSGi realm, there
are many different versioning schemes in use. Buckminster’s version handling is based on the omni
version implementation found in Equinox p2.

In addition to the omni version implementation, Buckminster uses a version format naming and recog-
nition scheme that makes it easier to handle different version formats in the user interface.

If you are only developing for Eclipse and OSGi, you will still benefit from the general overview of
version and version ranges, and the handling of version qualifier substitution. If you are using Maven
you will also need to learn about how to handle these types. Finally, if you are working on extending
Buckminster, or if you want to use Buckminster in domains that use version formats that are (yet)
unnamed in Buckminster, you need to understand more about the full omni version scheme.

The really detailed implementation details are found in Appendix C, Omni Version Details.

Omni Version introduction
The omni version is a canonical format. There is only one implementation and it is capable of describ-
ing versions in a wide range of versioning schemes. There is no central registry of version formats —
each version or range instance carries the full specification. That each version carries the full definition
means that versions can be transmitted between systems without risk of not functioning because of a
missing definition. The fact that there is only one implementation means that there is no risk of not
functioning because a particular implementation is not available in a system1.

The omni version’s canonical format is called the raw format, and it is constructed by parsing an
original version string using a format. Since the raw format retains the format and original version
stings, it is possible to recreate the input.

Omni versions always compare version based using the translated raw format. This creates a strict
ordering of all versions across all versioning schemes.

1Earlier versions of Buckminster user an extension mechanism that required that a version type extension must be installed in order to parse
and use a specification using the custom version type. In practice, this made it very difficult to define extensions if these were not contributed
and accepted in the Buckminster code base. The omni version implementation in Eclipse 3.5 has solved this issue.

Draft Versions Draft

99

Example 9.1. An OSGi version expressed in raw

raw:1.0.0.'r1234'/format(n[.n=0;[.n=0;[.S=[a-zA-Z0-9_-];]]]):1.0.0.r1234

In Example 9.1, “An OSGi version expressed in raw” you can see what the OSGi version 1.0.0.r1234
looks like in raw format. Luckily, when using Buckminster, you don’t have to use such strings in your
input as you will see in the next section.

Buckminster and Omni Version
When specifying versions (and version ranges) in the various Buckminster XML based documents, the
format pattern is referred to via a defined name. When using one of the graphical editors, the version
format can be selected from a drop down list, and the original format string is entered in a separate field.

Internally Buckminster users omni versions for calculations.

New named formats can be introduced via a Buckminster extension point (see Appendix B, Extending
Buckminster). No coding is required, but the extension must be provided by a bundle.

Note

Currently, the raw format is not available as a named format. See Eclipse Bugzilla Is-
sue 282397 [https://bugs.eclipse.org/bugs/show_bug.cgi?id=282397], for status on this
issue.

You can add new named formats by extending Buckminster — see the section called “Version type”.

The new implementation in Buckminster for Eclipse 3.5 is backward compatible with respect to how
input is specified. The only notable difference is that comparisons are now made on the canonical
format and it is possible to compare versions using different formats2.

Buckminster’s named formats
Buckminster has the following named formats:

OSGi The OSGi version format on the format
major.minor.micro.qualifier where major, minor, and
micro are numeric, and qualifier is a string. Major must be spec-
ified, but minor and micro defaults to 0 if omitted. The qualifier
is optional.

Triplet A version format used by Maven, and others, which is similar
to OSGi, but where an empty qualifier compares as larger than
any qualifier.

String A single segment version using string comparison as performed
by Java String.

Timestamp A version format where the version is expressed as a timestamp
and compared in ascending order.

For more details on the rules, and how these named formats are expressed, please see Appendix C,
Omni Version Details.

Version ranges
Version ranges are expressed using the following syntax:

2This produced an error prior to Buckminster for Eclipse 3.5.

https://bugs.eclipse.org/bugs/show_bug.cgi?id=282397
https://bugs.eclipse.org/bugs/show_bug.cgi?id=282397
https://bugs.eclipse.org/bugs/show_bug.cgi?id=282397

Draft Versions Draft

100

{ '[' | '(' } «lower-bounds» [',' | «upper-bounds»] { ']' | ')' }

Description:

• The range must start with a literal [or (, and end with a literal] or).

• «lower-bounds» is a version in the specified format

• The use of [at the beginning means that the «lower-bounds» is included in the range.

• The user of (at the beginning means that the «lower-bounds» is excluded from the range such
that any v > «lower-bounds» is included.

• Similarly, a] or) at the end specifies that the «upper-bounds» is included or excluded from
the range.

• If the optional upper-bounds is not specified, the value of the «lower-bounds» is used here as
well (and in this case both ends must be inclusive).

• The range must be well formed so that «lower-bounds» <= «upper-bounds».

• A single version «x» can be used where a range is expected — this means any v >= «x»

Draft Draft

101

10
Properties

Revision History
Revision 3 July 27 , 2009 HL
Precedence table changed once again
Revision 4 July 28 , 2009 HL
Faulty use of ${{0}} in format changed to warning.

Buckminster’s property functionality consists of providing access to system properties, the ability to
declare properties, property expansion in attribute values, perform transformation of property values,
a way to protect properties from being changed, and a mechanism defining a scope for property values.

It is possible to declare and transform properties in RMAP, CQUERY, and MSPEC artifacts. More specif-
ically, the advisor nodes in a CQUERY can set property values that apply only when the advice is ac-
tivated.

There are two ways properties can be set; by using the simpler property, or the more elaborate
propertyElement.

Property expansion
Buckminster supports property expansion in almost all attribute values. A property referenced with
${«property name»} is expanded, and the expression is replaced with the value of the property
at the time of the expansion.

Advanced property expansion

If the value is also a property reference it will in turn be expanded. (A limit makes sure that property
expansion does end if there is endless recursion). This can be used in different ways — here is an
example:

<bc:propertyRef key="${aPropertyName}" />

Here, the value of the property aPropertyName will be used as the key to lookup the final value.

Warning

This however does not work:

<«element» format="/tmp/somewhere/${{0}}">
 <«function» ...>
</«element»>

This does not work because the {0} is expanded last by format.

Draft Properties Draft

102

Setting property value with “property”
Setting a property value with the element property is simple. Here is an example:

<property
 key="hatType"
 value="bandana"
 mutable="true"
/>

which sets the property hatType to the value bandana and allows the value to be overridden by
properties set in contexts of higher precedence (see the section called “Precedence”).

Using “propertyElement”
The element propertyElement1has a lot more functionality than the simpler property element. The
property value is constructed out of a concatenation of constants, the values of other properties, or
transformations applied to such values.

Here is a simple example:

<propertyElement
 key="hatType"
 mutable="true" >
 <constant value="bandana" />
</propertyElement>

As you can see, the only difference from the simpler property is that the value is defined as a child
element instead of an attribute. (The constant used in this example is just one of several functions
to use when composing the value).

Property functions
The property functions are:

Property Functions

constant Defines a constant value.

<bc:constant value="Hello" />

propertyRef Produces the value of a referenced property via name.

<bc:propertyRef key="some.property" />

toLower Concatenates the value of each child element and makes the
result lower case.

<bc:toLower>
 <bc:constant value="TAKE ME DOWN" />
</bc:toLower>

toUpper Concatenates the value of each child element and makes the
result upper case.

<bc:toUpper>
 <bc:constant value="fix me up" />
</bc:toLower>

1Admittedly, a really bad name choice for this element.

Draft Properties Draft

103

format Formats a resulting string based on a template string where pa-
rameters in the template are replaced with the values from the
enclosed child elements.

<bc:format format="I am the {0}, of this {1}">
 <bc:constant value="result" />
 <br:constant value="example" />
</bc:format>

replace Concatenates the value of each child element (except the spe-
cial match element, that optionally is used to specify a more ad-
vanced matching), and replaces the result with a template string
where matched segments can be included. Also see the section
called “Replace function”.

<bc:replace pattern="."
 quotePattern="true"
 replacement="_" >
 <bc:constant value="Make my . become _, please." />
</bc:replace>

split Concatenates the value of each child element, and splits the re-
sult based on a regular expression. The result appears as multi-
ple child elements in an enclosing element. The split function
must be placed last among the children in the enclosing ele-
ment. Also see the section called “Split function”.

<bc:format format="Easy as '{0}{1}{2}'" >
 <bc:split pattern="[0-9]*">
 <bc:constant value="a34b8c9393" />
 </bc:split>
</bc:format>

Produces Easy as 'abc'as the result.

The property functions can be nested to arbitrary depth (except constant, and propertyRef).

Replace function
The replace function as seen in the section called “Property functions” replaces matched parts in the
input with a replacement template. There are additional attributes that control the functionality, and
a more advanced matching option available.

The boolean quotePattern attribute, when set to true will automatically quote all special characters
giving them literal meaning. The default is false.

When using the replace function, either the two attributes pattern and replacement should both
be specified, or one or more match child element should be used (for more advanced matching).

The match element. A match element performs a match/replace as directed by the attributes pat-
tern, and replacement, and the pattern can be automatically quoted with quotePattern=true.

When multiple match elements are used, they are executed in the order they are defined, and the input
to the first is the (non-match-element) siblings, and the input to subsequent match elements is the
result of the preceding match.

<bc:replace>
 <bc:constant value="a.b#c-d" />
 <bc:match pattern="\." replacement="_" />
 <bc:match pattern="#" replacement="_" />
 <bc:match pattern="-" replacement="_" />
</bc:replacement>

The example produces a_b_c_d.

Draft Properties Draft

104

Split function
The split function as seen in the section called “Property functions” splits the input based on a pattern.
There are two additional attributes that control the functionality.

style This attribute can be set to quoted, unquoted or groups. The
default is unquoted.

Use quoted to automatically quote all special characters (un-
quoted requires quoting special characters if they are wanted
as literals). The groups style require that segments are used in
the pattern, and will use the matched segments as the resulting
values.

limit Limits the number of resulting elements.

Precedence
The context in which a property’s value is set defines the value’s precedence. In any given con-
text, the property value with the highest precedence will be used, unless a property value is set with
mutable="false", which makes it the highest preceding value until the end of the context where
it is defined.

The following table shows the property precedence during the materialization process (resolution,
download, bind/install/import/copy/etc.).

Table 10.1. Materialization property value precedence

Prior-
ity

Context

1 Provider/Matcher rule in RMAP

2 Advisor nodes in CQUERY (if used)

3 CQUERY

4 MSPEC node (i.e. in a matching node, if used). Does not have any effect during resolution
(materialization nodes are not matched until the end).

5 MSPEC (if used)

6 Properties file (passed on command line with -P, or set in the invoke action dialog).

7 Command Line (specified with -D«xxx»=«yyy»)

8 System Properties

9 Run/Debug Preferences — String substitution (in the IDE).

10 Target platform properties target.«*» automatically set during startup.

11 Static properties; eclipse.home, workspace.root, localhost automatically set dur-
ing startup.

12 Resource Map

As an example — if the RMAP contains the following property definition:

 <rm:property key="hatType" value="bandana" />

the CQUERY contains the definition:

 <cq:property key="hatType" value="bowler" />

and an activated advisor node contains:

 <cq:property key="hatType" value="top-hat" />

Draft Properties Draft

105

then, the value of the property when used as in ${hatType} or using an element as in

 <bc:propertyRef key="hatType" />

in a resource map will be top-hat.

Note

An exception is thrown if a property has mutable="false" set and an attempt is made
to override the value in a context with higher priority.

The precedence when component actions are invoked are the priorities 6-11 as shown earlier — but
repeated in the table below for convenience. Note that property values used during the resolution are
not remembered — that context is long gone when action are invoked.

Table 10.2. Action invocation property value precedence

Prior-
ity

Context

1 Properties file (passed on command line with -P, or set in the invoke action dialog).

2 Command Line (specified with -D«xxx»=«yyy»)

3 System Properties

4 Run/Debug Preferences — String substitution (in the IDE).

5 Target platform properties target.«*» automatically set during startup.

6 Static properties; eclipse.home, workspace.root, localhost automatically set dur-
ing startup.

Typical property use
Properties are typically used for two purposes — passing values required when communicating with
repositories such as user name and password, and to provide “routing” in the RMAP where components
are picked from different repositories based on the value of properties.

The default values are typically set in the RMAP. Advisor nodes are used in CQUERY to override the
defaults for specific components (those that match the rules in the advisor node). Properties set in the
CQUERY itself overrides all the defaults in the RMAP. This can be used to make query statements like
“I want all components to come from the milestone build repositories, except components matching
org.myorg.hack.* which should come from the nightly repositories”.

Draft Draft

106

11
Buckminster User Interface

In this chapter we describe the Buckminster user interface. Buckminster is a bit “shy” in that it does not
have much of a visual presence — you find Buckminster’s functionality in editors for the Buckminster
artifacts, in popup menus over certain objects, and in some familiar places like the New File Wizard.

Component explorer
The Buckminster component explorer provides a view of all components known to Buckminster. You
can explore all components in the workspace as well as those in the target platform.

Showing content from the target platform:

Draft Buckminster User Interface Draft

107

Note

The explorer sometimes gets out of sync with the set of available components. The col-
lection of the data can be time consuming and is not always up to date (some files can
have changed). If you do not see what you expect, simply press on the refresh button.

To open the Component Explorer click Window → Show View → Other... → Buckminster → Com-
ponent Explorer.

Component outline
The Buckminster component outline view shows the main CSPEC information known to Buckminster
for the component associated with the currently selected resource (i.e. the component for the file that
is active in an editor or view).

This is basically the same view as the Component Explorer, but for one component at a time.

You will soon notice that the component outline sometimes gets confused over what is currently se-
lected — it will then show nothing. Simply selecting the component you are interested again makes
it show up.

To open the Component Outline click Window → Show View → Other... → Buckminster → Compo-
nent Outline.

New file wizards
The Buckminster wizards for creating new files are located at File → New → Other... → Buckminster.
The dialog looks like this:

Draft Buckminster User Interface Draft

108

When using the wizard you will get help with the basic XML declarations, and in some cases a starting
template. You can naturally also create files manually.

BOM visualizer
The BOM visualizer presents a graph view of a resolution1. It is possible to explore the dependencies
and to get a detailed understanding on how all included components depend on each other. The visu-
alizer offers drill down (see only part of the resolution), see shortest path to root, or all paths, focus
on one component, and arrange the nodes using different layout algorithms. You can select if you
want to see the components picked from the target platform or not. (In the screenshot below, we did
include the platform).

The visualizer is available as an “editor” for a BOM file. So the steps you need to take are:

1. Use a CQUERY to query for the resolution you want.

2. Select “Materialize to Wizard”, and then “Save BOM” (You can then cancel the query as you only
need the resolution meta data, and not the actual components).

3. In the context menu for the created BOM file, select Open With → Dependency Visualizer.

1The visualizer was not released as part of the original Eclipse 3.5 Galileo release, but is include in the Buckminster updates for 3.5.

Draft Buckminster User Interface Draft

109

Tip

You can visualize any component in the workspace or target platform — simply enter
the component’s ID in the CQUERY editor.

Invoking actions
You can invoke Buckminster actions (i.e. trigger actions in CSPECs) from the user interface. To do

this, open the context menu for the component and select Buckminster → Invoke Action... and this
dialog appears:

The dialog shows all publicly available actionable attributes (i.e. public actions, and public groups that
include actions). You can also pass properties to the action via a properties file. This is typically the
properties file that you also use when running the same action in headless fashion. (The Buckminster
invoke action dialog will remember the path to the last used properties file, as you will see when you
open the dialog a second time).

The screenshot above is just an illustration. When you are using this with your components, you will
typically see many automatically generated actions. You can see what the automatically generated
actions do in the ‘Component Types’ reference guide.

Draft Buckminster User Interface Draft

110

Editors
Buckminster has graphical editors for CSPEC and CQUERY — these are covered in the respective chap-
ters.

Preferences

Buckminster’s preference setting are found under Eclipse → Preferences... → Buckminster. The Buck-
minster preference pane looks like this: New screenshot needed - the OPML flag is not included - but
see Bug 288359 as the preference pane may be refactored.

Site name Deprecated.

Draft Buckminster User Interface Draft

111

Buckminster project folder The name of the project where Buckminster keeps workspace
related information. Defaults to .buckminster.

Console logger level The logging level for things that log to the console.

Eclipse logger level The logging level for things that log to the Eclipse log.

Ant logger level The logging level for things that log to the ANT log.

Copy Eclipse log event to Console When checked, all events to the Eclipse log are echoed to the
console. This means that both Buckminster output and Eclipse
Events will go to the console. This makes it possible to view
them in the sequence they occur. This is useful when there are
problems with a resolution or build, as it is difficult to otherwise
correlate general problems with build problems when outputs
are separate.

Max number of parallel material-
izations

This controls how many materializations (i.e. downloads) to
run in parallel.

Connection retry count In case of a failure to connect/download other than “file not
found”, Buckminster will repeat the attempt after a delay. This
setting tells Buckminster how many times to try.

Connection retry delay (seconds) This tells Buckminster the amount of time in seconds to wait
between connection retries.

Order of resolution Buckminster supports plugging in different resolution services.
The one service that is always available is the RMAP resolution
service. You may have other such resolution services in your
IDE, in which case, you can select if they are used and in which
order they are consulted.

Resource map URL This is a default RMAP URL. If entered in the preferences, a
CQUERY without a RMAP URL will use this default.

Override URL in Component
Query

If selected, the default Resource map URL will override the URL

in any CQUERY.

Note

This is only available when running a CQUERY

from the user interface — not when running head-
less Buckminster. This means that you should on-
ly use this as a testing/troubleshooting mecha-
nism when you need to run a query with a differ-
ent RMAP.

Perform local resolution If a remote resolution service is in use (See ‘Order of resolu-
tion’ above), this setting will disable the use of any remote res-
olution.

Maximum number of resolver
threads

This controls how many parallel threads the resolution process
will use. When running into resolution problems it is useful to
set this to 1 — as this disables multi-threading. All trace out-
put will then be in sequence for the single executing thread.
This makes it much easier to read the output. Increasing the
value will have a positive effect on resolution speed when many
servers are contacted during the resolution, or when the in-

Draft Buckminster User Interface Draft

112

volved servers have high bandwidth and allow many connec-
tions from the same client.

Enable support for component
bookmarks (OPML)

When checked, Buckminster will scan for a
buckminster.opml file in the component and include the re-
sult in the resolution.

Clear URL Cache This clears Buckminster’s cache of downloaded artifacts, thus
forcing Buckminster to download them again.

Refresh Meta-data This refreshes Buckminster’s metadata. Buckminster tries to
stay in sync with the target platform and the workspace. This is
however not perfect as things can change without Buckminster
noticing (no events are generated in some cases, esp. when files
are changed via means external to Eclipse), or where things
change in such an order that Buckminster will get confused.

Restore Defaults Handy if you managed to configure yourself into trouble...

Draft Draft

113

12
Troubleshooting

In this chapter we have collected some advice regarding troubleshooting. Throughout the chapters
there are some bits of advice and warnings, but these are not as easy to find when something is indeed
wrong — and it can be hard to tell from the symptoms what is really happening.

THIS CHAPTER IS W.I.P....

Installation Issues
Here is a checklist for common issues when installing:

• Obviously, the first thing to check is that you followed the instructions on the Buckminster Down-
load page.

• Installing the 3.5 version into a 3.4 or vice versa is a really bad idea — make sure you are using
the correct update site.

• Installing the headless support into the standard Eclipse IDE will cause all sorts of problems — check
that you did not use the wrong URL from the download page by mistake.

• There are two different SVN adapters to choose from — you can not use both at the same time. If
you tried to install one and it failed — make sure you do not already have the other installed. Some
users have also been confused over which SVN client they are using — if you are uncertain check
if you are using Subclipse, or Subversive.

• Sometimes there are issues with Eclipse download site (infrequent), and sometimes there are issues
regarding mirroring and not all mirrors being up to date (or simply misbehaving). The mirror selec-
tion may be confused over your location and may send you to the least optimal server. You may
also encounter network errors.

In most cases, the issues sort themselves out — just try again a little later. But there are other things
you can do. One thing is to download the Buckminster archived site and perform a local installation.
This gives you manual control over from where you are downloading the archive.

Draft Troubleshooting Draft

114

• If you still have trouble installing — try installing into a fresh Eclipse 3.5 installation. The issues
may have nothing to do with Buckminster at all.

Headless issues
Here are some common issues encountered when running the headless buckminster.

• When nothing works, and you just get errors... The standard headless can not do much except a few
basic commands. You must install the wanted features into the headless product before it is useful.
If you forget this, you will see error messages for services and classes that can not be found. To
correct, follow the instructions in Appendix A, Installation.

• Under no circumstances is it a good idea to install the Buckminster features intended for use in the
Eclipse IDE into the headless product. Make sure you did not use the wrong URL when installing.

Resolution issues
When something is wrong it usually manifests itself as an failure to resolve a query. There are many
possible causes for a failed resolution — ranging from the trivial to fix to really hard problems. There
is naturally also a difference how to troubleshoot something not resolving for the very first time (i.e.
when you are just starting out), and when you get resolution errors for something that once worked.

In general there are two types of issues:

• Addressing issues — there is nothing wrong with the actual dependencies but the components are
not found when looking them up in the RMAP. This breaks down further into:

• RMAP issues — it does not route the lookup to the correct place.

• Repository issues — the expected content is not there.

• Dependency issues — there are erroneous/unwanted/conflicting dependencies.

When looking at a “unresolvable” issue, there is no way to know the type of problem. Here is a check
list:

• Does the unresolvable request look reasonable (i.e. does it have a reasonable name, correctly spelled,
and with a version that makes sense)? If not, then the problem is to be found in a component that has
stated a dependency in error. Use ‘materialize to wizard’ and look at the result to see the dependency
chain that leads to the unresolvable component.

• Check the RMAP route taken. You need to turn on logging and also disable parallel resolution (or
you get events from multiple threads to decipher) — this is done under Preferences the section
called “Preferences”. Run the query again, and look at the output — is it using the expected route
through the RMAP? If it is difficult to find the information due to requests for many/similarly named
components, try a simple query that just asks for the unresolved component.

• Try a wider search — create a query for the unresolved component, but open up the range, and see
what it resolves to — maybe the requested version simply does not exists.

• If you see it trying the correct RMAP route, and the data is in the repository, but it still fails, maybe
you have some mapping/formatting in the RMAP that it is wrong. Try a hacked RMAP where you use
a constant expression for the actual component, and then query for just this unresolved component
— if possible to get it when using a constant, then you know you have a faulty mapping entry in
the RMAP.

• Maybe you have issues that are specific to a reader type — if possible make a copy of the component
in your local file system and set up an entry for it in the RMAP — if this works then you know that
you have issues in the original RMAP entry for that repository.

Draft Troubleshooting Draft

115

• Maybe you are using stale information — try refreshing the meta data, and clear the Buckminster
cache. This is done under Preferences the section called “Preferences”.

Materialization issues
What are typical issues here? (Authorization obviously.)

• If you see errors for unresolved bundles for platforms other than the one you are running on, then
you are probably trying to build a RCP application (and where this build is not constrained to your
current platform), and you have forgotten to install the Eclipse Delta Pack.

Execution issues
What is typically wrong here? (Did you forget passing properties? Forgetting qualifier replacement?
ANT related issues (I recall having some that Thomas helped me sort out)?

• Where did the files go?

• Strange qualifier, or qualifiers say ‘qualifier’

Component issues
If you are having problems with components, here are some things to check:

• Buckminster currently places Eclipse products in the name space used for a component’s attributes.
You will run into trouble if you have given attributes the same name as a product it includes. The
reverse is also true (you have a product that has the same name as an automatically generated at-
tribute), but this is very unlikely as the automatically generated attribute names are quit technical.

• If you have troubles with bundles (plugins or features), check that you are using the correct meta
data format - they should have “Bundle-ManifestVersion: 2” and the meta data should show without
errors in the Eclipse manifest editor.

Draft Draft

Part III. Examples
In this part we are showing several examples, from the simple Hello World kind, to a full build of a RCP product
and p2 repository. As you probably want to run through these examples live, you should follow the instructions
in Appendix A, Installation, so you can experiment with the examples yourself.

Draft Draft

117

13
Building a p2 Update Site

In this example we will build a p2 update site for a plugin and a feature. This example is very easy
to set up from scratch so there is no source available.

This example demonstrates:

• Building a site using automatically generated actions

• Defining a category that is used by “Install new Software”

• Defining and using properties to control the Buckminster build

• Installing from a generated p2 repository

Prerequisites. In order to run this example, you need to have JDT, PDE, as well as Buckminster
installed.

Creating the content
In order to create an update site, we must naturally have something to publish to this update site.
We will create a plugin and a feature that references this plugin. The only role for the feature is to
categorize it and thus make it appear in the p2 user interface for installing new software.

Creating the plugin

Create a plugin by using File → New → Other... → Plugin Project. In the wizard that appears, give
your project the name ‘org.demo.demoplugin’, select Next in the wizard (leave all the default set-
tings) until you reach the template selection page. Select the template called ‘Plug-in with a
view’, and click Next. Change the View Name from ‘Sample View’ to differentiate it from other
samples (e.g. ‘Demoplugin View’). Click Finish, and you should get a project in your workspace.

Creating the feature

Create a feature by using File → New → Other... → Plug-in Development → Feature project. In the
wizard that appears, name the project ‘org.demo.demofeature’ and click Next. A list of available
plugins is displayed. Select the ‘org.demo.demoplugin’ and click Finish.

Creating the site feature
We need an additional feature that describes what we want to include in the update site we are going
to build. In this feature we will also categorize the content.

Draft Building a p2 Update Site Draft

118

Note

A feature that is published as an update site by Buckminster does not include itself in
the update site.

Create the site feature by using File → New → Other... → Plug-in Development → Feature project.
In the wizard that appears, name the project ‘org.demo.demosite’ and click Finish.

In the feature editor that opens, navigate to the ‘Included Features’ tab, select Add and pick
org.demo.demofeature in the pop up list that appears.

Navigate to the build.properties tab, and add the following three lines:

category.id.org.demo.democategory=Cool Features (demo)
category.members.org.demo.democategory=org.demo.demofeature
category.description.org.demo.democategory=Cool stuff build in a Buckminster demo

This defines a category called ‘org.demo.democategory’ and its label, description, and members
are defined.

Note

Don't forget to save the feature.

Building the site
Building the site is easy — everything we need is generated automatically, but we have to provide
some properties to Buckminster that defines where the output should go.

These properties can be set in a properties file, or you can set them directly in the IDE under Eclipse →
Preferences → Run/Debug → String substitution. If you want them in a properties file instead (which
is reusable when running headless) then you should create a file called ‘buckminster.properties’
in the org.demo.demosite project, with the following content:

Where all the output should go
buckminster.output.root=${user.home}/demosite

Where the temp files should go
buckminster.temp.root=${user.home}/tmp/demosite.tmp

How .qualifier in versions should be replaced
qualifier.replacement.*=generator:lastRevision

These parameters direct where output and temporary-output should go, and it defines how versions
marked as ‘qualifier’ should be handled. Here we selected to use the ‘last revision’ scheme even if
we do not yet have this because our projects are not stored in a source code repository yet. There are
many other parameters that control how the building is done, if signing and packing should take place
etc. Please see ‘description of site.p2’.

With the property file in place, we can now build the site. Right click over the org.demo.demosite

project, and select Buckminster → Invoke Action..., and (if you decided to use a properties file) in the
pop up that appears, browse for the buckminster.properties file we just created (you will need
to navigate in the file system to find the workspace, project, and then the file since the properties files
are typically placed in the file system, and not in the workspace). When the properties file has been
found and selected (alternatively set the properties using Run/Debug string substitution), select the
action called ‘site.p2’ in the list of presented actions, and click ‘Ok’. You will now see some trace
output, and if everything worked ok, you now have an update site.

Draft Building a p2 Update Site Draft

119

Using the update site
The first question is typically “where is the site?”. Remember that we set the output root to be un-
der ${user.home}, so you need to navigate to your home directory, and then to the directory de-
mosite/org.demo.demosite_1.0.0-eclipse.feature/ where you will find two directories
‘site’, and ‘site.p2’ — the first directory is a Eclipse 3.4 update site that was built as a bonus, and
the ‘site.p2’ is the p2 update site. (You will find the output for every project that was built under the
respective project name under ${user.home}/demosite, and once you are done with this example,
you probably want to remove both this and the ${user.home}/tmp/demosite directory).

You can now take the content under ‘site.p2’ and make that available as an update site by using

a web server. You can also use it directly in your Eclipse IDE to try it. To do this, go to Help →
Install New Software, and enter the URL to your just created repository (either prepend file:// to
the absolute path, or use the “Local” button to browse for the location).

You will now see the ‘Cool Features (demo)’ category, with the Demofeature as its content. Select
it, and install to run the view in your IDE. (If you do this, you probably want to uninstall it, and then
remove the update site when you are done testing)

Draft Draft

120

14
Building a Legacy Update

Site

Buckminster has support for building legacy update sites (i.e. the simpler older format using a site.xml
file). It is however recommended that p2 based update sites are used for Eclipse 3.4 and later. You
can skip this example if you are not going to produce legacy sites.

To use the support for legacy update sites, you will need to add the actions to the CSPEC used to define
the site as the support is not automatically generated by Buckminster (as it is for p2 site generation).
This example shows you how to do this step by step.

Creating the update site project
To Buckminster, an update site is not different from any other type of component. We need to keep the
definition of the update site in a project, and we need some additional meta data to enable convenient
building of the site. The first step is to create the update site project:

1. Right click in the Package Explorer and select New → Project

2. In the New Project wizard that pops up, open the Plug-in Development folder

3. Click on Update Site Project

4. Give the project a name. In this example we use org.test.update.

5. Click on Finish

The project appears in the workspace and it contains one single file, an empty site.xml. Buckminster
will use this as the update site template. This means that you can add site categories to this file but you
should not add any features. Buckminster will generate a new site.xml where the features are added.

Creating an index.html file
Just create an empty file in the root folder of your new update site project for now and call it
index.html. You can add content to this file that will be what the user will see if they happen to
access your update site with a browser.

Creating the Component Specification
Buckminster describes all components in terms of CSPECs. The update site is no exception. Here are
the steps to create such a CSPEC and enter the needed information:

1. Right click on the update site project and select New → Other

Draft Building a Legacy Update Site Draft

121

2. In the New wizard that pops up, open the Buckminster folder

3. Select Component Specification file and click on Next

4. Click on Finish to accept the default values for Container and File name

A file named buckminster.cspec is created in the project and the Buckminster CSPEC editor opens.
Do not change the name of this file.

Main information
• The name of the component is normally the same as the name of the project. This makes it easier

to find the component.

• The component type must in our case be set to buckminster.

• The version can be any OSGi compliant version such as 1.0.0

Artifacts
Artifacts denotes files and folders that are present inside of a component. The action that will create
the update site needs to know about the site.xml template and other files to copy so we need to add
that to our specification:

1. Click on the Artifacts tab

2. Click on New below the Artifacts table

3. Enter a name such as site.template

4. Click on the New button next to the Path table

5. Enter the name site.xml in the dialog that pops up and click OK

6. Click on New below the Artifacts table

7. Enter the name site.rootFiles

8. Click on the New button next to the Path table

9. Enter the name index.html in the dialog that pops up and click OK

We now have two artifacts, each with one path. The separation is necessary in this particular case since
the build action will reference the artifacs separately. An artifact may have several paths and you can
add as many files and folders as you wish to the site.rootFiles artifact.

Dependencies
We need to define the features that will be included on the update site. Buckminster considers them
to be dependencies:

1. Click on the Dependencies tab

2. For each feature that you want to add, repeat the following:

a. Click on New just next to the Dependencies table

b. Enter the name of a feature component

c. Set the Component Type to eclipse.feature

Draft Building a Legacy Update Site Draft

122

d. Click OK

Groups
The build action expects one prerequisite that lists all the feature jars and one that lists all plugin
jars. Conveniently, Buckminster has already generated CSPECs for all features with attributes that will
provide just that. A feature will always have the two public attributes:

feature.jars This is the transitive closure of all features (including the fea-
ture itself) in jared format.

bundle.jars This is all the plugins that the transitive closure of all features
is referencing in jared format.

Since we do not have a feature that describes the update site itself, we need to create two new groups.
One to group all the feature.jars, and one to group the bundle.jars.

1. Click on New just below the Groups table

2. Enter the name of the group. Call it feature.jars

3. For each feature that should be included in this group

a. Click on New just next to the prerequisites table

b. Select a feature from the drop down menu.

c. Enter the name feature.jars

d. Click OK

Repeat these steps for a group that is called bundle.jars that references the bundle.jars attribute
of each feature.

Defining site categories
This step is not required, but typically you want to categorize the contents of the update site. In order
to define a Site Category, you must first create the category in the site.xml file and then add it as
a group in the CSPEC.

In order to create a category in the site.xml file, do the following:

1. Double click on the site.xml file. The Update Site Editor opens

2. On the Site Map tab, click New Category

3. Give the category a name. In this example we will use Basic

4. Add a label such as “Basic features”

Repeat these steps and create an additional categogy named Optional with label “Optional fea-
tures”.

Back to the CSPEC editor:

1. Click on the Groups tab

2. Click on New just below the Groups table

3. Enter the name of the group, i.e. Basic

Draft Building a Legacy Update Site Draft

123

4. For each feature that should be included in this group

a. Click on New just next to the prerequisites table

b. Select a feature from the drop down menu.

c. Enter the name feature.jars

d. Click OK

Repeat these steps for the Optional group.

Attributes, Groups, and Actions are all Attributes in Buckminster terms. A group contains attributes.
Subsequently, a group can include other groups. This allows for a simplification of the feature.jars
group that we created earlier. Instead of having that group include all features, it could instead include
the two category groups, i.e. instead of having:

feature.jars
 a[feature.jars]
 b[feature.jars]
 c[feature.jars]
 d[feature.jars]

Basic
 a[feature.jars]
 b[feature.jars]

Optional
 c[feature.jars]
 d[feature.jars]

we can simplify and do:

feature.jars
 [Basic]
 [Optional]

Basic
 a[feature.jars]
 b[feature.jars]

Optional
 c[feature.jars]
 d[feature.jars]

(The example assumes that a, b, c, and d are features and [xxx] denotes attribute xxx).

If you follow the example (simplification or not), you now have four groups, Basic, Optional,
feature.jars, and bundle.jars.

The action
The final thing to add to the CSPEC is the action that will trigger the actual build of the update site.

1. Click on the Actions tab

2. Adding General action information

a. Click on New below the Actions table

b. Enter the name build.site

c. Check the Public checkbox

d. Enter the Actor Name: ant

Draft Building a Legacy Update Site Draft

124

3. Adding the site.template prerequisite

a. Click on the New button next to the Prerequisites table

b. Leave Component blank (this means current component)

c. Select site.template from the Attribute combobox

d. Enter the Alias name template

e. Click OK

4. Adding the rootFiles prerequisite

a. Click on the New button next to the Prerequisites table

b. Leave Component blank

c. Select site.rootFiles from the Attribute combobox

d. Enter the Alias name rootFiles

e. Click OK

5. Adding the features

a. Click on the New button next to the Prerequisites table

b. Leave Component blank

c. Select feature.jars from the Attribute combobox

d. Enter the Alias name features

e. Click OK

6. Adding the plugins

a. Click on the New button next to the Prerequisites table

b. Leave Component blank

c. Select bundle.jars from the Attribute combobox

d. Enter the Alias name plugins

7. Adding general properties. These properties control the general behavior.

a. In the middle pane, click on Properties

b. Click on New next to the General Properties table

c. Enter Key site.name and a value such as test.archivedsite

d. Click OK

e. If you want your site to have some extra suffix such as _incubation then:

i. Click on New next to the General Properties table

ii. Enter Key site.extra.suffix and a value such as _incubation

iii.Click OK

Draft Building a Legacy Update Site Draft

125

8. Adding actor properties. These properties control behavior specific to an actor. We need two of
them. One to specify the ant build script that will be used and another to specify what ant target
to call in that file.

a. Click on New next to the Actor Properties table

b. Enter Key buildFileId and the value buckminster.pdetasks

c. Click OK

d. Click on New again

e. Enter Key targets and the value create.legacy.site (in releases prior to 3.5 this target was
called create.site)

f. Click OK

9. Finally, we must specify the product of this action and give it an alias that it passes on to ANT.

a. Click on Products in the middle pane.

b. Enter the Product Alias action.output

c. Enter the Product Base Path site/

This concludes the CSPEC editing.

Save it using CMD-S or File → Save.

Building the site

Right-click on your project, select Buckminster → Invoke action → build.site. The output will
end up in ${user.temp}/buckminster by default. You can change this by setting the property
buckminster.output.root in a property file that you reference when you execute the action. You

can also specify properties using Eclipse → Preferences → Run/Debug → String substitution.

Draft Draft

126

15
Hello XML World

In this examples, we show how Buckminster is used to assemble two Eclipse plugin projects, a regular
Eclipse project, and a jar downloaded from a maven repository. These are all handled as components,
and one of them produces a new jar file that is required by one of the other components.

This example is called “Hello XML World” because the code consists of a ‘world provider’ that reads
a configuration of ‘worlds’ in XML and code that uses this to say ‘hello’ to one of the worlds. The
example demonstrates:

• Getting components from different repositories

• Using a downloaded jar in a component

• Using Buckminster prebind to perform actions before projects are bound to the workspace.

• Integration with ANT, to execute the prebin action, and to build the regular project.

• Using a buckminster.cspec to describe a component that is not automatically handled.

• Using a CSPEX extension to add a prebind action to an automatically generated component.

All of the source code for this examples is available in the Buckminster SVN repository and
can be viewed with a browser at this location [http://dev.eclipse.org/viewsvn/index.cgi/trunk/
org.eclipse.buckminster/demo/?root=Tools_BUCKMINSTER].

http://dev.eclipse.org/viewsvn/index.cgi/trunk/org.eclipse.buckminster/demo/?root=Tools_BUCKMINSTER
http://dev.eclipse.org/viewsvn/index.cgi/trunk/org.eclipse.buckminster/demo/?root=Tools_BUCKMINSTER
http://dev.eclipse.org/viewsvn/index.cgi/trunk/org.eclipse.buckminster/demo/?root=Tools_BUCKMINSTER

Draft Hello XML World Draft

127

Here is a diagram of this example:

Maven repo

se.tada/tada-sax
«jar»

SVN repo

org.demo.worlds
«project»

org.demo.xml.provider
«plugin»

org.demo.hello.xml.world
«plugin»

jar

builds

dependency

requires

dependency

dependency

Prerequisites. If you want to run this example in your IDE, you must have Buckminster installed as
well as support for Java, and PDE. You also need the Buckminster features for Maven and SVN installed,
and for SVN, you also need an actual SVN client installed. Please refer to Appendix A, Installation for
how to install these.

Without Buckminster
Without using Buckminster, the steps to build a functioning project requires the following:

• The three projects are checked out from Buckminster’s SVN repository. This can be done manually,
or using a team project set file.

• The three projects does not build because the jar file with the SAX parser needs to be downloaded
from a Maven repository. This is easily downloaded, but as the name of the file contains a version
number, it is best if it is renamed so that the components using it does not have to have their manifests
changed when the version is changed.

• The project still does not build, as one of the projects require a jar file that is built by one of the other
projects. This can be done with the Eclipse jar packager, (and a description is available in the project
as illustration of the manual alternative) — it however stores absolute paths, and refers to a specific
location on the initial developer’s machine. All other users must edit this file before they can build.

With Buckminster in use
To set these projects up with Buckminster, the following is needed:

• A RMAP is needed so the resources can be found. The RMAP needs to have entries for the three
projects (they are in Buckminster’s SVN repo in our example), and the component from a maven
repository.

• We need a CQUERY to be able to materialize the entire set up.

• We need some special actions to handle the building and inclusion of the SAX parser jar, and the
jar file produced by one of the projects.

Draft Hello XML World Draft

128

Once we have this set up, the configuration is very easy to materialize and build for anyone that wants
to work on the software as well as being buildable in headless fashion on a build server.

The RMAP
The RMAP for this demo looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<rmap
 xmlns="http://www.eclipse.org/buckminster/RMap-1.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:mp="http://www.eclipse.org/buckminster/MavenProvider-1.0"
 xmlns:bc="http://www.eclipse.org/buckminster/Common-1.0">

<searchPath name="default">

 <provider readerType="svn"

 componentTypes="eclipse.feature,osgi.bundle,buckminster" source="true" >

 <uri format="http://dev.eclipse.org/svnroot/tools/org.eclipse.buckminster↵
 ¬/trunk/org.eclipse.buckminster/demo/{0}">

 <bc:propertyRef key="buckminster.component" />
 </uri>
 </provider>
</searchPath>

<locator searchPathRef="default" pattern="^org\.demo\..*" />
<redirect href="http://www.eclipse.org/buckminster/samples/rmaps/dogfood.rmap"

 pattern=".*"
 />
</rmap>

This RMAP looks up all components that begins with ‘org.demo’ in the Buckminster SVN repository,
and then redirects to the Buckminster standard RMAP used when building Buckminster (see the section
called “The ‘dogfood’ RMAP”). The demo RMAP shown above is available at http://www.eclipse.org/
buckminster/samples/rmaps/demo.rmap so you don't have to type it in to run this example.

Here are some details regarding this RMAP:

We want to get projects from Buckminster’s SVN, so we use the svn reader.
We want features, bundles, and components with buckminster metadata.
We want source. (We are not asking for mutable source, as you would need to be a committer
on the buckminster project for that to be a meaningful request).
The mapping is trivial, the URI to the Buckminster SVN repository simply needs the name of the
component at the end — i.e. the parameter {0} which it gets from the nested element...
The buckminster.component property is always a reference to the component being looked
up. This is the value that goes into the uri in the format string at {0}.
This locator uses a pattern that will direct anything that starts with ‘org.demo’ to the search path
for the demo components.
If not found in the first locator, we redirect the search to the dogfood RMAP (see the section called
“The ‘dogfood’ RMAP”), which (among other things) has entries for standard Eclipse content.

The CQUERY
Now that we have a RMAP that will find the components we are interested in, we can issue queries
that materializes them.

As the query is very simple, you can just open the Buckminster query editor and simply enter three
things — the name of the component; org.demo.hello.xml.world, that is an osgi.bundle, and
the URL to the RMAP (set up in the previous section), or you can copy/paste in the following into a file
with the suffix .cquery and then open that file in Eclipse:

<?xml version="1.0" encoding="UTF-8"?>

http://www.eclipse.org/buckminster/samples/rmaps/demo.rmap
http://www.eclipse.org/buckminster/samples/rmaps/demo.rmap

Draft Hello XML World Draft

129

<cq:componentQuery
 xmlns:cq="http://www.eclipse.org/buckminster/CQuery-1.0"

 resourceMap="http://www.eclipse.org/buckminster/samples/rmaps/demo.rmap"
 >
 <cq:rootRequest

 name="org.demo.hello.xml.world"

 componentType="osgi.bundle"
 />
</cq:componentQuery>

The RMAP URL from the previous section.
The name of the top component
It is an osgi.bundle, which we state in case the name is not unique, and possibly speed up the
lookup as only osgi.bundles needs to be considered.

Now that we have the query in place, we can materialize it to our workspace (see the section
called “Materialization wizard” for more information). The result is that we get three projects in our
workspace:

• org.demo.hello.xml.world

• org.demo.xml.provider

• org.demo.worlds

You will also notice that the projects got built, and that there were no errors. If you just checked the
projects out manually (without using Buckminster), and tried to build them, you would get errors,
as things would be missing. The extra work performed by Buckminster originates from some extra
instructions put into the components’ meta data.

Running the example
Since the projects were built without errors after running the query, the sample can also be executed.
Simply run the org.demo.hello.xml.world as an Eclipse Application. When the self hosted IDE

has launched, you will find the view under Window → Show View → Other... → Sample Category →
Sample. When you open that view, it will say “Hello XML Earth World”.

How the code is structured
The org.demo.hello.xml.world is a standard Eclipse plugin with an Eclipse view that dis-
plays text. The viewer uses the classes WorldMap, and TheReader which are made available by
the org.demo.xml.provider, so a dependency is declared on this bundle. Apart from this, the
org.demo.hello.xml.world is quite uninteresting.

The org.demo.xml.provider pulls things together. It is a plugin, and it provides TheReader
class which in turns makes use of the tada XML SAX parser jar downloaded from the Maven reposi-
tory at Ibiblio. It also provides the WorldMap class which is in a jar built by the non-plugin project
org.demo.worlds.

In the following two sections we explain how the org.demo.worlds is built, and how the resulting
jar, together with the tada parser jar are handled.

org.demo.worlds
The org.demo.worlds project is an Eclipse ‘plain java’ project — so the system does not offer
any help with putting everything together, like it does when using OSGi. To manage this project as a
component we added a buckminster.cspec file where we have declared the required actions. The
component does not have any dependencies — but if that were the case, we would have declared those

Draft Hello XML World Draft

130

as well. You can explore this CSPEC in the CSPEC editor if you like, but here we show the XML for the
CSPEC, to explain how it is constructed.

<?xml version="1.0" encoding="UTF-8"?>
<cs:cspec xmlns:cs="http://www.eclipse.org/buckminster/CSpec-1.0" name="org.demo.worlds">
 <cs:artifacts>

 <cs:public name="source" path="src/"/>
 </cs:artifacts>
 <cs:actions>

 <cs:public name="java.binary.archives" actor="ant">
 <cs:actorProperties>

 <cs:property key="buildFile" value="make/build.xml"/>
 </cs:actorProperties>
 <cs:prerequisites alias="input">

 <cs:attribute name="eclipse.build"/>
 </cs:prerequisites>

 <cs:products alias="output" base="${buckminster.home}/bin/jars/">
 <cs:path path="worlds.jar"/>
 </cs:products>
 </cs:public>

 <cs:private name="eclipse.build" actor="eclipse.build">
 <cs:prerequisites>

 <cs:attribute name="source"/>
 </cs:prerequisites>

 <cs:products base="${buckminster.home}/bin/classes/">
 <cs:path path="."/>
 </cs:products>
 </cs:private>
 </cs:actions>
 <cs:groups>

 <cs:public name="java.binaries">
 <cs:attribute name="eclipse.build"/>
 </cs:public>
 </cs:groups>
</cs:cspec>

We state that this component has an attribute called ‘source’ which is a static reference to
artifacts with a relative path to where the source is inside this component. We need this reference
later wen we are going to build the source.
We state that the component has an attribute called ‘java.binary.archives’ (we picked this
name as it is also used in automatically generated components for the same purpose) and we
want this to attribute to have the value of all the jars in this component. As the jar file (there is
only one in this case) is produced by an ANT script, we declare that we want to use an ‘ant’ actor.
Here we provide actorProperties to control the ant actor. We set the buildFile to ‘make/
build.xml’. This ANT script will produce the jar, and it needs to know where the compiled
classes are, and where the resulting jar should be produced. We will (as you will see below)
declare two aliases called ‘input’ and ‘output’ to provide this. The script itself is very simple
— it looks like this:

<?xml version="1.0"?>
<project name="org.demo.worlds"> 31

 <target name="java.binary.archives"> 32

 <dirname property="output.dir" file="${sp:output}"/> 33

 <buckminster.valuefileset id="input.fileset" value="${fs:input}"/> 34
 <mkdir dir="${output.dir}"/> 35

 <jar destfile="${sp:output}"> 36

 <fileset refid="input.fileset"/> 37

 </jar>
 </target>
</project>

31 A project root element is required. The name of the projects is stated for historical reasons
— in Eclipse 3.4 it was considered an error if not stated. Has no significance in 3.5.

32 The ant target (i.e. the ant action) is named the same as the action in the component — this
is how they are linked together. (It is also possible to link the target using a targets actor
property, but we use the default here).

Draft Hello XML World Draft

131

33 We declare an ant dirname variable called ‘output.dir’ to have the value of the property
‘output’ passed from Buckminster. The ‘sp:’ prefix means we want a single path (the
‘output’ is declared to have a single path).

34 We declare a buckminster.valuefileset variable called ‘input.fileset’ (which
adapts a Buckminster path group to an ant fileset), and we set it to the value of the property
‘input’ (all the compiled classes).

35 We make sure the directory where we are going to place the resulting jar file exists by
creating it.

36 We execute the ANT jar action telling it to produce the jar file named in the buckminster
property ‘output’.

37 We provide the parameter to the jar ANT task that tells it what to include in the jar — this
is done with a reference to the earlier created ‘input.fileset’ (the compiled classes).

For details see the ‘Buckminster ANT tasks’ reference guide. Now back to the CSPEC...

We declare the prerequisites (the input) to the java.binary.archives action to be aliased
‘input’ and that this input is the value of the eclipse.build attribute (which we are declaring
further down to compile the classes and return them). As you saw in the ANT script, we used the
alias ‘input’ to access the compiled classes.
Here we declare the products (the result/output of the action — which is also the value of
the the java.binary.archives attribute). We use an alias ‘output’ so the ANT script can
access the value and actually produce the result where we want it). We only have one product,
so it is declared directly in the products element. Its base is relative to the buckminster.home
property which points to the root of the component — so we get the jar file under ‘bin/jars’
inside the project.
Here we declare an action that we call ‘eclipse.build’ — it uses the eclipse.build actor,
which is the same as running a build of the project inside the IDE. This will compile the source
into class files.
We use the ‘source’ attribute as a prerequisite (input) to the ‘eclipse.build’ action, so it
knows what to build.
We declare the products (output/result) of the action to be located relative to the component’s
root (‘buckminster.home’) under ‘bin/classes’.
To be complete, and compatible with automatically generated components, we also declare an
attribute called ‘java.binaries’ which includes all binary content produced by the component
— in this case, the classes produced by the eclipse.build action, and nothing more. (This
attribute is not actually further used in our example).

For details regarding the CSPEC syntax please refer to the appropriate section in Chapter 6, Compo-
nents.

Summary. The net result of the buckminster.cspec, and make/build.xml ant script is that
we now can get the resulting worlds.jar as an attribute called java.binary.archives in the
component org.demo.worlds — the fact that this triggers compilation of the source and production
of the jar file is not visible to the user of the component. This is exactly what we wanted. Later we
may restructure how this component is built and we can now do so with confidence.

org.demo.xml.provider
The org.demo.xml.provider project is a plugin. We chose to make it a plugin as it is then easy
to to use from the org.demo.hello.xml.world component (and other future enhancements that
wants access to worlds). We decided to use XML as the lingua franca between worlds (the messages
sent to worlds are in XML), so we need an XML parser. We decided on using a SAX parser available
in the Maven repository at Ibiblio. This, to show how to use the Maven integration, and how to make
use of a downloaded jar file inside a plugin. We also decided to let the org.demo.xml.provider
package make the worlds.jar file (we built ourselves) available to show how such an integration is
made. This also gives the opportunity to demonstrate the use of a CSPEX — extension.

As the org.demo.xml.provider is a plugin, it gets an automatically generated CSPEC, but this CSPEC

does not contain any of the extras we want (i.e. the tada SAX parser, and the worlds.jar). To integrate

Draft Hello XML World Draft

132

those, we use a CSPEX. It is quite straight forward as we only need to add things, i.e. there is no need
to alter any of the automatically generated values. This is what it looks like:

<?xml version="1.0" encoding="UTF-8"?>
<cs:cspecExtension
 xmlns:com="http://www.eclipse.org/buckminster/Common-1.0"
 xmlns:cs="http://www.eclipse.org/buckminster/CSpec-1.0">

 <cs:dependencies>
 <cs:dependency name="org.demo.worlds"/>
 <cs:dependency name="se.tada/tada-sax"
 versionDesignator="1.0.0"
 versionType="OSGi"/>
 </cs:dependencies>
 <cs:actions>

 <cs:public name="buckminster.prebind" actor="ant">
 <cs:actorProperties>

 <cs:property key="buildFile" value="make/prebind.xml" />
 </cs:actorProperties>
 <cs:prerequisites>
 <cs:attribute

 component="se.tada/tada-sax" alias="tada-sax.jar"
 name="java.binary.archives"/>
 <cs:attribute

 component="org.demo.worlds"
 alias="worlds.jar"
 name="java.binary.archives"/>
 </cs:prerequisites>
 <cs:products alias="output" base="${buckminster.home}">

 <cs:path path="jars/" />
 </cs:products>
 </cs:public>
 </cs:actions>
</cs:cspecExtension>

We add two dependencies to the component — the org.demo.worlds (because we are going
to pick the ‘worlds.jar’ from it), and se.tada/tada-sax (as we want the sax parser jar from
it). We can not add these dependencies in the plugin’s manifest as it only handles dependencies
on other plugins. (We could have done this a different way though — the packages could have
been made required, and we could have included the two jars via an additional component, but
this extra component would look very similar to what we present here).
We declare an action called buckminster.prebind to use an ant actor. The
buckminster.prebind is called automatically by Buckminster (if it exists) as part of binding
this project to the workspace. We want this action to run before the content becomes visible to
the rest of Eclipse as we need the two extra jars in the correct place before automatic building
kicks in (or we would se errors if the extra jar files are not there).
We configure the ant actor to use the ANT script ‘make/prebind.xml’
We declare the prerequisites (input) to include the se.tada/data-sax component’s at-
tribute called java.binary.archives (i.e. its jar) — we declare this with an alias of ‘ta-
da-sax.jar’ so we can use this alias in the ANT script.
We declare the prerequisites (input) to also include the worlds.jar from the
org.demo.world component’s attribute java.binary.archives, and we give it a suitable
alias (‘worlds.jar’) to be used within the ANT script.
We declare the products (the result/output) of the action to be under the component’s jars
directory, and we declare this with the alias ‘output’ so the ANT script can use this to determine
where the result should go.

The ANT script looks like this:

<?xml version="1.0"?>
<project name="project">
 <target name="buckminster.prebind">
 <mkdir dir="${sp:output}"/>
 <copy file="${sp:tada-sax.jar}" tofile="${sp:output}/tada-sax.jar"/>
 <copy file="${sp:worlds.jar}" tofile="${sp:output}/worlds.jar"/>
 </target>
</project>

Draft Hello XML World Draft

133

This simply copies the two jar files using the aliases for the jar files and output locations.

Summary. We extended the automatically generated CSPEC with additional dependencies to get the
two required jars. We also added actions to pre-bind these jars into the workspace via copy operations
performed by an ANT script.

Draft Draft

134

16
Building RCP Products

In this chapter we show an example how Buckminster is used to build a complete RCP application.
This example demonstrates:

• How to build a RCP app to a p2 update site (with very little authoring required).

• How to use a CSPEX to extend the build to also run the director to install the generated application
and turn it into a zip file.

• How to organize features and .product in a good way to make building and maintenance easy.

• Use of a “releng” project as a sharing mechanism for RMAP and CQUERY artifacts.

• Use of rules in the RMAP to provide routing to different types of builds (nightly, milestone, release,
ec.).

• How to perform a platform agnostic build — the resulting repository supports all platforms.

Prerequisites. To run this examples, you must have Buckminster installed with support for JDT and
PDE. Since the build is platform agnostic, you must have the Eclipse Delta Pack installed in your IDE.
You also need support for SVN, and a SVN client installed to get the source code from the Buckminster
SVN repository.

Conventions. In this example we have abbreviated the first part of project names — the abbreviated
‘ o.e.b ’ stands for ‘org.eclipse.buckminster’ and ‘ o.e.b.t ’ for ‘o.e.b.tutorial’. Also
abbreviated are ‘o.e’ and 'o.e.e’ for org.eclipse, and org.eclipse.equinox.

Getting the code
In this example we have used a “release engineering project” to store the Buckminster artifacts used
to set up and build the project. Such a project is useful as it serves as a starting point for developers,
but can also be used as a starting point for fully automatic builds. In this example we also used the
release engineering project to define the actual site we are building, but in a more complex project we
may be building different update sites, and would then have separated that out.

To get the code, checkout the project o.e.b.t.mailapp.releng into your workspace from
http://dev.eclipse.org/svnroot/tools/org.eclipse.buckminster.

Inside the project, there are two files of primary intrest, the developer.cquery, and the
eclipse.rmap. Double click on the developer.cquery to open up the CQUERY editor. Note that
it is a query for o.e.b.t.mailapp.product.feature which is the feature describing the product
we are building. Also, note that the query references the eclipse.rmap found in the releng project

Draft Building RCP Products Draft

135

we just checked out. Simply click on “Resolve and Materialize” to get all of the required projects into
your workspace.

Structure
Here is a diagram illustrating how the parts fit together:

o.e.b.t.mailapp
«plugin»

o.e.b.t.mailapp.product.feature
«feature»

includes

o.e.b.t.rcpp2.feature
«feature»

includes

o.e.rcp
«feature»

includes

o.e.e.executable
«feature»

includes

mailapp.product
«file»

product content

CSPEX o.e.b.t.mailapp.releng
«feature»

includes

o.e.e.p2.user.ui
«feature»

includes

org.apache.commons.logging
«plugin»

includes

Things are kicked off from o.e.b.t.mailapp.releng — which you already used to get the query
that materializes the rest. Here is a brief description of the parts and their role in the overall structure.

o.e.b.t.mailapp.releng

This feature is the “root component” which is used it to get the rest, and it serves as a cen-
tral location for some files we need when building the rest. The component is also used as the
definition of the content of the p2 repository we are building. This is done by the inclusion of
the o.e.b.t.mailapp.product.feature in the releng component's feature.xml. Since
Buckminster’s action that builds a p2 repository from a feature does not include the feature itself
in the resultingrepository, this gets us exactly what we want as we have no interest in publish-
ing the releng component itself, only what it refers to. If we wanted to we could also have put
categorization into the releng component, but we felt it was more natural to do so in the product
defining feature.

o.e.b.t.mailapp.product.feature

This feature is used to define what is included in the product. The component contains a
mailapp.product file that defines the product properties (i.e. branding, icons, splashscreen,
etc.), but we let the feature define what to include (other features and bundles) in the product
instead of the mailapp.product file — hence the reference from mailapp.product to the
feature.

The feature includes the plugins and features that should be included in the product.

o.e.b.t.mailapp

This is the plugin that contain the actual product code. It was generated by the standard “create
product wizard” using the mailapp template for a RCP application. The only difference from the
standard setup is that we moved the generated .product file to a separate feature which we use to
keep track of the product’s content (as opposed to keeping this in the .product file). Everything
else is default.

Draft Building RCP Products Draft

136

o.e.b.t.rcpp2.feature

This feature defines what is needed to make a RCP application include a p2 agent — thus making
it self maintained in terms of installing new features into the product, and to handle updates. The
integration is the simplest possible — there are many options available regarding how p2 can be
used in a RCP application but this is beyond the scope of this book.

o.e.e.p2.user.ui

This p2 feature includes all the things required to use p2 in a RCP applica-
tion (except the org.apache.commons.logging plugin which we included in the
o.e.b.t.rcpp2.feature).

o.e.rcp

Required for RCP applications.

o.e.e.executable

Required to make the RCP application launchable on multiple platforms.

The RMAP

The RMAP in this example is interesting because it shows how to define rules for picking different
components from different repositories for nightly, milestone, and release builds. Although somewhat
lengthy, it is quite simple as the different entries follow a pattern.

<property key="useBuild" value="RBUILD"/>

<searchPath name="org.eclipse.buckminster">
 <provider
 readerType="svn"
 componentTypes="osgi.bundle,eclipse.feature,buckminster"
 mutable="true" source="true">

 <uri format="http://dev.eclipse.org/svnroot/tools/org.eclipse.buckminster↵
 ¬/trunk/{0}?moduleAfterTag&moduleAfterBranch">
 <bc:propertyRef key="buckminster.component" />
 </uri>
 </provider>
</searchPath>

<searchPath name="org.eclipse.platform.NBUILD">
 <provider
 readerType="eclipse.import"
 componentTypes="osgi.bundle,eclipse.feature"
 mutable="false" source="false">

 <uri format="http://download.eclipse.org/eclipse/updates↵
 ¬/3.5-N-builds?importType=binary"/>
 </provider>
</searchPath>

<searchPath name="org.eclipse.platform.IBUILD">
 <provider
 readerType="eclipse.import"
 componentTypes="osgi.bundle,eclipse.feature"
 mutable="false" source="false">

 <uri format="http://download.eclipse.org/eclipse/updates↵
 ¬/3.5-I-builds?importType=binary"/>
 </provider>
</searchPath>

<searchPath name="org.eclipse.platform.MBUILD">
 <provider readerType="eclipse.import"
 componentTypes="osgi.bundle,eclipse.feature"
 mutable="false" source="false">

 <uri format="http://download.eclipse.org/eclipse/updates↵
 ¬/3.5milestones?importType=binary"/>
 </provider>

Draft Building RCP Products Draft

137

</searchPath>

<searchPath name="org.eclipse.platform.RBUILD">
 <provider
 readerType="eclipse.import"
 componentTypes="osgi.bundle,eclipse.feature"
 mutable="false" source="false">

 <uri format="http://download.eclipse.org/eclipse/updates↵
 ¬/3.5?importType=binary"/>
 </provider>
</searchPath>

<searchPath name="org.eclipse.galileo">
 <provider readerType="eclipse.import"
 componentTypes="osgi.bundle,eclipse.feature"
 mutable="false" source="false">

 <uri format="http://download.eclipse.org/releases↵
 ¬/galileo?importType=binary"/>
 </provider>
</searchPath>

<searchPath name="orbit">
 <provider
 readerType="eclipse.import"
 componentTypes="osgi.bundle"
 mutable="false" source="false">

 <uri format="http://download.eclipse.org/tools/orbit/downloads/drops↵ ¬/R20090529135407/updateSite?importType=binary"/>
 </provider>
</searchPath>

<locator searchPathRef="org.eclipse.buckminster"
 pattern="^org\.eclipse\.buckminster(\..+)?"/>

<locator searchPathRef="org.eclipse.platform.${useBuild}" failOnError="false" />

<locator searchPathRef="org.eclipse.galileo" failOnError="false" />

<locator searchPathRef="orbit" />

We define a default property called useBuild and set it to RBUILD. This is the value we use for
a release-build. (If this property is not set in a CQUERY or CQUERY advisor node or as a system
property, then we will get a release-build).
A search path entry for getting Buckmisnter related material from the Buckminster SVN reposi-
tory. In this example, we are getting all the tutorial components from this location.
Here we set up a path called org.eclipse.platform.NBUILD, where NBUILD stands for
nightly build. As you can see from the uri, this search path uses the 3.5 nightly repoitory.
org.eclipse.platform.IBUILD goes to 3.5 integration build repository.
org.eclipse.platform.MBUILD goes to 3.5 milestone build repository
org.eclipse.platform.RBUILD goes to 3.5 release build repository.
org.eclipse.galileo goes to the named final 3.5 Galileo release repository
orbit search path picks things from the Eclipse orbit repository. (Note that the Orbit RMAP entry
needs to be updated from time to time as the repository gets updated and given a new timestamp).
The first locator matches anything starting with org.eclipse.buckminster
This location is what makes everything work. It uses the property useBuild as part of the search
path name when routingthe search, so depending on its value (one of NBUILD, IBUILD, MBUILD,
or RBUILD) we get a different search path. We also use failOnError=false to make the search
continue if not found in the repository.
If we did not find the component in the repository designated by useBuild, we continue the
search in the galileo repository. Again, we use failOnError=false to continue the search if
the component is not found in the galileo repository.
Finally, we try to find the component in the Eclipse orbit repository.

The functionality in this RMAP was very important to us as we developed this example for EclipseCon
09. Eclipse 3.5 was not yet released, and we needed to be able to use various components from various
repositories to make things work. Now, with 3.5 being released there is no actual need to pick anything
but the released, but we thought that the RMAP also is a good example on its own.

Draft Building RCP Products Draft

138

Using ‘useBuild’
If you want to pick certain components in the resolution from a particular repository you can do so
by setting the useBuild property (to one of the values shown in the RMAP section above). To set the
value for some components, you add an advisor node in your CQUERY with a pattern that matches the
components, and then you add the useBuild property with the value you want.

In the example project, the developer.cquery has a sample entry for a fictous set of components
matched with the pattern org.eclipse.buddyproj.* — the advisor node for this pattern sets use-
Build to NBUILD to get nightly builds. (Nothing will actually happen as there are no such components,
and they are never requested — the entry is only there as an illustration).

Building the update site
Building the update site for the product is no different than building any p2 update site with
Buckminster — as shown in Chapter 13, Building a p2 Update Site. We simply need to in-
voke the action site.p2 on the o.e.b.t.mailapp.releng feature using the properties file
buckminster.properties (in the releng component) to control the build (where to place output,
if packing and signing should take place etc.).

The difference from the example in ‘Building a p2 Updte Site’ are minor:

• We use a different set of categories (obviously) — the categories are defined in
o.e.b.t.mailapp.product.feaure.

• The output is found under ${user.home}/bmtutorial.

After you built the p2 repository (invoked site.p2 on the releng component), you will findthe output at:

${user.home}/bmturorial/↵

 ¬org.eclipse.buckminster.tutorial.mailapp.product.feature_1.0.0-eclipse.feature↵
 ¬/site.p2

Installing the product
As you may remember from the introcution part of this book, there are several ways you can install
a product. In this example we will show you two ways; using the p2 installer to install from the p2
repository, and how to create a ready-to-run zip file.

Installation using the p2 installer
Although the p2 installer was created as an example how to install the Eclipse SDK itself, it is a useful
utility for installing other small applications where you are now willing to invest the time and effort
in creating a fancier installer. Since it was created to install the Eclips SDK, we do need to make some
small modifications to the installer’s configuration before it can install our mailapp.

If you want to run this part yourself, you must start by downloading the p2 installer. You will find
the installer by:

• Go to the equinox download page [http://download.eclipse.org/equinox/], and select the release you
want (if you have not other requirements, pick the 3.5 release).

• On the page that appears, scroll down to the section called ‘provisioning’ and select a p2 installer
that is suitable for your platform.

• Unzip the installer to a location of your choice — we will refer to this location as the p2 installer
location below.

http://download.eclipse.org/equinox/
http://download.eclipse.org/equinox/

Draft Building RCP Products Draft

139

Now that you have the installer, you can use it to install the Eclipse SDK itself from the Eclipse 3.5
release repository. But we are going to modify it so it installs our mailapp instead. To do this you
need to do the following:

• We need to define a set of properties that refers to our mailapp

• We need to tell the p2 installer to use these properties instead of the default (that came with the
download).

Installer properties

Create a file called mailapp_installer.properties and enter the following:

eclipse.p2.metadata=«repoLocation»
eclipse.p2.artifacts=«repoLocation»
eclipse.p2.flavor=tooling
eclipse.p2.profileName=MailappProduct
eclipse.p2.launcherName=eclipse
eclipse.p2.rootId=org.eclipse.buckminster.tutorial.mailapp.product
eclipse.p2.autoStart=false

You should replace «repoLocation» with the actual location of where the p2 repository you build
is. If your home directory is /Users/mary, then use:

file:///Users/mary/bmturorial/↵

 ¬org.eclipse.buckminster.tutorial.mailapp.product.feature_1.0.0-eclipse.feature↵
 ¬/site.p2/

As you can probably guess, what we are doing here is simply telling the p2 installer to install the in-
stallable unit (IU) called org.eclipse.buckminster.tutorial.mailapp.product, and to get
both meta data and artifacts from the p2 repository we just built. The profileName is the name of the
configuration, you may need it later to be able to install into the same configuration again — but we
are not using it further in this example. We also set the autoStart to false (as there have been issues
with the p2 installers ability to actuall start under some circumstances, but you can alter this to true,
as it may work — the idea is to be able to launch the application after it has been installed).

We are now done with the properties file.

Using the properties

To use the properties, we must alter how the p2 installer is launched as an additional command line
parameter is required. We do this by editing the p2installer.ini file. The location of this file
is platform dependent. If you are on a Mac, you need to use the Finder command Show Package
Content on the p2Installer.app, and then navigate to Content/MacOS. On other platforms, the
p2installer.ini should be in the p2 installer location directly.

You need to modify the p2installer.ini to contain the following setting:

-vmargs
-Dorg.eclipse.equinox.p2.installDescription=«properties location uri»

The «properties location uri» is naturally an URI refering to the
mailapp_installer.properties we created earlier. Depending on your platform, you may have
to use a variation on the file:// URI, e.g. if you placed the properties file in your home directory /
Users/mary, you may need to use file://localhost/Users/mary... instead of just file:///
Users/mary... You will know if you got it right when you launch the installer.

Running the installer

To run the customized installer, simply invoke it. You are prompted for the location where you want to
intall the application. You are also prompted if you want to make a stand alone or a shared installation.

Draft Building RCP Products Draft

140

Pick “stand-alone” as the sharing will setup sharing between everything installed with the p2 installer,
and you probably do not want this when running this example).

Once you have installed, you should now have the invokable mailapp in the location you specified.

Creating an installable zip
The standard way of creaing an installable zip file is to run the p2 director app to do an installation, and
then zip up the result. You can do so with the embedded director app available in every Eclipse SDK,
or you can use the stand alone directory available from Buckminster (as described in the the section
called “Installing the Headless Product”).

It is also possible to do the same using Buckminster to orchestrate the actions. We have included a
CSPEX in the o.e.b.t.mailapp.product.feature that is capable of doing both the install, and
creating the final zip. The CSPEX adds two actions; create.product, and create.product.zip.

Note

To use create.product, and create.product.zip, you must supply a set of prop-
erties for the platform you want to create the install for — i.e. the target.* properties.
The properties we used for the site.p2 build itself can not be used as they specify all
values as ‘*’ (any). This can not be used for a install — the install is always for a par-
ticular platform.

You must also first run the site.p2 action to create the repository or the repository will
only contain content for the platform you are running on and it will not be possible to
generate zips for other platforms.

To create the requird property file, simply copy the buckmisnter.properites file in the releng compo-
nent, and modify the three last lines by either removing them (which gives you an install for what you
are currently running), or set them explicetly.

The CSPEX
The CSPEX in o.e.b.t.mailapp.product feature adds two actions create.product, and
create.product.zip. It is included to enable creating a ready to run product in zip form. It does this
by invoking ANT scripts. One of the tasks — to create the zip file is already available in Buckminster so
the action an simply refer to this with a suitable set of parameters, but running the director to perform
the installation is not available as a standard task so this is supplied in the build/product.ant file.

There is nothing special in how these ant tasks are invoked from Buckminster — look at the CSPEX,
and consult the information in the Chapter 6, Components if there is something you do not understand.
Then look at the build/product.ant file and see that there is a create.product task there that gets invoked
from the CSPEX action with the same name. The rest of the product.ant file is basically a very long
list of parameters to the director app.

Draft Draft

141

17
POJO Projects

In this chapter we show examples how Buckminster can be used with Plain Old Java Objects (POJO) project —
i.e. projects that are in Java, but not in the shape of bundles, plugins, features, fragments, or Eclipse products.

Draft Draft

142

18
Non Java Projects

In this chapter we show examples how Buckminster can be used with projects that are written in other languages
than Java.

Draft Draft

143

19
RMAP Examples

This chapter contains RMAP examples. You find all Buckminster examples RMAPs at http://
www.eclipse.org/buckminster/samples/rmaps [http://www.eclipse.org/buckminster/samples/rmaps/].

The ‘dogfood’ RMAP
The so called ‘dogfood’ RMAP is the resource map that is used when building Buckminster itself. It is
available at http://www.eclipse.org/buckminster/samples/rmaps/dogfood.rmap.

Warning

Since this file is an integral part of the Buckminster release engineering, it changes from
time to time without warning. It is kept up to date for Buckminster, demo and samples,
but changes being made may not suit your needs.

<?xml version="1.0" encoding="UTF-8"?>
<!-- See copyright in original file -->

<rmap
 xmlns="http://www.eclipse.org/buckminster/RMap-1.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:mp="http://www.eclipse.org/buckminster/MavenProvider-1.0"
 xmlns:pmp="http://www.eclipse.org/buckminster/PDEMapProvider-1.0"
 xmlns:bc="http://www.eclipse.org/buckminster/Common-1.0">

<searchPath name="org.eclipse.buckminster">
 <provider readerType="svn"
 componentTypes="osgi.bundle,eclipse.feature,buckminster"
 mutable="true"
 source="true">

 <uri format="http://dev.eclipse.org/svnroot/tools/org.eclipse.buckminster/↵
 ¬trunk/{0}?moduleAfterTag&moduleAfterBranch">
 <bc:propertyRef key="buckminster.component" />
 </uri>
 </provider>
 </searchPath>

<searchPath name="org.eclipse.ecf">
 <provider readerType="eclipse.import"
 componentTypes="osgi.bundle,eclipse.feature"
 mutable="false" source="false">

 <uri format="http://download.eclipse.org/rt/ecf/2.0↵
 ¬/updateSite?importType=binary"/>
 </provider>
 <provider xsi:type="pmp:PDEMapProvider" readerType="cvs"
 componentTypes="osgi.bundle,eclipse.feature" mutable="false" source="true">

 <uri format=":pserver:anonymous@dev.eclipse.org:/cvsroot/rt,org.eclipse.ecf↵

http://www.eclipse.org/buckminster/samples/rmaps/
http://www.eclipse.org/buckminster/samples/rmaps/
http://www.eclipse.org/buckminster/samples/rmaps/
http://www.eclipse.org/buckminster/samples/rmaps/dogfood.rmap

Draft RMAP Examples Draft

144

 ¬/releng/org.eclipse.ecf.releng.maps"/>
 </provider>
</searchPath>

 <searchPath name="org.eclipse.spaces">
 <provider readerType="svn" componentTypes="osgi.bundle,eclipse.feature,buckminster"
mutable="true"
 source="true">
 <uri

 format="http://dev.eclipse.org/svnroot/technology/org.eclipse.spaces↵
 ¬/trunk/{0}?moduleAfterTag&moduleAfterBranch">
 <bc:propertyRef key="buckminster.component" />
 </uri>
 </provider>
 </searchPath>

 <searchPath name="org.eclipse.platform">
 <provider readerType="eclipse.import" componentTypes="osgi.bundle,eclipse.feature"
 mutable="false" source="false">
 <uri format="http://download.eclipse.org/eclipse/updates/3.5?importType=binary"/>
 </provider>
 </searchPath>

 <searchPath name="galileo">
 <provider readerType="eclipse.import" componentTypes="osgi.bundle,eclipse.feature"
 mutable="false" source="false">
 <uri format="http://download.eclipse.org/releases/galileo?importType=binary"/>
 </provider>
 </searchPath>

 <searchPath name="buckminster.test">
 <provider readerType="cvs" componentTypes="osgi.bundle,eclipse.feature,buckminster"
 mutable="true"
 source="true">

 <uri format=":pserver:anonymous@dev.eclipse.org:/cvsroot↵
 ¬/technology,org.eclipse.buckminster/test/{0}">
 <bc:replace pattern="^buckminster\.test\.(.+)" replacement="$1" quotePattern="false">
 <bc:propertyRef key="buckminster.component" />
 </bc:replace>
 </uri>
 </provider>
 </searchPath>

 <searchPath name="org.eclipse.dash">
 <provider readerType="cvs" componentTypes="osgi.bundle,eclipse.feature,buckminster"
 mutable="true"
 source="true">
 <uri format=":pserver:anonymous@dev.eclipse.org:/cvsroot/technology,org.eclipse.dash/{0}">
 <bc:replace pattern="^buckminster\.test\.(.+)" replacement="$1" quotePattern="false">
 <bc:propertyRef key="buckminster.component" />
 </bc:replace>
 </uri>
 </provider>
 </searchPath>

 <searchPath name="subclipse">
 <provider readerType="eclipse.import" componentTypes="osgi.bundle,eclipse.feature"
 mutable="false"
 source="true">
 <uri format="http://subclipse.tigris.org/update_1.6.x?importType=binary" />
 </provider>
 </searchPath>

 <searchPath name="svnkit">
 <provider readerType="eclipse.import" componentTypes="osgi.bundle,eclipse.feature"
 mutable="false"
 source="true">
 <uri format="http://eclipse.svnkit.com/1.3.x?importType=binary" />
 </provider>
 </searchPath>

Draft RMAP Examples Draft

145

 <searchPath name="polarion">
 <provider readerType="eclipse.import" componentTypes="osgi.bundle,eclipse.feature"
 mutable="false"
 source="true">

 <uri format="http://www.polarion.org/projects/subversive/download↵
 ¬/eclipse/2.0/update-site?importType=binary" />
 </provider>
 </searchPath>

 <searchPath name="org.eclipse.team.svn">
 <provider readerType="eclipse.import"
 componentTypes="osgi.bundle,eclipse.feature"
 mutable="false"
 source="true">

 <uri format="http://download.eclipse.org/technology/subversive/0.7↵
 ¬/update-site?importType=binary" />
 </provider>
 </searchPath>

 <searchPath name="orbit">
 <provider readerType="eclipse.import"
 componentTypes="osgi.bundle" mutable="false" source="false">

 <uri format="http://download.eclipse.org/tools/orbit/downloads↵
 ¬/drops/R20090529135407/updateSite?importType=binary"/>
 </provider>
 </searchPath>

 <searchPath name="maven">
 <provider xsi:type="mp:MavenProvider" readerType="maven2" componentTypes="maven"
 mutable="false"
 source="false">
 <uri format="http://repo1.maven.org/maven2" />
 </provider>
 </searchPath>

 <locator searchPathRef="org.eclipse.buckminster"
 pattern="^org\.eclipse\.buckminster(\..+)?" />
 <locator searchPathRef="org.eclipse.buckminster" pattern="^org\.slf4j\.extendable$" />
 <locator searchPathRef="org.eclipse.buckminster"
 pattern="^org\.eclipse\.equinox\.p2\.director\.product$" />
 <locator searchPathRef="org.eclipse.buckminster"
 pattern="^org\.eclipse\.equinox\.p2\.director\.feature$" />
 <locator searchPathRef="org.eclipse.ecf" pattern="^org\.eclipse\.ecf(\..+)?" />
 <locator searchPathRef="org.eclipse.ecf" pattern="^org\.jivesoftware\.smack$" />
 <locator searchPathRef="org.eclipse.ecf" pattern="^org\.eclipse\.bittorrent$" />
 <locator searchPathRef="org.eclipse.spaces" pattern="^org\.eclipse\.spaces(\..+)?" />
 <locator searchPathRef="org.eclipse.dash" pattern="^org\.eclipse\.dash(\..+)?" />
 <locator searchPathRef="buckminster.test" pattern="^buckminster\.test(\..+)?" />
 <locator searchPathRef="svnkit" pattern="^org\.tmatesoft\.svnkit(\..+)?" />
 <locator searchPathRef="subclipse" pattern="^org\.tigris\.subversion(\..+)?" />
 <locator searchPathRef="polarion" pattern="^org\.polarion\.team(\..+)?" />
 <locator searchPathRef="polarion" pattern="^org\.polarion\.eclipse\.team(\..+)?" />
 <locator searchPathRef="org.eclipse.team.svn"
 pattern="^org\.eclipse\.team\.svn(\..+)?$" />
 <locator searchPathRef="orbit" failOnError="false"/>
 <locator searchPathRef="galileo" failOnError="false"/>
 <locator searchPathRef="maven"/>

</rmap>

This entry references Buckminster’s SVN.
This entry gets binary ECF components from an ECF update site, and if not available there, it looks
up ECF source via a releng source map found in ECF’s CVS repository.
This entry references the spaces project’s SVN.
This entry goes to the the Eclipse 3-5 stream. It is now obsolete as the content is included in the
Galileo composite repository. The entry is not used anywhere.
This entry looks up binary components from the Galileo release.

Draft RMAP Examples Draft

146

buckminster.test — goes to technology CVS where the Buckminster project keeps some
components that are used to test the CVS integration. Only used for testing.
project dash — included in this RMAP because it contains the site-assembler used to assemble
the update site for the Ganymede release (also called Ganymatic). This is the predecessor to the
Galileo-builder used to assemble the Galileo update site.
This entry picks Subclipse SVN integration from Tigris.
This entry picks the ‘SVN Kit’ protocol for use with Subclipse from eclipse.svnkit.com.
This entry pick Subversive SVN integration from Polarion.
This entry picks the Eclipse Team SVN support from the subversive technology project at Eclipse.
This entry picks bundles from Eclipse orbit repository.
This entry picks things from the Maven repository at Ibiblio.

Draft Draft

Part IV. Reference
This part consists of all the gory details.

Draft Draft

148

Component Types
This reference guide contains detailed information about the component types supported by Buck-
minster in its standard configuration. For each type all automatically generated attributes/actions are
documented.

Conventions used

The following conventions are used in this reference guide:

Common attributes Attributes common to all types are listed in this category.

Inherited attributes Attributes common to several types have been broken out into
separate reference entries.

Abstract type A component type that can not be used on its own. Its purpose
is only to describe attributes that are shared by other component
types.

dottified Refers to the transformation of a path using slash ‘/’ as separa-
tor to a string using period/dot ‘.’ as separator.

source only, binary only Attributes marked with source only are only available when the
component is generated from source. Attributes marked with
(binary only) are only available when the component is gener-
ated from binary data.

«replaceable» A replaceable part of a name is written within guillemots « »

aggregation Denotes a physical aggregation on disk of a group (i.e. the result
of copying a group to a common location).

Common Attributes

All components have the attribute buckminster.component.self, which refers to the entire com-
ponent.

The value of the buckminster.component.self can be in one of two forms depending on if the
component is a directory or a file:

• If the component is a directory, then the base of the path group is equal to the location of the
component and the array of paths is empty.

• If the component is a file, then the base appoints the directory that contains this file and the path
array has one path which is the file relative to that base.

All components that can be materialized into a workspace can declare an action called
buckminster.prebind. This action will be called as part of the workspace materialization before
the component is bound to the workspace. Note that this action is only invoked by the workspace
materializer.

Draft Draft

149

buckminster
buckminster — component type for components that have buckminster meta data.

Synopsis

Common Attributes

buckminster.component.self

Attributes

-

Attributes
A buckminster based component has the attributes defined in the file buckminster.cspec found
in the component’s root.

Dependencies
A buckminster based component has the dependencies defined in the file buckminster.cspec found
in the component’s root.

Description
The buckminster component type is fully covered in Chapter 6, Components.

Draft Draft

150

eclipse.feature
eclipse.feature — component type for Eclipse features.

Synopsis

Common Attributes

buckminster.component.self

Inherited from PDE component type

public

buckminster.clean
build.properties (source only)
bundle.jars
manifest
product.configuration.exports

private

product.configurations
«product name»
jar.contents (source only)
raw.manifest

Public Attributes

feature.exports
feature.jars
feature.references
site.feature.exports
site.p2
site.p2.zip
site.packed
site.signed
source.bundle.jars
source.feature.jars
source.feature.references

Private Attributes

copy.features
copy.plugins
copy.subfeatures
feature.jar
site.repacked
source.feature.jar

Attributes

Public Attributes

feature.exports

A group consisting of the actions copy.features and copy.plugins

feature.jars

A group consisting of the attributes feature.jar and feature.references

feature.references

A group that aggregates the feature.references of all included features (but not self).

site.feature.exports

A group consisting of the actions copy.plugins and copy.subfeatures. This is different
from the feature.exports in that the feature itself is not included. That’s because the feature
that defines the site is not included in the site.

Draft eclipse.feature Draft

151

site.p2

An action that creates the final p2 site. It uses the internal actor p2SiteGenerator which
in turn uses the p2 publisher. The input to this action comes from the attributes mani-
fest, product.configuration.exports, site.feature.exports, site.packed, and
site.signed. Only one of the three site.«xxx» inputs will be used. Which one depends on
the settings of the properties site.pack200 and site.signing such that:

• if both are false, then site.feature.exports is used

• if site.pack200 is set, then site.packed is used regardless of setting of site.signing

• if site.signing is set and site.pack200 is not set then site.signed is used

See Description Section below for more details how to control the site.p2 action regarding
signing, packing, and category definition.

site.p2.zip

An action that zips the result of the site.p2 action into a zip with a file name that indicates
its version.

site.packed

An action that runs pack200 on all artifacts that it finds on input. The input is either
site.feature.exports or site.signed. The latter is chosen if the property site.signing
is set.

site.signed

An action that performs jar signing on all jars from its input. The input is
site.feature.exports or site.repacked. The latter is chosen if the property
site.pack200 is set.

source.bundle.jars

A grouping of the bundle.and.fragments.source attribute of all bundle dependencies.

source.feature.jars

A group that contains the source.feature.jar and source.feature.references i.e. all
source for the feature, including self.

source.feature.references

A group that aggregates the source.feature.jars attribute of all included features.

Private Attributes

copy.features

An aggregation (physical, on disk) of feature.jars and source.feature.jars.

copy.plugins

An aggregation (physical, on disk) of bundle.jars and source.bundle.jars.

copy.subfeatures

An aggregation (physical, on disk) of feature.jar, feature.references,
source.feature.jar, and source.feature.references.

feature.jar

An action that builds a feature.jar based on its input jar.contents and manifest.

site.repacked

An action that reconditions its input by running a pack200 followed by unpack200. The input
is site.feature.exports.

source.feature.jar

An action that builds a source feature jar based on its input jar.contents and
source.manifest.

Draft eclipse.feature Draft

152

Dependencies
In case the CSPEC is created from a feature.xml, the feature’s dependencies are generated from the
included features and plugins. The feature requirements (things that are not included but needed in
order to install the feature) are not subject to interpretation, and no dependencies are generated for
these.

When the CSPEC is created from a p2 IU, all required capabilities referencing capabilities in the
org.eclipse.equinox.p2.iu or osgi.bundle namespaces will cause a corresponding CSPEC

dependency to be generated. All other required capabilities are ignored.

Description
The eclipse.feature component type is automatically generated for all Eclipse features. It can
generate a CSPEC from source or binary data. When generating the CSPEC, the various meta data files
in the source, or available in the binary representation are used to create the attributes.

If the CSPEC is generated from a p2 IU, then the IU is the single source of information.

If not generated from a p2 IU, the content of the feature.xml and build.properties files are
used. The build.properties is the source for what is included in the jar (both source and binary)
and the site category definitions. The rest of the information is picked from the feature.xml

site.p2

The site.p2 action builds a p2 update site, and it can be controlled using properties.

Categorization. The site.p2 action is (in addition to handling categories in the standard
category.xml file) also capable of creating categories by interpreting entries in the feature’s
build.properties file. A category, its label, content, and description are defined by entering:

category.id.«category-id»=«category-label»

category.description.«category-id»=«short description»

category.members.«category-id»= «feature-id» [, «feature-id»...]

The «category-id» should reflect your organization to separate it from other defined categories.
The «feature-id» is the identity of a feature to include in the category. (A feature can be part of
many categories).

Default category. It is possible to use a default category which will be applied to all features that
are not part of any other specified category. The default category is defined by entering:

category.default=«category-id»

.

Translation. All category strings are subject to translation via the feature.properties (i.e. the
same way other feature strings are translated). As an example:

// in build.properties
category.description.mycategory=%MyCategoryDesc

the translation is placed in feature.properties:

MyCategoryDesc=This is the core functionality of my cool feature.

Content from feature.xml. The content from feature.xml is used as follows:

Label/Name
Defines the name of the repository.

Draft eclipse.feature Draft

153

Included Features
The features listed in Include Features become root IUs (i.e. top level installable things).

Discover Sites
Sites listed under Discovery Sites are added as site references in the created repository.

Mirrors Site
Is used as the Mirrors Site of the created repository.

Note

The feature itself is not included in the site.

Properties controlling the build. There are several properties controlling the build and site gen-
eration. These are:

buckminster.output.root

Absolute file system path where output should be generated.

buckminster.temp.root

Absolute file system path where temporary output should be placed when building.

eclipse.committer.name

The login-name of an eclipse.org committer. Is only used with the special eclipse.org signing, and
is only available to eclipse committers that have the right to run signing at eclipse.

eclipse.committer.password

The password for the eclipse.committer.name. Is only used with the special eclipse signing.

eclipse.committer.keyfile

If this property is set to the full path of a private key file, the special eclipse signing will use key
authentication and the eclipse.committer.password is not needed.

eclipse.committer.keyfile.passphrase

Optional. Only needed if the keyfile (specified with eclipse.comitter.keyfile) was created
in such a way that a passphrase is needed in order to access it.

eclipse.staging.area

Required when using eclipse signing. Each project has a staging area for builds at eclipse.org.
This area is used when performing the signing. As an example, the Buckmisnter project uses
/home/data/httpd/download-staging.priv/tools/buckminster. (This property was
earlier called just staging.area. Use of this old property is still supported, but its use is depre-
cated in favor of eclipse.staging.area as it only affects signing at eclipse.org).

local.keystore.path

An absolute file system path that refers to your personal certificate. Only used when performing
local signing. Example: /home/mary/certificates/personal.certificate

local.keystore.alias

An alias used by the local keystore. Example ‘mary’.

local.keystore.password

Password for the local keystore.

site.pack200

A boolean value controlling if pack200 should be performed. If combined with signing normal-
ization is also performed.

site.signing

A boolean value controlling if signing should be performed.

Draft eclipse.feature Draft

154

signing.type

The type of signing to use. Can be either ‘eclipse.remote’ (requires Eclipse committer cre-
dentials as well as signing privileges) or local (requires local certificate). See more information
below.

cbi.include.source

Controls generation of source features and bundles. When set to true, source bundles are generated
and included in the update site.

Warning

Source features and bundles are generated and included in the update site unless you
set this property to false. For open source projects this is typically what is wanted,
but it may not be suitable for your project.

Remote eclipse signing. If eclipse.remote signing is used, the build will package all relevant jars
in a zip file and send it to eclipse.org using scp. It will request signed by adding the transfered
material to the queue for the Eclipse signer and then await the result. Once the signing is complete, it
will be picked up and the build will continue. Although sometimes a bit slow (more then 20 minutes
is rare), the process is fully automatic and does not require any manual intervention.

Local signing. Local signing can be used by anyone interested in signing the jars that are included
in the generated site. To use this, you must create a personal certificate. This is done with the keytool
executable. You will find it in the bin catalog of your JDK. It is used as follows:

keytool -genkeypair -keystore «path to keystore file» -alias «your alias»

You will be asked for some information about name, location, and password. Enter some sane values.
Finally you will be asked to confirm the information and you are then asked if you want the same
password as for the keystore — simply hit return, you do not want an additional password.

Draft Draft

155

jar
jar — component type for a Plain Old Java Object (POJO) jar file.

Synopsis

Common Attributes

buckminster.component.self

Inherited Attributes from POJO

public

java.binary.archives
java.binary.folder
java.binaries

Attributes

-

Attributes

Public Attributes

java.binary.archives

Is a group that contains the buckminster.component.self attribute.

java.binary.folder

The attribute java.binaries will point to this instead of the java.binary.archives when
the jar is in source form. The java.binary.folder will typically appoint the bin directory
(the output of the Java compiler).

java.binaries

Is a group that contains the java.binary.archives attribute.

Dependencies
The jar component type does not support dependencies.

Description
The jar type is used for jar based components that lack additional meta data.

Note

If you have a jar component, and want additional meta data, you should turn it into a
Buckminster component by adding a buckminster.cspec to it. When doing this, you
probably also want to add the attributes that are common to all POJO components — they
are not added automatically.

Draft Draft

156

maven, maven2
maven, maven2 — component types for Maven-1 and Maven-2 based jar files.

Synopsis

Common Attributes

buckminster.component.self

Inherited Attributes from POJO

public

java.binary.archives
java.binary.folder
java.binaries

Attributes

-

Attributes

Public Attributes

java.binary.archives

Is a group that contains the buckminster.component.self attribute.

java.binary.folder

The attribute java.binaries will point to this instead of the java.binary.archives when
the jar is in source form. The java.binary.folder will typically appoint the bin directory
(the output of the Java compiler).

java.binaries

Is a group that contains the java.binary.archives attribute.

Dependencies
Dependencies in the Maven POM file(s) are transformed into dependencies in the resulting CSPEC.

Description
The maven(1), and maven2 types are used for jar based components that have maven (version 1 or
2) meta data embedded in the jar file.

Buckminster supports the resolution/materialization aspects of maven binary repositories. (In theory,
Buckminster should be able to generate a correct CSPEC from source as well since the Maven POM is
present there, but this is untested).

Draft Draft

157

osgi.bundle
osgi.bundle — component type for Eclipse plugins and OSGi bundles.

Synopsis

Common Attributes

buckminster.component.self

Inherited from PDE component type

public

buckminster.clean
build.properties (source only)
bundle.jars
manifest
product.configuration.exports

private

product.configurations
«product name»
jar.contents (source only)
raw.manifest

Public Attributes

bundle.and.fragments
bundle.and.fragments.source
bundle.jar
eclipse.build.source (source only)
java.binaries
source.bundle.jar (source only)

Private Attributes

source.manifest (source only)
bin.includes (source only)
bundle.classpath (binary only)
create.«jar name» (source only)
eclipse.build.requirements (source only)
eclipse.build, eclipse.build.output.«dottified output directory» (source only)

Attributes

Public Attributes

bundle.and.fragments

A group consisting of the bundle.jar and target.fragments.

bundle.and.fragments.source

A group consisting of the source.bundle.jar and target.fragments.source.

bundle.jar

Represents a jar containing an OSGi-bundle. For bundles in binary form, this is typically just an
artifact with a path referencing the bundle. For bundles in source form, this points to an action
that builds the jar using the predefined create.bundle.jar ANT-task with the two attributes
jar.contents and manifest as input.

eclipse.build.source (source only)
An artifact deduced from the .classpath-file that denotes where the Java source for the
eclipse.build action is to be found. In case there is more then one source folder, the artifacts
will be named eclipse.build.source_0, eclipse.build.source_1 etc.

Draft osgi.bundle Draft

158

Note

The eclipse.build.source attribute(s) is declared to be public, but should re-
ally be private.

java.binaries

For a binary bundle, this is a group containing the bundle.classpath. For a source bundle,
this is a group that includes the eclipse.build action and the java.binaries attribute of all
bundles listed as dependencies.

source.bundle.jar (source only)
An action that builds the source bundle using the predefined create.bundle.jar ANT-task
with the two attributes src.includes and source.manifest as input.

Private Attributes

source.manifest (source only)
An action that produces a manifest for a source bundle based on its input attributes manifest
and build.properties.

bin.includes (source only)
An artifact with multiple paths. Each path appoints a file or a directory denoted in the
bin.includes property of the build.properties file.

bundle.classpath (binary only)
Appoints the jar file that represents the bundle.

create.«jar name» (source only)
This action only applies to nested bundles. It describes how one of the nested jars of the bundle
is build.

eclipse.build.requirements (source only)
This is a group of all java.binaries from all dependent components. Used as prerequisite in
the eclipse.build action.

eclipse.build , eclipse.build.output.«dottified output directory» (source only)
The actions of the internal Eclipse Builder are represented in the CSPEC by the eclipse.build
action. This action uses the Eclipse Builder to build the project. The action has two prerequisite
attributes — eclipse.build.requirements and eclipse.build.source.

The .classpath file of the project is consulted to find the output folder(s) used by the Eclipse
Java Compiler. Each such folder will result in a product of the action eclipse.build.

As an example, if the .classpath file contains this entry:

<classpathentry kind="output" path="bin/classes"/>

then eclipse.build.output.bin.classes will be the name of one product produced by the
eclipse.build action.

Dependencies
Dependencies are supported. In cases where the CSPEC is generated from a p2 IU, all required capa-
bilities appointing an osgi.bundle will be transformed to a CSPEC dependency. All other required
capabilities are ignored.

When the CSPEC is not based on a p2 IU, the META-INF/MANIFEST.MF file is consulted and each
bundle listed in the the OSGi property Require-Bundle is transformed into a CSPEC dependency.

Draft osgi.bundle Draft

159

Description
The osgi.bundle component type is automatically generated for all OSGi bundles, and Eclipse plu-
gins. It can generate a CSPEC from source or binary data. When generating the CSPEC, the various meta
data files in the source, or available in the binary representation are used to create the attributes.

The META-INF/MANIFEST.MF file is the source of the generated dependencies. The .class-
path gives the eclipse.build.requirements and the outputs of the eclipse.build. The
build.properties file tells Buckminster which jars to build in case of nested components and what
to include in the built binary and source jars.

Draft Draft

160

PDE (abstract)
PDE (abstract) — abstract component having attributes shared by all PDE based component types.

Synopsis

Public Attributes

buckminster.clean
build.properties (source only)
bundle.jars
manifest
product.configuration.exports

Private Attributes

product.configurations
«product name»
jar.contents (source only)
raw.manifest

Attributes

Public Attributes

buckminster.clean

Cleans out any result from a previous build. Might be a null operation since some artifacts just
provide themselves ‘as is’, and there is never anything to clean.

build.properties (source only)
An artifact that represents the build.properties file of the feature or plug-in. It is optional
since the file from which it is generated is optional.

bundle.jars

This is an aggregation of the transitive scope of all bundle.jars. For a bundle, this is a group
that also contains the bundle.and.fragments attribute (which means that the result is actually
a listing of all bundles and fragments).

manifest

An action that updates the version qualifiers of a manifest.mf or feature.xml file according
to the version qualifiers that are in effect for the build (see the ‘buckminster.versionQualifier
ANT-task’ for information how the Buckminster version qualifier mechanism works). The input
to the manifest action are the build.properties and raw.manifest attributes.

product.configuration.exports

This is an aggregation of the transitive scope of all product.configuration.exports. It
might also contain a reference to a product.configurations attribute.

Private Attributes

product.configurations

References private «product name» artifacts.

«product name»

One attribute is generated per identified Eclipse product. (A component can have multiple .prod-
uct definitions, and they are identified by a ‘product name’ stored in the .product file).

These artifacts contain one single path each. Each path represents a .product file found in the
source.

Draft PDE (abstract) Draft

161

Warning

The name is currently not prefixed by Buckminster, and a product name may thus
conflict with another CSPEC attribute. As a consequence — do not name attributes
the same as your Eclipse based products!

jar.contents (source only)
Describes the artifacts (minus the manifest.mf) that should go into the jar that represents the
component. For a feature, this is generated as an artifact with multiple paths. Each path appoints
a file or a directory denoted in the bin.includes property of the build.properties file (i.e.
similar to a bin.includes in a bundle). For a bundle, it gets more complicated. There are two
types of bundles:

• Simple bundle. Basically a normal java jar file with a special OSGi manifest. For
this type, the jar.contents is a group consisting of the bin.includes and the
eclipse.build.output.«dottified output directory» attributes.

• Nested bundle. A java jar file with a special OSGi manifest that contains a class path that
in turn points to embedded nested jar files. All .class files reside in the nested jars. Here,
the jar.contents is a group consisting of the bin.includes attribute and then one
create.«jar name» attribute for each of the nested jar files.

raw.manifest

An artifact representing the raw manifest file (the manifest.mf or feature.xml file) that con-
tains versions that has not yet been qualified.

Dependencies
Dependency generation for PDE based components is different for the subtypes. See the respective
subtype for more information.

Description
The PDE type is abstract and should never be directly used in any Buckminster artifacts. Its only purpose
is to describe the attributes that are common to all PDE component types.

To work correctly, the meta data must use “Bundle-ManifestVersion: 2”, and be free of errors.

Draft Draft

162

POJO (abstract)
POJO (abstract) — abstract component having attributes shared by all Plain Old Java (POJO) based
component types.

Synopsis

Public Attributes

java.binary.archives
java.binary.folder
java.binaries

Private Attributes

-

Attributes

Public Attributes

java.binary.archives

Denotes the component’s export of jar files.

java.binary.folder

Denotes the component’s export of folders containing java binary artifacts (class files or re-
sources).

java.binaries

A group containing either the java.binary.archives or java.binary.folder. Typically
used when assembling class paths used as input for a compiler. Can be thought of as a format
agnostic (i.e. directory or jar) form of referencing compiled java code.

Dependencies
The POJO component type is abstract and does not specify any dependencies. Specialized types may
add support for dependencies.

Description
The POJO type is abstract and should never be directly used in any Buckminster artifacts. Its only
purpose is to describe the attributes that are common to all POJO component types.

Note

If you have a POJO component, and want additional meta data, you should turn it into
a Buckminster component by adding a buckminster.cspec. When doing this, you
probably also want to add the attributes that are common to all POJO components — they
are not added automatically.

Draft Draft

163

Actors
This reference guide contains detailed information about the actors supported by Buckminster in its
standard configuration. Actors are used in CSPEC actions. See Chapter 6, Components for more infor-
mation where actors are used.

Conventions used

The following conventions are used in this reference guide:

Actor properties A group of properties in an action called “actor properties”.

General Properties A group of properties in an action called “general properties”.

Prerequisites alias Alias assigned to prerequisites in an action. Used by actions to ref-
erence files.

Buckminster ƒ Feature When displayed under the actor name then the ƒ feature must be
installed for the actor to be available.

Action product An action’s output is called product. The product is specified as a
path group.

«replaceable» A replaceable part of a name is written within guillemots « »

Draft Draft

164

ant actor
ant actor — an actor capable of executing ANT-scripts.

Synopsis

Actor Properties

targets
[buildFile | buildFileId]

General Properties

Declared properties are passed to the ANT-script

Action Prerequisites & Action Products

All aliased action prerequisites and action product(s) are passed to the ANT-script

Actor Properties

targets

A comma separated list of ANT targets to call. By default, a target with the same name as the
action attribute is called.

Note

The order in which the targets are called is determined by the ant runtime and may
differ from the order in which they are declared in case the target has inter-depen-
dencies.

buildFile

The build file to use as input. The value should be an absolute file system path. One of buildFile
or buildFileId should be used.

buildFileId

The ID of a build file that is registered by an extension point. The Buckminster PDE bundle reg-
isters the build file buckminster.pdetasks.

General Properties

Any general properties set in the action invoking the ant actor are available in the ant-script as prop-
erties. See the section called “Access to properties”.

Description

The ant actor is capable of invoking targets in an ANT-script. Such a script is referred to as a build-file,
and a reference to the build-file to use must be passed either by using the actor property buildFile
which is an absolute file system path to an ANT build file, or via the actor property buildFileId,
which is the identity of a pre-registered build-file. The Buckminster PDE Feature adds the identity
buckminster.pdetasks, which is used by the automatically generated CSPECs for PDE based com-
ponent types. (See the ‘Component Types’ reference guide for information about the PDE component
types and the available actions). Although the buckminster.pdetasks can be used from actions
you construct, it is not considered to have a stable API, so use the automatically generated actions if
you can.

Draft ant actor Draft

165

Advanced — Reusable Build Scripts Extensions

If you are an advanced users it may be good to know that the Buckminster extension point
org.eclipse.buckminster.ant.buildScripts can be used to register additional build
identifiers in order to create reusable ANT-targets. Explaining how this is done is not within
scope for this reference guide.

Ant Runner

Buckminster uses the standard Eclipse Ant Runner to run ANT-scripts. This has several advantages:

• The process can be canceled from a normal progress monitor.

• No additional JVM is started which is faster and saves resources.

• The default javac compiler will be the one provided by Eclipse JDT.

• All ANT-tasks provided by the org.eclipse.ant.core.antTasks extension point becomes
available (There are many. Search the Eclipse Help for ‘Ant task’ to see an index).

• Properties provided by the org.eclipse.ant.core.antProperties extension point is auto-
matically available (see ‘Ant Properties’ in Eclipse Help). By default, this adds at least three prop-
erties:

eclipse.home The Eclipse installation directory (or, in a headless scenario,
the Buckminster installation directory since Buckminster is
Eclipse in this context).

eclipse.running Will always be set to true when executing an ANT-action.

buckminster.pdetasks The location of the build script provided by the Buckminster
PDE Feature. Useful if you want to reference its targets from
another script.

• Types provided by the org.eclipse.ant.core.antTypes extension point is automatically
available. The platform does not currently provide any new types but Buckminster does (as ex-
plained later).

Access to properties

An action has two kinds of properties. The actor properties that controls the actor, and the general
properties. The ant actor configures itself using the actor properties. They tell the actor where to find
the build script and what targets to execute. The actor properties are not available from within the
build script. The general properties however, are provided as normal user defined properties, just as if
you execute ANT from the command line and pass the properties using -D«xxx»=«yyy» settings. You
reach them in your ANT-script by using standard ${«name»} syntax to expand the property «name»
to its value.

Access to prerequisites and product locations

You should already be familiar with the concept that all attributes in Buckminster can be thought of
as one or several path groups where each path group has a base path and a list of zero or more paths.
You also know that when used as a prerequisite in an action, the prerequisite can be given a name (the
prerequisite alias). The same is true about the action’s product(s).

Buckminster will pass prerequisites and products as properties to ANT using the prefix ‘fs:’ before
the alias. The value of such a property is formatted as follows:

?«base»[;«path»[;«path» «...»]][?«base»[;«path»[;«path» «...»]] «...»]

Draft ant actor Draft

166

As a convenience, for the common case where the property only represents one single path, (i.e. there
is only one single path group and this path group has zero or one path), a second property is provided
for the alias with the prefix ‘sp:’ containing the single path as its value.

Usage in ANT-script

The properties passed by Buckminster can be used in ANT-scripts by using ANT-types designed for
this particular purpose. See “filesetgroup support” in the “Buckminster ANT tasks” reference guide
for how this is done.

See Also
jdt.ant actor

Draft Draft

167

copyTargetAction actor
copyTargetAction actor — an internal actor that copies fragments.
Buckminster PDE Feature

Synopsis

Actor Properties

ignored

General Properties

ignored

Action Prerequisites & Action Products

The output/product must be provided and must appoint a single directory.

Description
An actor that finds all fragments for the bundle associated with the CSPEC invoking the actor, and copies
them to the output specified by the containing action. Fragments ending with ‘.compatibility’,
‘.test’, or ‘.dummy’ are excluded from the copy.

Note

This actor is intended for internal use in the PDE build process.

Draft Draft

168

eclipse.build actor
eclipse.build actor — an actor that builds by invoking the Eclipse Build System.

Synopsis

Actor Properties

kind

General Properties

ignored

Action Prerequisites & Action Products

ignored

Actor Properties
kind

The type of build to invoke can be set to eclipse.incremental or eclipse.full. The default
if kind is not specified is eclipse.incremental.

Deprecated kinds. The following values for kind are deprecated: eclipse.auto (which
is the same as eclipse.incremental), eclipse.clean (replaced by the eclipse.clean
actor), and eclipse.build (which is the same thing as eclipse.full).

Description

Requests a build from the Eclipse Build System. Essentially the same as doing a ‘Project → Build
Project’ in the Eclipse IDE. This actor looks at the actor property kind which can be set to one of
eclipse.incremental or eclipse.full. The default is eclipse.incremental.

See Also
eclipse.clean actor

Draft Draft

169

eclipse.clean actor
eclipse.clean actor — an actor performing the same as the Eclipse IDE “clean”.

Synopsis

Actor Properties

ignored

General Properties

ignored

Action Prerequisites & Action Products

ignored

Description

Requests a clean from the Eclipse Build system. Essentially the same as doing a ‘Project → Clean...’
in the Eclipse IDE for the project associated with the CSPEC invoking this actor.

If you want to clean the entire workspace, you can do so with the command ‘Project → Clean...’ com-
mand (and select ‘Clean all projects’ in the Eclipse IDE user interface, or if you are running headless
by using the command buckminster clean on the workspace you want to clean.

Draft Draft

170

executor actor
executor actor — an actor that executes a system command using ‘exec’

Synopsis
Actor Properties

env
newenvironment
[exec | shell]
execDir
failOnError

General Properties

ignored

Action Prerequisites & Action Products

ignored

Actor Properties
env

A semicolon separated string of environment variable settings. The variables are subject to prop-
erty expansion.

newenvironment

A boolean value that if set, will make env the only environment that is provided i.e. the current
environment is not inherited.

exec

The command to execute. One of shell or exec must be specified, but not both.

shell

A shell command to execute. Will be prepended by ‘cmd.exe /C’ on Windows or ‘sh -c’ on
other platforms. One of shell or exec must be specified, but not both.

execDir

The directory to use as current for the execution. Defaults to the component’s location and if
relative, becomes relative to the component’s location.

failOnError

If set (which is the default), the actor will fail unless the exec or shell command returns a zero
exit status.

Description
This actor executes an external command (through Java Runtime.getRuntime().exec()). The
execution is controlled by the actor properties.

This makes it possible to run system commands and scripts.

Note

You can currently only pass information to the executed command/script via the env
string.

Warning

There is no special handling of escapes, special characters and quotes. You will need
to experiment to get the correct values into the env string, as well as the command line

Draft executor actor Draft

171

arguments to suit the operating system you are running on. Do not just blindly issue
dangerous commands without first making absolutely sure you are passing arguments to
the command/script the way you expect.

Draft Draft

172

fetcher actor
fetcher actor — an actor that fetches additional artifacts from an URL

Synopsis

Actor Properties

url
dir
options
login
pass

General Properties

ignored

Action Prerequisites & Action Products

ignored

Actor Properties
url

The URL to fetch.

dir

The directory where the fetched result should be stored. Defaults to the component’s location. If
relative, becomes relative to the component’s location.

options

Semicolon separated list of options controlling how to deal with the fetched archive. Can contain
uncompress, flatten, and multiple include. Example:

uncompress;flatten;include=*.cpp;include=*.c;

uncompress

Uncompresses a fetched archive. Supports archives in the following formats: .zip,
.tar.gz, .tgz, .tbz2 and .tar.bz2.

flatten

Flattens an uncompressed archive (i.e. all files are uncompressed into the same location). Has
no effect if uncompress is not also stated.

include=[-]«pattern»

Allows specification of which files to include or exclude when uncompressing. An include
has no effect if uncompress is not also stated. The «pattern» is a simplified regular ex-
pression describing which files to include. If preceded by a ‘-’ the files matched by the pat-
tern are excluded. Several include options can be used in the same options argument.

include=binaries/*;include=-*.html

The simplified regular expression handles * to mean zero or more characters, and ? to mean
one or more characters. There is no need to quote ‘.’ (it normally mens ‘any character’ in a
regexp). The pattern is also rewritten so that path separators (‘/’ or ‘\’ are changed into ‘/’).

Note

This has the effect that simple patterns using path separators, * and ? works
well, but it is not possible to use the pattern as a full regular expression. If the
name you are trying to match with a pattern that needs to include characters that

Draft fetcher actor Draft

173

are special in a regular expression, they can not be quoted if you are running on
windows as a ‘\’ is treated as a path separator.

login

The login to use (optional). Subject to property expansion.

pass

The password to use (optional). Subject to property expansion.

Warning

The password is stored in plain text. Proper care must be taken to protect a CSPEC

that contains a password string. It is recommended to pass the login/password using
system properties. When entering the login/password directly in the CSPEC, you also
need to protect any BOM files that you save as they contain copies of the CSPECs.
If you use properties however, only provider related properties are expanded when
the BOM is created (i.e. expansion of login/password properties are not saved in the
BOM).

Description
An actor capable of fetching things during a build.

Warning

Use of the fetcher actor should not be your first choice since it overlaps with provi-
sioning, and there is no support for dependency management. In some cases however,
the build itself concludes what to fetch in mysterious ways, and the fetcher becomes the
only option.

The fetcher is typically used to fetch an archive, but can be used to fetch any single file.

When fetching an archive, it can be both uncompressed, and flattened as controlled by the options
actor property.

Draft Draft

174

jarprocessor actor
jarprocessor actor — an actor capable of performing packing operation on a jar file
Buckminster PDE Feature

Synopsis

Actor Properties

ignored

General Properties

command

Action Prerequisites Aliases

jar.folder

Action Product Requirements

The action must have a single path product with a path to a directory for output.

Actor Properties

Note

Values should be passed using General Properties.

General Properties

command Should be set to repack, pack, or unpack.

Component Attributes

project.classpath

A path group containing the class path from a JDT based project.

Description

This actor is a much improved version of the p2 jarprocessor. It does not rely on external processing
and creates a minimum amount of temporary files on disk during processing (the data is streamed
between the different stages). The processor is also intelligent in that it automatically excludes jars
that do not include Java binaries (.class files) from pack200 processing and it does not gzip the
container of gzipped files. One important improvement over the p2 predecessor is that the jarpro-
cessor actor does not silently ignore errors.

The actor uses the property command which can be set to one of repack, pack, or unpack. The actor
also expect to find a prerequisite with the alias jar.folder and that the action product appoints one
single path of a directory where it can put its result.

Draft jarprocessor actor Draft

175

About Pack200

Pack200 is not a lossless compression. Packing and unpacking will produce a jar that is seman-
tically the same as the original, but class-file structures will be rearranged; the resulting jar will
not be identical to the original. However, this reordering is idempotent so a second pack-unpack
will not further change the jar.

Pack200 reduces the size of a JAR file by:

1. Merging and sorting the constant-pool data in the class files and co-locating them in the
archive.

2. Removing redundant class attributes.

3. Storing internal data structures.

4. Using delta and variable length encoding.

5. Choosing optimum coding types for secondary compression.

Signing a jar hashes the contents and stores the hash codes in the manifest. Since packing and
unpacking a jar will modify the contents, the jar must be normalized prior to signing. Normal-
izing the jar will also be referred to as repacking or conditioning the jar.

From http://wiki.eclipse.org/Pack200

See Also
http://wiki.eclipse.org/Pack200

http://wiki.eclipse.org/Pack200
http://wiki.eclipse.org/Pack200

Draft Draft

176

jdt.ant actor
jdt.ant actor — an actor capable of executing ANT-scripts with support for JDT project classpath.
Buckminster PDE Feature

Synopsis

Actor Properties

targets
buildFile
buildFileId

General Properties

Declared properties are passed to ANT-script

Action Prerequisites & Action Products

project.classpath

Actor Properties
See ant actor.

General Properties
See ant actor.

Component Attributes
In addition to the component attributes made available to the ant actor , the jdt.ant actor also
makes the following component attribute available to the ANT-script.

project.classpath

A path group containing the class path from a JDT based project.

Description
See ant actor for a description. The jdt.ant actor just adds access to the project.classpath
component attribute.

See Also
ant actor

Draft Draft

177

null actor
null actor — an actor that (for testing purposes) does nothing.

Synopsis

Actor Properties

ignored

General Properties

ignored

Action Prerequisites & Action Products

ignored

Description
The null actor does nothing. It can be used when testing and some actor should be temporarily dis-
abled in XML. The real actor can be replaced with a null actor to trigger all the prerequisites without
invoking any real actor.

See Also
simulation actor

Draft Draft

178

p2SiteGenerator actor
p2SiteGenerator actor — an actor generating a p2 (update) site
Buckminster PDE Feature

Synopsis

Actor Properties

ignored

General Properties

ignored

Action Prerequisites Aliases

site
site.definer
product.configs

Action Product Requirements

The action must have a single path product with a path to a directory for output.

Description
This actor will produce a p2 update site with co-located meta-data and artifacts. This actor expects
the the following aliased prerequisites:

site A pre built directory that contains a features/ and plugins/ sub-
directory which in turn contains the feature and bundle jar files.

site.definer A reference to a feature.xml file, or a «xxx».product file
that defines the site.

product.configs (optional) A prerequisite that lists all additional product configurations to
include on the site.

This actor also requires that the action product appoints one single path of a directory where it can
put its result.

See Also
Chapter 2, p2.

Draft Draft

179

simulation actor
simulation actor — an actor (for testing purposes), that does nothing except report progress.

Synopsis

Actor Properties

ticks

General Properties

ignored

Action Prerequisites & Action Products

ignored

Actor Properties
ticks

A delay value in milliseconds between 0 and 60000. If not specified, the default is 3000.

Description
An actor that imposes a delay by ticking on a progress monitor and logs when its finished. For testing
purposes. This actor looks at the actor property ticks which is a millisecond value that has to be
between 0 and 60000. The default is 3000.

See Also
null actor

Draft Draft

180

Buckminster ANT tasks
This reference guide describes the Buckminster features available when writing ANT scripts.

Draft Draft

181

filesetgroup support
filesetgroup support — Adds fileset-group support to ANT, and handles Buckminster path groups.

Synopsis
buckminster.filesetgroup
buckminster.valuefileset
buckminster.valuepath

buckminster.apply
buckminster.copy
buckminster.delete
buckminter.jar
buckminster.zip

Description
The properties passed by Buckminster can be used in ANT-scripts by using ANT-types designed for
this particular purpose. The Buckminster ANT-types are:

buckminster.filesetgroup As the name suggests, this is a group of ANT filesets. (Prior to
Ant 1.7, it was not possible to define such groups in ANT). This
type can be initialized from a fs:«xxx» property value.

buckminster.valuefileset An ANT fileset that can be initialized from a fs:«xxx» proper-
ty. Only the first path group in the property will be considered
in case it contains several.

buckminster.valuepath An ANT-path (which actually is several paths separated by a
path separator (i.e. more similar to a classpath then just a path).
When initialized from a fs:«xxx» property it will contain all
paths (expanded) that the property contained.

The buckminster.valuefileset and buckminster.valuepath can be used as slot-in replace-
ments wherever ANT expects a fileset or a path respectively. The buckminster.filesetgroup
however, cannot be used this way since ANT does not know what it is. ANT has several tasks that can
take a list of filesets as input and Buckminster provides extended versions of these tasks that also ac-
cepts buckminster.filesetgroups. These tasks are:

buckminster.apply Extends the ANT apply task.

buckminster.copy Extends the ANT copy task.

buckminster.delete Extends the ANT delete task.

buckminster.jar Extends the ANT apply task.

buckminster.zip Extends the ANT zip task.

This current construction handling fileset-group is subject to future improvement since the handling
of filesets in ANT has undergone a major overhaul in ANT 1.7 and now have resources that can be used
to group filesets.

Examples
This ANT-script example assumes that the action product (output) is aliased action.output and
the prerequisites (input) aliased action.requirements. It will copy everything found in the input
(relative to the path groups’ bases) into the action output.

Draft filesetgroup support Draft

182

<target name="copy.group">
 <mkdir dir="${sp:action.output}"/>
 <buckminster.copy todir="${sp:action.output}" overwrite="true">

 <buckminster.filesetgroup value="${fs:action.requirements}" />
 </buckminster.copy>
</target>

The buckminster.filesetgroup is used to adapt the input to an ANT filesetgroup.
The action.requirements is the input (a path group) which needs adaption to be used as
an ANT filesetgroup.

Draft Draft

183

buckminster.importResource
buckminster.importResource — like ants import command but for a resource provided with an optional
classpath

Synopsis
<buckminster.importResource

resource=«resource-ref»

[classpath=«antpath»]
[optional=«flag»]
/>

Description
Works similar to ANT’s import command but instead of providing a filename, a resource is provided
together with an optional classpath (defaults to the system classpath). The resource is resolved using
the Java Class Loader.

resource=«resource-ref»

A string denoting the resource.

classpath=«antpath»

An ANT path.

optional=«flag»

A boolean indicating that a missing resource is OK

optional=«flag»

If set, the output is less verbose.

Draft Draft

184

buckminster.lastTimestamp
buckminster.lastTimestamp — obtain the last timestamp from a repository location.

Synopsis
<buckminster.lastTimestamp

property=«name»

readerType=«name»

repositoryLocation=«uri»

[versionSelector=«branch--or-tag»]
[dateFormat=«fmtstring»]
[timezone=«tz-name»]
/>

Description
Uses a specific buckminster reader type to obtain the last timestamp from a repository location. The
timestamp is stored in a property.

property=«name»

The name of the property that receives the timestamp.

readerType=«name»

The name of the Buckminster reader type.

repositoryLocation=«uri»

The reader type specific URI that appoints the remote source.

versionSelector=«branch-or-tag»

A branch or tag. Default is main (i.e. HEAD/trunk, etc.). Branches are entered by simply stating
their name, and tags are entered with a leading slash ‘/’ character. The special keyword ‘main’ is
used to refer to the repositories notion of main branch (e.g. ‘trunk’ for SVN, ‘head’ for CVS, etc.).

dateFormat=«fmt-string»

The SimpleDateFormat format to use. Defaults to ISO standard “yyyy-MM-dd'T'HH:mm:ss”.

timezone=«tz-name»

The timezone to use. Defaults to “UTC”.

Draft Draft

185

buckminster.lastRevision
buckminster.lastRevision — obtain the last revision from a repository location.

Synopsis
<buckminster.lastRevision

property=«name»

readerType=«name»

{ repositoryLocation=«uri» | workingCopy=«fmtstring» }
[versionSelector=«branch--or-tag»]
[timezone=«tz-name»]
/>

Description
Uses a specific buckminster reader type to obtain the last revision from a repository location. The
revision is stored in a property.

property=«name»

The name of the property that receives the timestamp.

readerType=«name»

The name of the Buckminster reader type.

repositoryLocation=«uri»

The reader type specific URI that appoints the remote source. Only one of repositoryLocation
and workingCopy can be used.

workingCopy=«file»

A file denoting a local working copy of the source. Only one of workingCopy and reposito-
ryLocation can be used.

versionSelector=«branch-or-tag»

A branch or tag. Default is main (i.e. HEAD/trunk, etc.).

Draft Draft

186

buckminster.substitute
buckminster.substitute — performs regular expression substitution on a property.

Synopsis
<buckminster.substitute

property=«name»

pattern=«regexp»

[quotePattern=«flag»]
[replacement=«replacement-string»]
[value=«val»]
/>

Description
Performs regular expression substitution on a property.

property=«name»

The name of the property that receives the result.

pattern=«regexp»

The regular expression pattern.

quotePattern=«flag»

A boolean denoting that the pattern should be quoted. Optional and defaults to false.

replacement=«replacement-string»

A replacement string for the expression.

value=«val»

The input to the substitution. (Typically a reference to a property e.g. $someProperty).

Draft Draft

187

buckminster.versionQualifier
buckminster.versionQualifier — substitutes the ‘qualifier’ part of the fourth segment of an OSGi ver-
sion.

Synopsis
<buckminster.versionQualifier

componentName=«name»

componentType=«name»

property=«name»

[propertiesFile=«file»]
[qualifier=«value»]
[version=«version-string»]
/>

Description
Substitutes the ‘qualifier’ part of the fourth segment of an OSGi version according to environment
properties. There are currently three types of qualifier replacement strategies; lastRevision (re-
placing the qualifier with the last revision), lastModified (replacing the qualifier with a times-
tamp of the latest changed resource), and buildTimestamp (replacing the qualifier with a specified
timestamp (or the current time)). The lastRevision uses a qualifier generator that works like the
buckminster.lastRevision task (it executes the same code underneath). It will always use the
working copy. The lastModified works like the buckminster.lastTimestamp task.

Properties

The task performs substitution as directed by properties. One set of properties control strategy selection
given a component name, and one set controls the revision and timestamp formats.

Strategy selection is done by specifying properties on the format:

qualifier.replacement.«pattern» =
{ generator:lastModified | generator:lastRevsision | generator:buildTimestamp }

The «pattern» specifies with which components the specified version qualifier strategy applies. The
pattern is not a regular expression, instead it has a simplified syntax where ? means any character and
* means zero or more characters.

Controlling the version qualifier formats are done with the properties:

generator.lastRevision.format=«numberFormat»

Should be a Java MessageFormat for a number such as “r{0,number,00000}”.

generator.lastModified.format=«dateTimeFormat»

Should be a Java SimpleDateFormat such as “'v'yyyyMMdd-HHmm”.

generator.buildTimestamp.format=«dateTimeFormat»

Should be a Java SimpleDateFormat such as “'v'yyyyMMdd-HHmm”.

buckminster.build.timestamp

Used by the buildTimestamp generator. It should be a timestamp in ISO-8601 format, i.e. “yyyy-
MM-dd'T'HH:mm:ss.SSSZ” and reflect a timestamp in UTC. If the buildTimestamp generator
is used and this property is not set, the time of the perform command invokation is used as the
timestamp.

Draft buckminster.versionQualifier Draft

188

Task Attributes

The attributes are used as follows:

componentName=«name» The name of the designated component.

componentType=«name» The name of the component type of the designated component.

propertiesFile=«file» The properties file to use. Will be superimposed on top of sys-
tem properties if provided.

property=«name» The name of the property that will receive the result.

qualifier=«value» Explicit qualifier to use for the replacement (normally not
used).

version=«version-string» The version in omni version format.

versionType=«version-

type»
Deprecated, and has no effect. Must be empty or set to OSGi.

Draft Draft

189

buckminster.signatureCleaner
buckminster.signatureCleaner — removes signing from jar files so that the file can be re-packed

Synopsis
<buckminster.signatureCleaner >
[«file-set-element»]
</buckminster.signatureCleaner >

Description
Removes signing from jar files so that the file can be re-packed and re-signed. This task has no at-
tributes. Instead it uses a nested fileset as input.

Draft Draft

190

buckminster.perform
buckminster.perform — (advanced) call on Buckminster from within ANT

Synopsis
<buckminster.perform

attribute=«name»

component=«name»

[inWorkspace=«flag»]
[quiet=«flag»]
/>

Description
Warning

This is an advanced action that if used the wrong way will cause confusing results, and
can potentially deadlock. Do not use this action unless you know exactly how Buckmin-
ster and ANT works together, and you know exactly why you want this mechanism in-
stead of some other solution.

This special operation allows nested calls to Buckminster from within ANT. This is normally discour-
aged since it becomes unclear who is responsible for the orchestration, Buckminster or ANT, but may
be needed in very advanced situations. Proper care needs to be taken to not create deadlocks.

attribute=«name»

The CSPEC attribute to perform (typically an action)

component=«name»

The component containing the attribute

inWorkspace=«flag»

Advanced usage. Used for avoiding deadlocks when running workspace jobs.

quiet=«flag»

If set, the output is less verbose.

Draft Draft

191

Filters
This reference guide describes the filter mechanism used by Buckminster and Eclipse. It also contains
a reference for the system properties most commonly used in Buckminster filter expressions.

How the filters work
Buckminster uses filters to control inclusion of components (in resolutions), dependencies (in com-
ponents), and component attributes (in attribute prerequisites).

A filter is specified in an item and is used to determine if the item should be included or not in a “search
result”. The terminology is in reverse from what you may think — i.e. the filter is specified on the
item that is perceived to be “filtered out”. Further confusion arises as the filter is used to specify the
inclusion of the item (i.e. the item is included if the filter evaluates to true). An empty filter always
evaluates to true.

As an example, a component may specify a filter like (target.os=macosx) which means that it
will only accept inclusion in a search result where the context has a value for target.os that is equal
to ‘macosx’.

Filter variables
The filter operates on properties that are made available to the filter logic. In an Eclipse environment
the filter logic is given access to the system properties. Buckminster mimics the variables defined by
OSGi, but since Buckminster is system agnostic, it uses variables called “target” instead of “osgi” (e.g.
OSGi filters use osgi.os, and Buckminster filters use target.os). When Buckminster reads PDE

artifacts the filter names are translated from the osgi form to the target form.

Tip

It is possible to use any system property should you have some very special needs.

Warning

The filtering mechanism simply attempts to obtain the value for the named variable
and then use it to filter. This means that if you mistype a property name, you will
not get an error e.g. if you mistyped (target.os=macosx) and instead entered
(tagret.os=macosx) then the filter will always return false as there probably is no
tagret.os system property with a value of ‘macosx’.

In some places in the Eclipse UI, the system property names have been abbreviated (the prefix is
dropped). In some cases a user interface may also hide the fact that the entire filter expression must
be enclosed in parentheses. This makes the UI somewhat less cluttered, but has unfortunately tricked
users into entering filters without parentheses and using the abbreviated system property names in the
underlying LDAP filter strings.

Note

You should always use the full system property name; i.e. target.os, target.arch
in LDAP filter strings, and always enclose the filter expression in parentheses.

Wildcards
Buckminster handles wildcard as input. If you define a property to have the value ‘*’ any comparison
against this value in a filter expression will yield true. As an example, if you set target.os=* and
a filter specifies (target.os=macosx) the result is true).

Draft Filters Draft

192

Warning

Note that filters that use reverse logic (!(target.os=macosx)) will return false and
not be included. Such filters are however typically not used. You will get a similar ef-
fect if wildcards are used in the filter — (target.os=mac*), will also return false on
wildcard input.

Properties, types and matching (implementation)

When the filter value is compared, the comparison does not automatically default to string
comparison unless the available property is a string. Instead, a check is made if the class of the
property has a public constructor that takes a single string argument.

Consider the following:

(max.ratio=0.50)

and a property that is set like this:

props.put("max.ratio", "0.5");

Here, the comparison will be between two strings and it will yield false ("0.50" != "0.5").
If however, the property is set like this:

props.put("max.ratio", new Double(0.5));

then, the filter mechanism will detect that the class of the provided value has a constructor that
takes a string argument.

Consequently, the filter will coerce its own value prior to the comparison i.e. something equiv-
alent to this:

if(new Double("0.50").equals(props.get("max.ratio")))

and that comparison will yield true.

Eclipse (and Buckminster) uses this by replacing all occurrences of the ‘*’ string with a
MatchAll value in the property set prior to evaluating a filter. The MatchAll has a string con-
structor and it will answer true to all calls to equal. This means that if you specify that your
target.os is ‘*’ in your CQUERY or in properties provided during a call to perform, then
a subsequent evaluation of a filter like target.os=x86 (or any other value) will yield true.
The coercion mechanism does not apply when the declared filter value contains ‘*’ characters
(a.k.a. as a substring filter). A substring filter will yield false when compared to anything but a
string. No coercion takes place. A side effect of this is that any substring filter will yield false
when compared to the ‘*’ input since the MatchAll is not a string.

LDAP Filters
The syntax of a filter string is the string representation of LDAP search filters as defined in RFC 1960:
A String Representation of LDAP Search Filters (available at http://www.ietf.org/rfc/rfc1960.txt). It
should be noted that RFC 2254: A String Representation of LDAP Search Filters (available at http://
www.ietf.org/rfc/rfc2254.txt) supersedes RFC 1960 but only adds extensible matching and is not ap-
plicable for the implementation of filter used in the OSGi Framework API.

Here is an the syntax described in (a variant of) BNF:

 filter ::= '(' filtercomp ')'
 filtercomp ::= and | or | not | item
 and ::= '&' filterlist
 or ::= '|' filterlist
 not ::= '!' filter

Draft Filters Draft

193

 filterlist ::= filter | filter filterlist
 item ::= simple | present | substring
 simple ::= attr filtertype value
 filtertype ::= equal | approx | greater | less
 equal ::= '='
 approx ::= '~='
 greater ::= '>='
 less ::= '<='
 present ::= attr '=*'
 substring ::= attr '=' initial any final
 initial ::= NULL | value
 any ::= '*' starval
 starval ::= NULL | value '*' starval
 final ::= NULL | value

The attr is the name of the value — i.e. it is a string representing an attribute, or key, in the properties
objects of the services registered in the OSGi Framework. Attribute names are not case sensitive; that
is, cn and CN both refer to the same attribute. The attr should contain no spaces though white space
is allowed between the initial parenthesis ‘(’ and the start of the key, and between the end of the key
and the equal sign ‘=’. The value is a string representing the value, or part of one, of a key in the
properties objects of the registered services. If a value must contain one of the characters ‘*’ or ‘(' or
‘)’, these characters should be escaped by preceding them with the backslash ‘\’ character. Spaces are
significant in value. Space characters are defined by java.lang.Character.isWhiteSpace().
Note that although both the substring and present productions can produce the ‘attr=*’ con-
struct; this construct is used only to denote a presence filter (i.e. that the attr is set to some value).

Consult the javadoc for the org.osgi.framework.Filter Interface for more information.

Note

There is no ‘not equal’ operator. To express a != x, you have to write (!(a=x))

Draft Draft

194

target.arch
target.arch — filter on CPU architecture.

Synopsis
x86
PA_RISC
ppc
sparc
x86_64
ia64
ia64_32
win32

Description
The target.arch property is used to specify the CPU architecture.

The values listed in the Synopsis are the values for CPU architecture defined and used in Eclipse. If
you are using Eclipse/Buckminster to build for other architectures you can use other values.

Draft Draft

195

target.os
target.os — filter on operating system.

Synopsis
win32
linux
aix
solaris
hpux
qnx
macosx
epoc32
os/400
os/390
z/os
unknown

Description
The target.os property is used to specify the operating system.

The values listed in the Synopsis are the values known to Eclipse. It should be quite clear what these
values stand for. If you are building software for other operating systems you can use other values.

Draft Draft

196

target.nl
target.nl — filter on natural language.

Synopsis
The value for target.nl property is expressed as an ISO 639 Language Code. It is sometimes fol-
lowed by (an underscore separated) ISO 3166 Country Code to denote the language specific to a par-
ticular county - e.g. en_US, en_UK.

The number of codes are too many to include in this documentation, and they are available from
multiple online sources for instance http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt, and http://
www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html.

Description
The target.nl property is used to specify the natural language.

When matching on language code you may want to use a wildcard as it is quite common to see com-
bination of en_XX where there is no special form of English for the country ‘XX’(e.g. in this author’s
case the locale is en_SE). At the same time, if there is both en_US, and en_UK material available
you probably do not want both — so more complex logic is needed to state “Use en_US or en_UK
if specified, otherwise if some unknown en* is used, use en_US”. To accomplish this the filters for
the resources could look like this:

// for the en_US resource
//
(|(target.nl=en_US)(&(target.nl=en*)(!(target.nl=en_UK))))

// for the en_UK resource
//
(target.nl=en_UK)

http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt
http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html
http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html

Draft Draft

197

target.ws
target.ws — filter on windowing system.

Synopsis
wpf
motif
gtk
photon
carbon
cocoa
s60
unknown

Description
The target.ws property is used to specify the Windowing system. The values shown under Synopsis
are defined in Eclipse. If you are building for some other windowing system, you can invent your own
value for use with your software.

Two values need a special mention; wpf stands for Windows Presentation Foundation, which is more
known by the name Vista, and s60 stands for the Nokia S60 device.

Draft Draft

198

Headless Commands
This reference guide contains detailed information about the headless Buckminster commands. All of
the commands are given as option to the command buckminster.

Conventions used

The following conventions are used in this reference guide:

«replaceable» All values that should be replaced with some value are shown
withing guillemots « »

line breaks Command synopsis for command may be broken up on several
lines. When typing commands enter all option on the same line.

command names in page titles The command names are always entered without space, but
spaces have been inserted in the page titles for increased read-
ability. See the Synopsis of each command for how the com-
mand should be entered. Some commands have short form
aliases that can be used instead of the longer name — the alias
is shown in the title, but the synopsis always shows the full/
long form.

Common options

There are options common to all commands — see the entry for “buckminster command”.

Draft Draft

199

buckminster
buckminster — invokes the headless buckminster.

Synopsis
buckminster [{ -? | --help }]
[-data «workspace»]
[{ -L | --loglevel } «level»]
[-consoleLog]
[--displaystacktrace]
{ { -S | --scriptfile } «filename» | «commandname» [«options»] }

Description
The headless buckminster application is used to run Buckminster commands. The command flags
listed for buckminster are available for all commands.

Workspace

As Buckminster at its core uses the Eclipse framework, this exhibits itself in a couple of ways. One of
these ways is that an ingrained concept is to work with a ‘workspace’, just like the Eclipse IDE does.
As it happens, the location of this workspace must be set very early in the life cycle of an Eclipse
application, and this is thus the interface to it. The flag is ‘-data’ and should point to a directory (au-
tomatically created if not existing). By default, a workspace called workspace will be used (created
when first referenced) in the user’s home directory.

Logging

Buckminster internally has a logging system. This is clearly visible when in the IDE (from the prefer-
ences pages). From the command line there are a number of flags to control logging behavior. A basic
idea is that Buckminster goes to some lengths to trap writes to system out/err as well as the Eclipse
internal log, and to do so in a synchronous fashion with specific log writes. A full log from a run which
mysteriously fails will help a great deal in isolating the problem in an ‘after-the-fact’ fashion.

Preferences

The following preferences affect the behavior of the headless Buckminster. If you have the need to
set additional preferences (there are many preferences in Eclipse) you will need to use a workspace
where these preferences have been set, and then use this workspace as a template workspace (which
is done with an option to the headless commands that creates a workspace).

org.eclipse.buckminster.core.buckminsterProjectPath

The location of the .buckminster project. This project is the default location for non-osgi bi-
nary artifacts when using the workspace materializer — i.e if you use the jar, maven/maven2,
components, the downloaded material will end up in the .buckminster project.

org.eclipse.buckminster.core.maxParallelMaterializations

The maximum number of parallel jobs used for materialisation.

org.eclipse.buckminster.core.maxParallelResolutions

The number of threads to run in parallel for RMAP resolution.

org.eclipse.buckminster.download.connectionRetryCount

The number of times an IO request is retried in case of an exception (other than FileNotFound).

org.eclipse.buckminster.download.connectionRetryDelay

The number of seconds to wait between retries in case of IO exceptions. Default 1.

Draft buckminster Draft

200

org.eclipse.buckminster.jdt.complianceLevel

Sets the java compiler compliance level. The default is ‘1.4’ but is normally overridden by
the Eclipse JDT component based on the active JRE (one of the “Installed JRE’s”). So from
Buckminster's perspective, the default is whatever the Eclipse JDT decides.

org.eclipse.buckminster.pde.targetArch

Sets the CPU architecture on the currently active target platform.

org.eclipse.buckminster.pde.targetDefinition

Sets the active Target Platform Definition. A target platform must have a name (see ‘Eclipse →
Preferences → Plug-in Development → Target Platform’ in the IDE). The value of this preference
must be equal to the name of one of the available target platforms.

org.eclipse.buckminster.pde.targetNL

Sets the “natural language” (i.e. target.nl/osgi.nl) property in the currently active target
platform. Buckminster uses this value as the default for target.nl. See the ‘Filters reference
guide’

org.eclipse.buckminster.pde.targetOS

Sets the operating system on the currently active target platform.

org.eclipse.buckminster.pde.targetPlatformPath

Set the active Target Platform to a definition that appoints a directory. (In order to maintain back-
ward compatibility, in Eclipse 3.5, this preference creates a Target Definition with one Directory
entry, named the same as the directory). See sidebar.

A note about Target Platform

A Target Definition defines a set of locations. Each location can be one of: Directory — a
directory in the local file system. Installation — an installation (such as an Eclipse SDK) in
the local file system. Features — one or more features from an installation. Software Site —
downloads plug-ins from a p2 repository. Management of Target Definitions are new in Eclipse
3.5. Prior to this, a target platform was just a directory in the local file system.

The preferred way of handling target platforms in 3.5 is to create one with the IDE. This target
definition is then saved to a file. The Buckminster command importtargetdefinition is
then used in the headless Buckminster to use this definition.

Options
-? , --help

Shows help for the command.

-data «workspace»

This sets the workspace on which the Buckminster command operates. The argument
«workspace» is a file path to either an existing workspace, or is a name to a workspace that will
be created. If «workspace» is not stated, the default is to use a workspace called workspace
located in the users home directory.

-consoleLog

Enables the OSGi console logger and is very useful for debugging.

-L «loglevel» , --loglevel «loglevel»
Sets the logging level for the command. The «loglevel» can be set to one of DEBUG, INFO,
WARNING, or ERROR.

--displaystacktrace

This option can be given if the user desires a full stack trace printout in case of actual code prob-
lems — normally it just prints a less daunting problem report if that happens. Regular ‘user er-
rors’ (e.g. bad usage of flags or similar are still reported in a more human friendly manner).

Draft buckminster Draft

201

-S «filename» , --scriptfile «filename»
Informs Buckminster that commands should be read from a file. The file should contain one
command per line, and not include the initial buckminster used on the command line.

«commandname» [«options»]

The «commandname» is the name of a Buckminster command to be executed — see the other
entries in this reference guide. The «options» are the options valid for the «commandname».

Draft Draft

202

listcommands (lscmds)
listcommands (lscmds) — lists the commands installed in the currently running instance.

Synopsis
listcommands [{ -? | --help }]
[--style «name»]

Description
Lists all the commands in the currently running instance. This reference guide shows the commands
that are typically installed, but other configuration of Buckminster may have a different set of com-
mands available.

Options
-? , --help

Shows help for this command.

--style «name»

Select the style of the printout; where «name» is one of normal (all names are shown), short
(only the full/basic name of a command is shown), or long (a verbose listing detailing all aliases).
The default is normal. (There is no short form for this option).

Draft Draft

203

build (make)
build (make) — runs workspace build.

Synopsis
build [{ -? | --help }]
[{ -c | --clean }]
[{ -t | --thorough }]

Description
Runs a workspace build. If -c is specified, a clean is performed before the build. If -t is specified a
full build is performed if an incremental build fails.

Options
-? , --help

Shows help for this command.

-c , --clean
Performs a clean before the build.

-t , --thorough
Performs a second full build instead of just adding incremental builds when the initial build is
not successful.

Draft Draft

204

clean
clean — cleans the workspace

Synopsis
clean [{ -? | --help }]

Description
This command calls on the internal eclipse builder to do a workspace clean. It is the same clean that
takes place when you do a “build --clean” (although here it is not followed by a workspace build).

Options
-? , --help

Shows help for clean

Draft Draft

205

get preference (getpref)
get preference (getpref) — display the value of a preference.

Synopsis
getpreference [{ -? | --help }]
[{ -d | --default } «default value»]
[--onlyvalue]
«name»

Description
Display the value of a preference, and optionally use a default value if the selected preference does
not have a value.

Options
-? , --help

Shows help for this command.

-d «default value» , --default «default value»
If preference has no value, the value «default value» becomes the result.

--onlyvalue

Displays only the value.

«name»

The name of the preference for which the value should be displayed.

Draft Draft

206

import (resolve)
import (resolve) — runs a workspace import

Synopsis
import [{ -? | --help }]
[{ -B | --bomfile } «filename»]
[-C | --continueonerror]
[{ -D | --define } «key» [=«value»]]
[{ -P | --properties } «url or path»]
[{ -t | --template } «template workspace»]
«url or path»

Description
Populates the workspace from a CQUERY, MSPEC, or BOM file. The -N allow this command to stop
after construction of a BOM, and the -B writes the resulting BOM to a file.

Options
-? , --help

Shows help for this command.

-B «filename» , --bomfile «filename»
Stores the resulting BOM file in «filename»

-C , --continueonerror
Continue even if not all components can be imported.

-D «key»[=«value»] , --define «key»[=«value»]
Defines a property as a key=value pair. The value may include ANT-style expansion constructs
that will be expanded using both System properties and other properties that has been set.

-N , --noimport
Stop after the BOM file has been created i.e. do not populate the workspace.

-P «URL or path» , --properties «URL or path»
The URL or file system path of a properties file. The values in the file may include ANT-style
expansion constructs that will be expanded using both system properties and other properties that
has been set.

--t «template workspace» , --template «template workspace»
Initialize the workspace from a template workspace prior to import.

«url or path»

An url/path to a CQUERY, MSPEC, or BOM file.

Draft Draft

207

list preferences (lsprefs)
list preferences (lsprefs) — lists information about preferences

Synopsis
listpreferences [{ -? | --help }] [«namepattern»]

Description
List information about preferences. If no «namepattern» has been stated, all preferences are listed.

Options
-? , --help

Shows help for the command.

«namepattern»

A regular expression pattern to select the preferences to list. If not provided, lists all preferences.

Draft Draft

208

perform
perform — performs one or several component actions

Synopsis
perform [{ -? | --help }]
[{ -D | --define } «key» [=«value»]]
[{ -F | --forced }]
[{ -P | --properties } «url or path»]
[{ -Q | --quiet }]
[{ -W | --maxwarnings } «n»]
«component»#«action» ...

Description
Performs one or several component actions.

Options
-? , --help

Shows help for the command.

-D «key»[=«value»] , --define «key»[=«value»]
Defines a property as a key=value pair. The value may include ANT-style expansion constructs
that will be expanded using both system properties and other properties that has been set.

-F , --forced
Force all actions to be performed regardless of timestamps.

-P «URL or path» , --properties «URL or path»
The URL or file system path of a properties file. The values in the file may include ANT-style
expansion constructs that will be expanded using both System properties and other properties that
has been set.

-Q , --quiet
Don’t print errors and warnings. Just exit with a non zero exit code on failure.

-W «n» , --maxwarnings «n»
Give the number of warnings acceptable. If the number of warnings are higher, treat as error and
exit with 1. Default is infinite warnings.

«namepattern»

A regular expression pattern to select the preferences to list. If not provided, lists all preferences.

«component»#«action»

The action to perform identified by the «component» name, and «action» name. Can be given
multiple times in order to perform many actions in the most optimized way.

Draft Draft

209

set preference (setpref)
set preference (setpref) — Sets one or several preferences.

Synopsis
setpreference [{ -? | --help }] «name»=«value» ...

Description
Sets one or several preferences.

Options
-? , --help

Shows help for the command.

«name»

The name of the preference to set.

«value»

The wanted value of the preference.

Draft Draft

210

unset preference (unsetpref)
unset preference (unsetpref) — unsets one or several preferences.

Synopsis
unsetpreference [{ -? | --help }] «name» ...

Description
Unsets one or several preferences.

Options
-? , --help

Shows help for the command.

«name»

The name of the preference to unset.

Draft Draft

211

import target definition (importtarget)
import target definition (importtarget) — imports target definitions

Synopsis
importtargetdefinition [{ -? | --help }]
[{ -A | --active }]
«url or path»

Description
Imports a target definition into the workspace, and optionally makes it active.

Options
-? , --help

Shows help for the command.

-A , --active
Load the target definition (and make it the active definition) after it has been imported.

«url or path»

The location of the target definition.

Draft Draft

212

list target definitions (lstargets)
list target definitions (lstargets) — lists target definitions known in the workspace.

Synopsis
listtargetdefinitions [{ -? | --help }]

Description
Lists target definitions known in the workspace.

Options
-? , --help

Shows help for the command.

Draft Draft

213

export preferences (exportprefs)
export preferences (exportprefs) — exports preferences settings.

Synopsis
exportpreferences [{ -? | --help }]
[{ -F | --filename } «filename»]
[{ -S | --scope } «scope»]
[«rootKey» [#«subKey» [,«subKey» ...]] ...]

Description
Exports preferences settings to a file or standard out.

Options
-? , --help

Shows help for the command.

-F «filename» , --filename «filename»
The file to write preferences settings to.

-S «scope» , --scope «scope»
Determines which set of preferences to export. Valid values for «scope» are configuration
(preferences set in the IDE) and instance (preferences set in the workspace).

«rootKey»[#«subKey»[,«subKey» ...]

Export only matching preferences. The match can be for a root only or a root qualified with one
or several sub keys.

Draft Draft

214

import preferences (importprefs)
import preferences (importprefs) — Imports preferences settings.

Synopsis
importpreferences [{ -? | --help }]
[{ -F | --filename } «filename»]
[{ -S | --scope } «scope»]
[«rootKey» [#«subKey» [,«subKey» ...]] ...]

Description
Imports preferences settings from a file or standard input.

Options
-? , --help

Shows help for the command.

-F «filename» , --filename «filename»
The file to read preferences from.

-S «scope» , --scope «scope»
Determines which set of preferences to import. Valid values for «scope» are configuration
(preferences set in the Eclipse IDE) and instance (preferences set in the workspace).

«rootKey»[# «subKey»[,«subKey» ...]]...

Import only matching preferences. The match can be for a root only or a root qualified with one
or several sub keys.

Draft Draft

215

install
install — installs a feature.

Synopsis
install [{ -? | --help }] «site» «feature» [«version»]

Description
Installs a feature into the running headless Buckminster.

Options
-? , --help

Shows help for the command.

«site»

URL or path to site.

«feature»

The id of the feature to install.

«version»

The version to install.

Draft Draft

216

list site
list site — lists features available at a site.

Synopsis
listsite [{ -? | --help }] «url or path»

Description
Lists the features found in a local or remote repository.

Options
-? , --help

Shows help for the command.

«url or path»

The location of the repository.

Draft Draft

217

uninstall
uninstall — uninstalls a feature.

Synopsis
uninstall [{ -? | --help }] «feature» [«version»]

Description
Uninstalls a feature.

Options
-? , --help

Shows help for the command.

«feature»

The id of the feature to uninstall.

«version»

The version to uninstall. If not stated, and there are several versions installed, an error is generated.

Draft Draft

218

Buckminster XML Schemas
This Reference Guide contains information about the Buckminster XML schemas, and the use of XML

name spaces.

The schemas are also made available in an XML catalog at http://www.eclipse.org/buckmin-
ster/schemas/buckminster.xmlcatalog, here is the current content of this catalog:

<?xml version="1.0" encoding="UTF-8"?>
<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">
 <uri name="http://www.eclipse.org/buckminster/Common-1.0"
 uri="http://www.eclipse.org/buckminster/schemas/common-1.0.xsd" />
 <uri name="http://www.eclipse.org/buckminster/CQuery-1.0"
 uri="http://www.eclipse.org/buckminster/schemas/cquery-1.0.xsd" />
 <uri name="http://www.eclipse.org/buckminster/CSpec-1.0"
 uri="http://www.eclipse.org/buckminster/schemas/cspec-1.0.xsd" />
 <uri name="http://www.eclipse.org/buckminster/RMap-1.0"
 uri="http://www.eclipse.org/buckminster/schemas/rmap-1.0.xsd" />
 <uri name="http://www.eclipse.org/buckminster/MavenProvider-1.0"
 uri="http://www.eclipse.org/buckminster/schemas/maven-provider-1.0.xsd" />
 <uri name="http://www.eclipse.org/buckminster/PDEMapProvider-1.0"
 uri="http://www.eclipse.org/buckminster/schemas/map-provider-1.0.xsd" />
 <uri name="http://opml.org/spec2"
 uri="http://www.eclipse.org/buckminster/schemas/opml-2.0.xsd" />
 <uri name="http://www.w3.org/XML/1998/namespace"
 uri="http://www.eclipse.org/buckminster/schemas/xml-1998.xsd" />
 <uri name="http://www.w3.org/1999/xhtml"
 uri="http://www.eclipse.org/buckminster/schemas/xhtml-1999.xsd" />
 <uri name="http://www.w3.org/2001/XMLSchema"
 uri="http://www.eclipse.org/buckminster/schemas/XMLSchema-2001.xsd" />
</catalog>

http://www.eclipse.org/buckminster/schemas/buckminster.xmlcatalog
http://www.eclipse.org/buckminster/schemas/buckminster.xmlcatalog

Draft Draft

219

bc (Common-1.0)
bc (Common-1.0) — Buckminster common XML schema.

Synopsis

Namespace Declaration

xmlns:bc="http://www.eclipse.org/buckminster/Common-1.0"

Namespace http://www.eclipse.org/buckminster/Common-1.0

Prefix bc

Schema Location http://www.eclipse.org/buckminster/schemas/common-1.0.xsd

Description
Contains the Resource Map (RMAP) XML Schema definition.

http://www.eclipse.org/buckminster/schemas/common-1.0.xsd

Draft Draft

220

cs (CSpec-1.0)
cs (CSpec-1.0) — Buckminster Component Specification (CSPEC), and Component Specification Ex-
tension (CSPEX) XML schemas.

Synopsis

Namespace Declaration

xmlns:cs="http://www.eclipse.org/buckminster/CSpec-1.0"

Namespace http://www.eclipse.org/buckminster/CSpec-1.0

Prefix cs

Schema Location http://www.eclipse.org/buckminster/schemas/cspec-1.0.xsd

Description
Contains the Buckminster Component Specification (CSPEC), and Component Specification Extension
(CSPEX) XML Schema definition.

http://www.eclipse.org/buckminster/schemas/cspec-1.0.xsd

Draft Draft

221

cq (CQuery-1.0)
cq (CQuery-1.0) — Buckminster Component Query (CQUERY) XML schema.

Synopsis

Namespace Declaration

xmlns:cq="http://www.eclipse.org/buckminster/CQuery-1.0"

Namespace http://www.eclipse.org/buckminster/CQuery-1.0

Prefix cq

Schema Location http://www.eclipse.org/buckminster/schemas/cquery-1.0.xsd

Description
Contains the Buckminster Component Query (CQUERY) XML Schema definition.

http://www.eclipse.org/buckminster/schemas/cquery-1.0.xsd

Draft Draft

222

md (MetaData-1.0)
md (MetaData-1.0) — Buckminster XML schema for Bill of Materials (BOM), and Materialization Spec
(MSPEC).

Synopsis

Namespace Declaration

xmlns:md="http://www.eclipse.org/buckminster/MetaData-1.0"

Namespace http://www.eclipse.org/buckminster/MetaData-1.0

Prefix md

Schema Location http://www.eclipse.org/buckminster/schemas/metadata-1.0.xsd

Description
Contains the Buckminster Bill of Materials (BOM), and Materialization Specification (MSPEC) XML

Schema definitions.

http://www.eclipse.org/buckminster/schemas/metadata-1.0.xsd

Draft Draft

223

mp (MavenProvider-1.0)
mp (MavenProvider-1.0) — Buckminster XML schema for the Maven Provider extension to the Re-
source Map (RMAP).

Synopsis

Namespace Declaration

xmlns:mp="http://www.eclipse.org/buckminster/MavenProvider-1.0"

Namespace http://www.eclipse.org/buckminster/MavenProvider-1.0

Prefix

Schema Location http://www.eclipse.org/buckminster/schemas/maven-provider-1.0.xsd

Description
Contains the Buckminster Maven Provider extension to the Resource Map (RMAP). It adds the ability
to provide Maven specific information for the maven reader type in a rm:provider element.

http://www.eclipse.org/buckminster/schemas/maven-provider-1.0.xsd

Draft Draft

224

opml (OPML-2)
opml (OPML-2) — The Outline Processor Markup Language Namespace

Synopsis

Namespace Declaration

xmlns:opml="http://www.opml.org/spec2"

Namespace http://www.opml.org/spec2

Prefix rm

Schema Information http://www.opml.org/spec2

Description
The OPML-.2 (draft) specification is used to describe bookmarks, and RSS feed links.

http://www.opml.org/spec2

Draft Draft

225

pmp (PDEMapProvider-1.0)
pmp (PDEMapProvider-1.0) — RMAP Provider Extension XML schema for PDE extension.

Synopsis

Namespace Declaration

xmlns:rm="http://www.eclipse.org/buckminster/PDEMapProvider-1.0"

Namespace http://www.eclipse.org/buckminster/PDEMapProvider-1.0

Prefix pmp

Schema Location http://www.eclipse.org/buckminster/schemas/map-provider-1.0.xsd

Description
Contains an extension for PDEMapProvider to the Provider element in the RMap-1.0 Schema.

http://www.eclipse.org/buckminster/schemas/map-provider-1.0.xsd

Draft Draft

226

rm (RMap-1.0)
rm (RMap-1.0) — Buckminster RMAPXML schema.

Synopsis

Namespace Declaration

xmlns:rm="http://www.eclipse.org/buckminster/RMap-1.0"

Namespace http://www.eclipse.org/buckminster/RMap-1.0

Prefix rm

Schema Location http://www.eclipse.org/buckminster/schemas/rmap-1.0.xsd

Description
Contains the Resource Map (RMAP) XML Schema definition.

http://www.eclipse.org/buckminster/schemas/rmap-1.0.xsd

Draft Draft

227

xh (xhtml)
xh (xhtml) — The XHTML schema is included to allow XHTML in documentation elements.

Synopsis

Namespace Declaration

xmlns:xh="http://www.w3.org/1999/xhtml"

Namespace http://www.w3.org/1999/xhtml

Prefix xh

Schema Information http://www.w3.org/1999/xhtml/

Description
Contains the XHTML namespace. The namespace is imported in the Buckminster schemas where doc-
umentation elements are defined. This means that it is possible to directly use the XHTML tags with-
out prefixing them with xh:.

http://www.w3.org/1999/xhtml/

Draft Draft

228

xi (XMLSchema-instance)
xi (XMLSchema-instance) — Common definitions used in XML schemas such as type information.

Synopsis

Namespace Declaration

xmlns:xi="http://www.w3.org/2001/XMLSchema-instance"

Namespace http://www.w3.org/2001/XMLSchema-instance

Prefix xi

Schema Location -

Description
Defined in the W3C XML Schema specification (Part 1 & 2)

See XML Schema Part 1: Structures Second Edition [http://www.w3.org/TR/2004/REC-
xmlschema-1-20041028/], and XML Schema Part 2: Datatypes Second Edition [http://www.w3.org/
TR/2004/REC-xmlschema-2-20041028/].

Defines, among other things, the common type specifications used in the Buckminster XML schemas
such as xi:string.

http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/

Draft Draft

Part V. Appendixes

Draft Draft

230

Table of Contents
A. Installation ... 231

Installing for Eclipse SDK .. 231
Installing the Headless Product .. 232
Connectors ... 234

Subversion (SVN) ... 234
Perforce (P4) ... 234

Configuring Eclipse for XML Editing ... 234
B. Extending Buckminster ... 235

Core extension .. 235
Version type ... 235

RMAP extensions .. 235
Extending Reader Type .. 235
Extending Component Type .. 235
Extending Version Converter ... 235

CQUERY Extensions .. 236
Custom resolver .. 236

C. Omni Version Details ... 237
Introduction .. 237
Background .. 237
Implementation ... 238

Version .. 238
Comparison .. 238
Raw and Original Version String .. 239
Omni Version Range .. 239
Other range formats ... 240

Format Specification .. 240
Format Pattern Explanation ... 242
Examples of Version Formats .. 244
Tooling Support .. 246
More examples using ‘format’ ... 247
FAQ .. 248
Resources ... 250

D. Bookmarks and OPML ... 251
Bookmarks ... 251
Authoring OPML .. 252

Draft Draft

231

Appendix A. Installation
This Appendix describes how to install Buckminster for Eclipse versions 3.4 and 3.5. Note that this
book describes the current version of Buckminster, so if you for some reason are using the 3.4 version,
the described features, references, and examples will not always work on 3.4.

Tip

It is possible to develop for Eclipse 3.4 as a target even if you are using 3.5 and the latest
Buckminster.

Buckminster comes in two different packagings — for use in the Eclipse SDK (the IDE), and for
headless use.

Warning

Do NOT install the headless features into your Eclipse SDK! (There is absolutely no
reason to do this, and it will cause instabilities).

Note

The latest download instructions are always found at http://www.eclipse.org/buckmin-
ster/downloads.html. The information in this appendix describes the instructions for
the versions current in July of 2009.

Installing for Eclipse SDK
1. Check if Buckminster is already available for install. Buckminster is part of the Eclipse re-

lease trains and if you are using a packaged Eclipse downloaded from eclipse.org then chances are

that you can install directly from the repository for the release train. Check under Help → Install
New Software... for the Buckminster category. If you can’t find the Buckminster category, you need
to add a repository location. (You may also want to do this to get the latest updates as the release
train sites are updated only infrequently).

2. Add repository location (if needed). Installing into the Eclipse SDK is done by adding the repos-
itory you want to install from. This is done in Eclipse 3.5 by adding the repository location either

under ‘Help → Install New Software...’ or under ‘Eclipse → Preferences... → Install/Update →
Available Software Sites’ and then selecting the wanted features under ‘Help → Install New Soft-
ware...’.

Please consult the Buckminster download page for an up to date list of available repositories, and
alternatives such as downloading a full copy of a repository to facilitate a later local install.

For convenience, here are the current locations — please note that these links are for use with
Eclipse p2 installer, and not for use in a web browser:

• The Buckminster update site for Eclipse 3.4.x. http://download.eclipse.org/

tools/buckminster/updates-3.4.

• Buckminster update site for Eclipse 3.5 (the ’latest fixes’). http://download.eclipse.org/
tools/buckminster/updates-3.5.

• Select features. There are several features available. They are categorized into core and op-
tional. Please note that you are expected to make a choice of what optional categories you need.
Do not select all of them.

http://www.eclipse.org/buckminster/downloads.html
http://www.eclipse.org/buckminster/downloads.html

Draft Installation Draft

232

Warning

Buckminster’s support for Subversive and Subclipse are mutually exclusive. Do
NOT install both.

3. Verify. Buckminster is not highly visible in the Eclipse UI, so you may wonder if your installation
was successful. You can naturally try to run one of the examples, but a quick check is to look for

the menu entry File → Open a Component Query...

Installing the Headless Product
The Headless Product application is based on the Eclipse Runtime. This product is intended to be
used when Buckminster’s functionality is wanted, but without using a graphical user interface — e.g.
from the command line, in automated scripting, etc. The headless application contains only the bare
minimum to get a working headless command line utility. To make it useful, you must install the
features you need into it, and the result can then be shared as necessary.

The packaging and installation is different between Eclipse 3.4 and 3.5. For instructions for Eclipse
3.4 (and earlier), please consult the Buckminster download page.

Note

The following instructions are for Eclipse 3.5 only.

1. Download the director. The (headless) director is a command line packaging of the p2 director
— an installer that is a general purpose installer for software available in p2 repositories. Consult
the Buckminster download page for the current address.

2. Unpack the zip. Unpack the zip file to a location where you want the director. Note that the
director application is also used in many headless use cases — it is not just for installing the head-
less Buckminster, so select a location that is reachable from your current PATH, or update the PATH
to include the location. (You don’t have to set the path if you are just installing the headless Buck-
minster as you can do this from the directory where you unzipped the director).

3. Perform the install. You perform the installation by running the director with the following
command (type everything as a single line of input):

director -r «repo-location»
-d «install-folder»

-p Buckminster

-i org.eclipse.buckminster.cmdline.product

Where the command line option have the following meaning:

-r «repo-location»

Replace «repo-location» with the URL to the headless Buckminster repository.
The location is currently http://download.eclipse.org/tools/buckminster/head-
less-3.5/, but you should check on the Buckminster download page for the latest infor-
mation. Alternatively, download the entire archived repository as instructed on the download
page, and the use the local URI to the location where you unpacked the repository.

-d «install-folder»

Replace install-folder with the folder/directory where you want the headless Buckminster in-
stalled.

-p Buckminster

Type -p Buckminster literally, this is the name of the p2 profile.

Draft Installation Draft

233

-i org.eclipse.buckminster.cmdline.product

Type -i and the entire identity literally, this is a reference to the installable unit you are in-
stalling.

4. Install additional features (at least one is required). The installation in the previous step in-
stalled the basic Buckminster bootstrap and command line shell, the only useful thing it can perform
is to install additional features. You will probably want support for Java and PDE development, and
some connectors to source repositories. You can use the director as shown in the previous step to
install these features or use the just installed Buckminster (which has a simpler syntax):

buckminster install «repository-url» «feature-id» [«version»]

Where «repository-url» is the same as in the previous step, and «feature-id» is one of the
features listed below. Optionally, a specific version can be installed. Here are the features you can
install:

org.eclipse.buckminster.core.headless.feature

The Core functionality — this feature is required if you want to do anything with Buckminster
except installing additional features.

org.eclipse.buckminster.maven.feature

Maven support. (In case you noticed, there is no special headless needed for maven, this is the
same feature that is used with the user interface).

org.eclipse.buckminster.cvs.headless.feature

Headless CVS support.

org.eclipse.buckminster.pde.headless.feature

Headless PDE and JDT support. Required if you are working with Java based components.

If you use the director to install, use ‘-i «feature-id».feature.group’ as the p2 IU identities
for features have a ‘feature.group’ suffix appended to the feature identity.

5. Install SVN support (if required). If you require support for Subversion (SVN), you must in-
stall this in a separate step as the required plugins have a license that is not compatible with
Eclipse EPL, and they can therefore not be distributed directly from the eclipse.org reposi-
tories. Instead, Cloudsmith Inc. has made them available in a repository located at http://
download.cloudsmith.com/buckminster/external.

You install either support for subversive or subclipse by issuing the following command (type
everything as a single line of input):

director -r http://download.cloudsmith.com/buckminster/external
-d «install-folder»

-p Buckminster

-i «svn-adapter-id»

Where the command line option have the following meaning:

-r http://download...

Use the literal location http://download.eclipse.org/tools/buckminster/head-
less-3.5/, but you should check on the Buckminster download page for the latest informa-
tion.

-d «install-folder»

Replace «install-folder» with the folder/directory where you have installed the headless
Buckminster.

-p Buckminster

Type -p Buckminster literally, this is the name of the p2 profile.

Draft Installation Draft

234

-i «svn-adapter-id»

Type -i and then the identity of either the subclipse or the subversive integration
feature. You should use org.eclipse.buckminster.subclipse for subclipse, and
org.eclipse.buckminster.subversive for subversive.

Tip

You can prepare a file with the Buckminster install commands you want to perform, and
tell the initial Buckminster to execute this file. This saves you work if you are installing
the headless Buckminster on different machines. See “buckminster command” for more
information about using a script.

Connectors
Buckminster can be extended to support many different types of connectors. Here are notes regarding
installation for those that require more than just installing the connector.

Subversion (SVN)
There are different ways to connect to a SVN — the Buckminster connector distributed from Eclipse is
not enough. Unfortunately, the various SVN clients all contain code with licenses that are not allowed
for redistribution from eclipse.org. Cloudsmith Inc. provides these bundles from a special repository,
and you can also get these bundles directly from the the respective publishers.

Depending on which combination of Eclipse plugins and protocols you select, and which platform
you are running on, the instructions are quite different. On Windows it is particularly complicated to
set up access over svn+ssh with use of certificates as windows does not have any support for this out
of the box (whereas Un*x systems do).

There are currently two connectors for SVN — and you have to make a choice between Subversion
and Subclipse.

Warning

Do NOT install support for both Subversive and Subclipse in the same environment!

Perforce (P4)
The Perforce (P4) connector is available directly in the repositories at eclipse.org. It can be installed
without having perforce installed, but will not function unless perforce is also installed on the system.
You need to consult perforce documentation regarding the installation of perforce on your system.

Note

If you have experience with P4 and have information that you think should be included
in this book, please help improve this section.

Configuring Eclipse for XML Editing
Some of the Buckminster artifacts do not have specific graphical editors, and you edit the XML directly.
To make this easier, you can configure Eclipse to include an XML editor and make it understand the
Buckminster XML schemas. This way, you will get validation, content assist, and code completion
while editing. See information in Buckminster XML Schemas regarding where to find the schemas.

Draft Draft

235

Appendix B. Extending Buckminster
This appendix contains information how to extend Buckminster.THIS APPENDIX IS VERY MUCH
W.I.P... THE IDEA IS NOT TO SHOW HOW TO WRITE THE EXTENSIONS, BUT RATHER SHOW
ALL THE POSSIBLE EXTENSIONS.

Core extension

Version type
A version type is a named Omni Version format, as described in Appendix C, Omni Version Details.
The named version formats are called a version type in Buckminster.

New formats can easily be included by extending org.eclipse.buckminster.core.

RMAP extensions
This section describes extensions that relate to mapping components.

Extending Reader Type
A reader type is the connector to a particular repository technology. The extension point is called
org.eclipse.buckminster.core.readerTypes.

TBD.

Extending Component Type
A component type translates between meta data in some native/external form to the form used in
Buckminster.

TBD.

Extending Version Converter
A version converter translates bi-directionally from internal versions to repository names (such as a
branch or tag name). The mechanism can be extended to cater for more advanced mappings, or if a

Draft Extending Buckminster Draft

236

new types of repository connector is being added, there may be other mechanisms than branch/tag
to consider.

TBD.

CQUERY Extensions
This section describes extension to the CQUERY and resolution process.

Custom resolver
Custom resolvers are added through the org.eclipse.buckminster.core.queryResolvers
extension point. Buckminster provides reference implementations for two resolvers: ‘local’ and
‘rmap’.

Draft Draft

237

Appendix C. Omni Version Details
Introduction

This appendix describes the Omni Version implementation handling instances of version and version
ranges. The omni version implementation resides in equinox p2, and is also used in Buckminster. The
omni version was created because of the need to have a version format capable of describing versions
using another versioning scheme than OSGi (which was the only versioning scheme supported by p2
prior to Eclipse 3.5 and omni version).

Buckminster has always been capable of handling different versioning schemes, but did so (prior to
Eclipse 3.5) using the Eclipse extension mechanism which in practice meant that it was only mean-
ingful to make extensions in the Buckminster code base itself. This because it would not be possible
for someone to parse a version if the implementation of the versioning scheme was not present.

With the omni version contribution to p2 — which fully describes a format, a canonical version com-
parable against versions with different formats, as well as containing the original version string, Buck-
minster can now use p2 for provisioning also for non OSGi based components.

Background
There are other versioning schemes in wide use that are not compatible with OSGi version and version
ranges. The problem is both syntactic and semantic.

Many open source projects do their versioning in a fashion similar to OSGi but with one very significant
difference. For two versions that are otherwise equal, a lack of qualifier signifies a higher version then
when a qualifier is present — i.e.

1.0.0.alpha
1.0.0.beta
1.0.0.rc1
1.0.0

The 1.0.0 is the final release. The qualifier happens to be in alphabetical order here but that’s not
always true.

Mozilla Toolkit versioning has many rules and each segment has 4 (optional) slots; numeric, string,
numeric, and string where each slot has a default value set to 0 or max string respectively for the
numeric and string slots if a particular slot is missing).

1.2a3b. // yes, a trailing . is allowed and means .0
1.a2

Mozilla also allows bumping the version (using an older Mozilla scheme)

1.0+

This means 1.1pre in Mozilla.

Example of syntax issue
Here are some examples of versions used in Red Had Fedora distributions.

KDE Admin version 7:4.0.3-3.fc9
Compat libstdc version 33-3.2.3-63
Automake 1.4p6-15.fc7

And here are some Mozilla toolkit versions:

1.*.1
1.0+

Draft Omni Version Details Draft

238

1.-1 // negative integer version numbers are allowed, the '-' is not a delimiter

1.2a3b.a

These are not syntactically compatible with OSGi versions.

Implementation
The current implementation in p2 uses the omni versions throughout. This means that p2 can create
a plan including units that have non OSGi versioning scheme.

One implementation
Equinox p2 has one implementation of Version and one of VersionRange that are capable of cap-
turing the semantics of various version formats. The advantages over previous proposed implementa-
tions (like the implementation in Buckminster prior to Eclipse 3.5) are that there is no need to dynam-
ically plugin new implementations, and new formats can be more easily be introduced.

One canonical format
The omni version and omni version range are “universal” — all instances of version should be com-
parable against each other with a fully defined (non ambiguous) ordering. The API is (as today) based
on a single string fully describing a version or version range.

The canonical string format is called “raw” and it is explained in more detail below. To ensure back-
ward compatibility, as well as providing ease of use in an OSGi environment, version strings that are
not prefixed with the omni version keyword raw have the same format and semantics as the current
OSGi version format.

Ad an example the following two version strings are both valid input, and express exactly the same
version:

1.0.0.r1234
raw:1.0.0.'r1234'

Version
The omni version implementation uses an vector to store version-segments in order of descend-
ing significance. A segment is an instance of Integer, String, Comparable[], MaxInteger,
MaxString, or Min.

Comparison
Comparison is done by iterating over segments from 0 to n.

• If segments are of different type the rule MaxInteger > Integer > Comparable[] > MaxString
> String is used — the comparison is done and the version with the greater segment type is reported
as greater.

• If segments are of equal type — they are compared — if one is greater the comparison is done and
the version with the greater segment is reported as greater.

• All versions are by default padded with -M (absolute min segment) to “infinity”. A version may
have an explicit pad element which is used instead of the default.

• A shorter version is compared to a longer by comparing the extra segments in the longer version
against the shorter version’s pad segment.

• If all segments are equal up to end of the longest segment array, the pad segments are compared,
and the version with the greater pad segment is reported as greater.

Draft Omni Version Details Draft

239

• If pad segments are also equal the two versions are reported as equal.

• As a consequence of not including delimiters in the canonical format; two versions are equal if they
only differ on delimiters.

As an example — here is a comparison of versions (expressed in the raw format introduced further on
in the text — ‘p’ means that a pad element follows, and ‘-M’ the absolute min segment):

1p-M < 1.0.0 < 1.0.0p0 == 1p0 < 1.1 < 1.1.1 < 1p1 == 1.1p1 < 1pM

Raw and Original Version String
The original version can be kept when the raw version format is used, but it is not an absolute require-
ment as simple raw based forms such as raw:1.2.3.4.5 could certainly be used directly by humans.
Someone (who for some reason does not want to use OSGi or some other known version scheme),
could elect to use the raw format as their native format.

A version string with raw and original is written on the form:

'raw' ':' raw-format-string '/' format(...):original-format-string

The p2 Engine completely ignores the original part — only the raw part is used, and the original format
is only used for human consumption.

Example using a Mozilla version string (as it has the most complex format encountered to date)1.

raw:<1.m.0.m>.<20.'a'.3.'b'>p<0.m.0.m>
/format((<n=0;?s=m;?n=0;?s=m;?>(.<n=0;?s=m;?n=0;?s=m;?>)*)=p<0.m.0.m>;)
:1.20a3b.a

An original version string can be included with unknown format:

raw:<1.m.0.m>.<20.'a'.3.'b'>p<0.m.0.m>/:1.20a3b.a

See below for full explanation of the raw format.

Omni Version Range
The version range holds two version instances (lower and upper bound). A version range string uses
the delimiters [], () and ,. If these characters are used in the lower or upper bound version strings,
these occurrences must be escaped with \ and occurrences of \ must also be escaped.

The version range is either an OSGi version range (if raw prefix is not used), or a raw range. The format
of the raw range is:

'raw' ':' ('[' | '(') raw-format-string ',' raw-format-string (']' | ')')

The raw-range can be followed by the original range:

raw-range '/' 'format' '(' format-string ')'
':' ('[' | '(') original-format-string ','
original-format-string (']' | ')')

An original version range can be included with unknown format:

raw: [<1.m.0.m>.<20.m.0.m>p<0.m.0.m>,
<1.m.0.m>.<20.'a'.3.'b'>p<0.m.0.m>]
/:[1.20,1.20a3b.a]

The p2 Engine completely ignores the original part — only the raw part is used, and the original format
is only used for human consumption.

See below for full explanation of the raw format.

1line breaks are inserted for readability

Draft Omni Version Details Draft

240

Other range formats
Note that some version schemes have range concepts where the notion of inclusive or exclusive does
not exist, and instead use symbolic markers such as “next larger“, “next smaller“, or use wild-cards
to define ranges. In these cases, the translator of the original version string must use discrete versions
and the inclusive/exclusive notation to define the same range.

Some range specifications allows the specification of union, or exclusion of certain versions. This
is not currently supported by p2. If introduced it could be expressed as a series of ranges where
a ^ before a range negates it. Example [0,1][3,10]^[3.1,3.7) which would be equivalent to
[0,10]^(1,3)^[3.1,3.7)

Format Specification
There are two basic formats default OSGi string format, and raw canonical string format. There are
also two corresponding range formats OSGi-version-range, and raw-version-range.

The raw format is a string representation of the internally used format — it consists of the keyword
“raw“, followed by a list of entries separated by period. An entry can be numerical, quoted alphanu-
merical, or a sub canonical list on the same format. A canonical version (and sub canonical version
arrays) can be padded to infinity with a special padding element. Special entries express the notion
of ‘max integer’ and ‘max string’.

The OSGi string format is the well known format in current use.

The raw format in BNF:

 digit: [0-9];
 letter: [a-zA-Z];
 numeric: digit+;
 alpha: letter+;
 alpha-numeric: [0-9a-zA-Z]+;
 delimiter: [^0-9a-zA-Z];
 character: .;
 characters .+;

// A sequence of charactes quoted with " or ', where ' can
// be used in a " quoted string and vice versa
 quoted-string: ("[^"]*")|('[^']*');

// a sequence of any characters but
// with ',' ']', ')' and '\' escaped with '\'
 range-safe-string: TBD;

 sq: ['];
 dq: ["];

 version:
 | osgi-version
 | raw-version
 ;
 osgi-version:
 | numeric
 | numeric '.' numeric
 | numeric '.' numeric '.' numeric
 | numeric '.' numeric '.' numeric '.' .+
 ;
 raw-version:
 | 'raw' ':' raw-segments optional-original-version
 ;
 optional-original-version:
 |
 | '/' original-version
 ;
 version-range:
 | osgi-version-range

Draft Omni Version Details Draft

241

 | raw-version-range
 ;
 rs: ('[' | '(');
 re: (']' | ')');

 osgi-version-range:
 | rs osgi-version ',' osgi-version re
 ;
 raw-version-range:
 | 'raw' ':' rs raw-segments ',' raw-segments re
 optional-original-range
 ;
optional-original-range:
 |
 | '/' original-range
 ;
raw-segments:
 | raw-elements optional-pad-element
 ;
raw-elements:
 | raw-elements '.' raw-element
 | raw-element
 ;
raw-element:
 | numeric
 | quoted-strings // strings are concatenated
 | '<' raw-elements optional-pad-element '>'
 // subvector of elements
 | 'm' // symbolic 'maxs' == max string
 | 'M' // symbolic 'absolute max'
 // i.e. max > MAX_INT > maxs
 | '-M // symbolic 'absolute min'
 // i.e. -M < empty string < array < int
 ;
optional-pad-element:
 |
 | pad-element
 ;
quoted-strings:
 | quoted-strings quoted-string
 | quoted-string
 ;
pad-element:
 | 'p' raw-element
 ;
original-version:
 | optional-format-definition ':' .*
 ;
original-range:
 | optional-format-definition ':' rs range-safe-string
 ',' range-safe-string re
 ;
optional-format-definition:
 |
 | format-definition
 ;
format-definition:
 | 'format' '(' pattern ')'
 ;

// Definition of parsing patterns
//
pattern:
 | pattern pattern-element
 | pattern-element
 ;
pattern-element:
 | pelem optional-processing-rules optional-pattern-range
 | '[' pattern ']' processing-rules
 ;
optional-processing-rules:
 | optional- processing-rules '=' processing-rule ';'

Draft Omni Version Details Draft

242

 | '=' processing-rule ';'
 |
 ;
optional-pattern-range:
 | repeat-range
 |
 ;

pelem
 | 'r' | 'd' | 'p' | 'a' | 's' | 'S' | 'n' | 'N' | 'q'
 | '(' pattern ')'
 | '<' pattern '>'
 | delimiter
 ;
repeat-range:
 | '?' | '*' | '+'
 | '{' exact '}'
 | '{' at-least ',' '}'
 | '{' at-least ',' at-most '}'
 ;

exact: at-least: at-most: numeric;

processing-rule:
 | raw-element
 | pad-element
 | '!'
 | '[' char-list ']'
 | '[' '^' char-list ']'
 | '{' exact '}' // for character count
 | '{' at-least ',' '}'
 | '{' at-least ',' at-most '}'
 ;
char-list: TBD; // Sequence of any character but
 // with '^', ']' and '\' escaped with '\'
delimiter:
 | [!#$%&/=^,.;:-_] // Any non-alpha-num that
 // has no special meaning
 | quoted-string
 | '\' . // any escaped character
 ;

Examples:

• OSGi 1.0.0.r1234 is expressed as raw:1.0.0.'r1234'

• apache/triplet style 1.2.3 is expressed as raw:1.2.3.m

• Mozilla style 1a.2a3c. can be expressed as

raw:<1.'a'.0.m>.<2.'a'.3.'c'>p<0.m.0.m>

Mozilla’s format is complex — see external links at the end of this appendix, for more information.

Format Pattern Explanation
Here are explanations for the rules in format(pattern).

rule description

r raw — matches one raw-element as specified by the raw format. The r rule
does not match a pad element — use p for this.

'characters' quoted delimiter — matches one or several characters — the matched result is
not included in the resulting canonical vector (i.e. it is not a segment). A \\ is
needed to include a single \. The sequence of chars acts as one delimiter.

non-alphanum

character

literal delimiter — matches any non alpha-numerical character (including
space) — the matched result is not included in the canonical vector (i.e. it is not

Draft Omni Version Details Draft

243

rule description

a segment). A non alphanumerical character acts as a delimiter. Special charac-
ters must be escaped when wanted as delimiters.

a auto — a sequence of digits creates a numeric segment, a sequence of alphabet-
ical characters creates a string segment. Segments are delimited by any charac-
ter not having the same character class as the first character in the sequence, or
by the following delimiter. A numerical sequence ignores leading zeros.

d delimiter — matches any non alpha-numeric character. The matched result is
not included in the resulting canonical vector (i.e. it is not a segment).

s letter-string — a string group matching only alpha characters (i.e. “letters”).
Use processing rules =[]; or =[^] to define the set of allowed characters. It is
possible to allow inclusion of delimiter chars, but not inclusion of digits.

S string — a string group matching any group of characters. Use processing rules
=[]; or =[^] to define the set of allowed characters. Care must be taken to
specify exclusion of a delimiter if elements are to follow the S.

n a numeric (integer) group with value >= 0. Leading zeros are ignored.

N a possibly negative value numeric (integer) group. Leading zeros are ignored.

p parses an explicit pad-element in the input string as defined by the raw format.
To define an implicit pad as part of the pattern use the processing instruction
=p...;. A pad element can only be last in the overall version string, or last
in a sub array.

q smart quoted string — matches a quoted alphanumeric string where the quote
is determined by the first character of the string segment. The quote must be
a non alphanumeric character, and the string must be delimited by the same
character except brackets and parenthesises (i.e. (), {}, [], <>) which are han-
dled as pairs, thus q matches <andrea-doria> and produces a single string
segment with the text andrea-doria. A non-quoted sequence of characters
are not matched by q.

() indicates a group

< > array — indicates a group, where the resulting elements of the group is placed
in an array, and the array is one resulting element in the enclosing result

? zero to one occurrence of the preceding rule

* zero to many occurrences of the preceding rule

+ one to many occurrences of the preceding rule

{ n } exactly n occurrences of the preceding rule

{ n ,} at least n occurrences of the preceding rule

{ n , m } at least n occurrences of the preceding rule, but not more than m times

[] short hand notation for an optional group. Is equivalent to ()?

= processing ; an additional processing rule is applied to the preceding rule. The processing
part can be:

• a raw-element - use this raw-element (as defined by the raw format) as the
default value if input is missing. The default value does not have to be of the
same type (e.g. s=123;? produces an integer segment of value 123 if the
optional s is not matched.

• ! — if input is present do not turn it into a segment (i.e. ignore what was
matched)

• [list of chars] — when applied to a d defines the set of delimiters. The
characters], ^, and \ must be escaped with \ to be used in the list of chars.

Draft Omni Version Details Draft

244

rule description

and Example d=[+-/]; One or several ranges of characters such as a-z can
also be used. Example d=[a-zA-Z0-9_-];

• [^list of chars] — when applied to a d defines the set of delimiters
to be all non alpha numeric except the listed characters. The characters], ^,
and \ must be escaped with \ to be used in the list of chars. One or several
ranges of characters such as a-z can also be used. Example d=[^$];

• praw-element — defines “padding to infinity with specified raw-element”
when applied to an array, or a group enclosing the entire format. Example
format((n.s)=pM;) The pad processing rule is only applied to a parsed
array, not to a default value for an array. If padding is wanted in the default
array value, it can be expressed explicitly in the default value.

• {n} {n,} {n,m} character ranges — with the same meaning as the rules
with the same syntax, but limits the range in characters matched in the pre-
ceding s, S, n, N, q, or a rules. For q the quotes does not count.

\ escape removes the special meaning of a character and must be used if a special
character is wanted as a delimiter. A \\ is needed to include a single \. Escaping
a non special character is superfluous but allowed.

Additional rules:

• if a rule produces a null segment, it is not placed in the result vector

e.g. format(ndddn):10-/-12 → raw:10.12

• Processing (i.e. default values) applied to a group has higher precedence than individual processing
inside the group if the entire group was not successfully matched.

• Parsing is greedy — format(n(.n)*(.s)*) will interpret 1.2.3.hello as
raw:1.2.3.'hello' (as opposed to being reluctant which would produce
raw:1.'2'.'3'.'hello')

• When combining N with ={...}; and the input has a negative number, the ‘-’ character is not
included in the count — format(N{3}N{2}):-1234 results in raw:-123.4

• When combining n or N with ={...} and input has leading zeros — these are included in the
character count.

• An empty version strings is always considered to be an error.

• A format that produces no segments is always considered to be an error.

Note about white space in the raw format:

• white space is accepted inside quoted strings — i.e. 1.'a string' is allowed, but not 1. 2

• white space is accepted between version range delimiters and version strings

i.e. [1.0, 2.0] is allowed.

Note about timestamps Versions based on a timestamp should use s or n and ensure comparability
by using a fixed number of characters when choosing s format.

Examples of Version Formats
Here are examples of various version formats expressed as using the format pattern notation.

Draft Omni Version Details Draft

245

type name pattern comment

osgi n[.n=0;[.n=0;[.S=[a-zA-Z0-9_-];]]] Example: the following are equivalent:

• format(n[.n=0;[.n=0;[.S=[a-zA-
Z0-9_-];]]]):1.0.0.r1234

• raw:1.0.0.'r1234'

• osgi:1.0.0.r1234

• 1.0.0.r1234

triplet n[.n=0;[.n=0;[.S=m;]]] A variation on OSGi, with the same syn-
tax, but where the a lack of qualifier >
any qualifier, and the qualifier may con-
tain any character. The following are all
equivalent:

• format(n[.n=0;[.n=0;
[.S=m;]]]):1.0.0

• raw:1.0.0.M

• triplet:1.0.0

jsr277 n(.n=0;){0,3}[-S=m;] As defined by JSR 277 — but is pro-
visional and subject to change as it is
expected that compatibility with OSGi

will be solved (they are now incompat-
ible because of the fourth numeric field
with default value 0). The jsr277 for-
mat is similar to triplet, but with 4 nu-
meric segments and a ‘-’ separating the
qualifier to allow input of “1-qualifier”
to mean “1.0.0.0-qualifier”. As in triplet
the a lack of qualifier > any qualifier.
The following are all equivalent:

• format(n(.n=0;){1,3}[-S=m;]):1.0.0

• raw:1.0.0.0.M

• jsr277:1.0.0

tripletSnapshot n[.n=0;[.n=0;[-n=M;.S=m;]]] Format used when maven transforms
versions like 1.2.3-SNAPSHOT in-
to 1.2.3-<buildnumber>.<timestamp>
ensuring that it is compatible
with triplet format if missing
<buildnumber>.<timestamp> at the end
(format produces max, max-string if
they are missing).

Example: the following are equivalent:

• format(n[.n=0;[.n=0;[-
n=M;.S=m;]]]):1.2.3-45.20081213:1233

• raw:1.2.3.45.'20081213:1233'

Draft Omni Version Details Draft

246

type name pattern comment

• tripletSnap-
shot:1.2.3-45.20081213:1233

rpm <[n:]a(d?a)*>[-n[dS=!;]] RPM format matches
[EPOCH:]VERSION-STRING[-
PACKAGE-VERSION], where epoch
is optional and numeric, version-string
is auto matched to arbitrary depth >= 1,
followed by a package-version, which
consists of a build number separated
by any separator from trailing platform
specification, or the string ‘src’ to indi-
cate that the package is a source pack-
age. This format allows the platform
and src part to be included in the ver-
sion string, but if present it is not used in
the comparisons. The platform type vs
source is expected to be encoded else-
where in such an IU. Everything ex-
cept the build-number is placed in an ar-
ray as build number is only compared if
there is a tie.

An example of equivalent expressions:

• format(<[n:]a(d?a)*>[-
n[dS=!;]]):33:1.2.3a-23/i386

• raw:<33.1.2.3.'a'>.23

mozilla (<n=0;?s=m;?n=0;?s=m;?>(.<n=0;?
s=m;?n=0;?s=m;?>)*)=p<0.m.0.m>;

Mozilla versions are somewhat compli-
cated, it consists of 1 or more parts sep-
arated by period. Each part consists of
4 optional ‘fragments’ (numeric, string,
numeric,string), where numeric frag-
ments are 0 if missing, and string frag-
ments are MAX-STRING if missing.
The versions use padding so that 1 ==
1.0 == 1.0.0 == 1.0.0.0 etc.

string S a single string

auto a(d?a)* serves like a “catch all”.

Tooling Support
The omni version implementation is not designed to be extended. An earlier idea was that it should be
possible to define named aliases for common formats and that these formats should be parseable by
the omni version parser. The reasons for introducing alias was to make it possible for users to enter
something like triplet:1.0.0 instead of entering the more complicated format. This did however
raise a lot of questions: Who can define an alias, what if the definition of the alias is changed, where
are the alias definitions found. Is it possible to work at all with a version that is using only an alias —
what if I want to modify a range and do not have access to the alias?

Instead, the alias handling is a tooling concern. Tooling should keep a registry of known formats. When
a version is to be presented, the format string is “reverse looked up” in the registry — and the alias
name can be presented instead of the actual format. This way, the version is always self describing.
There is still the need to get “well known formats” and make them available in order to make it easier
to use non OSGi versions in publishing tools — but there is no absolute requirement to support this

Draft Omni Version Details Draft

247

in all publishing tools (some may even operate in a domain where version format is implied by the
domain) — and there is no “breakage” because an alias is missing.

Tooling support can be as simple as just having preferences where formats are associated with names
— the user can enter new formats and aliases. Some import mechanism is probably also nice to have.
Further ideas could be that aliases can be published as IU’s and installed (i.e install a preference).

Existing Tooling should naturally use the new omni version implementation to parse strings — thus
enabling a user to enter a version in raw or format() form. An implementation can choose to present
the full version string (i.e. Version.toString()), or only the original version.

More examples using ‘format’
A version range with format equivalent to OSGi

format(n[.n=0;[.n=0;[.S=[a-zA-Z0-9_-];]]])
:[1.0.0.r12345, 2.0.0]

At least one string, and max 5 strings

format(S=[^.][.S=[^.];[.S=[^.][.S=[^.][.S=[^.]]]]])
:vivaldi.opus.spring.bar5

format(S=[^.](.S=[^.]){0,4}):vivaldi.opus.spring.bar5
=> 'vivaldi'.'opus'.'spring'.'bar5'

At least one alpha or numerical with auto format and delimiter

format(a(d?a)*):vivaldi:opus23-spring.bar5
=> 'vivaldi'.'opus'.23.'spring'.'bar'.5

The texts ‘opus’ and ‘bar’ should not be included:

format(s[.'opus'n[.'bar'n]]):vivaldi.opus23.bar8
=> 'vivaldi'.23.8

The first string segment should be ignored — it is a marketing name:

format(s=!;.n(.n)*):vivaldi.1.5.3

Classic SCCS/RCS style:

format(n(.n)*):1.1.1.1.1.1.1.4.5.6.7.8

Max depth 8 of numerical segments (limited classic SCCS/RCS type versions):

format(n(.n){0,7}):1.1.1.1.1.1.1.4

Numeric to optional depth 8, where missing input is set to 0, followed by optional string where ‘empty
> any’

format(n(d?n=0;){0,7}[a=M;]):1.1.1.4:beta
=> 1.1.1.4.0.0.0.0.'beta'

format(n(d?n=0;){0,7}[a=M;]):1.1.1.4
=> 1.1.1.4.0.0.0.0.M

Single string range

format(S):[andrea doria,titanic]

Range examples
Examples:

• raw:[1.2.3.'r1234',2.0.0]

Draft Omni Version Details Draft

248

• [1.2.3.r1234,2.0.0]

• format(a+):[monkey.fred.ate.5.bananas,monkey.fred.ate.10.oranges]

• [1.0.0,2.0.0] equal to osgi:[1.0.0,2.0.0]

• format(S):[andrea doria,titanic]

• rpm:[7:4.0.3-3.fc9,8:1] - an example KDE Admin version 7:4.0.3-3.fc9 to 8:1

• triplet:[1.0.0.RC1,1.0.0]

FAQ
Is internationalization supported? Alphanumerical segments use vanilla string comparison as inter-
nationalization (lexical ordering/collation) would produce different results for different users.

Are users just using Eclipse and OSGi bundles affected? No, users that only deal within the OSGi

domain can continue to use version strings like before, there is no need to specify version formats.

How does a user of something know which version type to use? This seems very complicated...
To use some non-OSGi component with p2, that component must have been made available in a p2
repository. When it was made available, the publisher must have made it available with a specified
version format. The publisher must understand the component‘s version semantics. A consumer that
only wants to install the component does not really need to understand the format, and the original
version string is probably sufficient. In scenarios where the consumer needs to know more — what
to present is domain specific — some tool could show all non OSGi version strings as “non-OSGi” or
“formatted” with drill down into the actual pattern (or if there is an alias registry available, it could
reverse lookup the format).

Will open (OSGi) ranges produce lots of false positives? Very unlikely. One decision to minimize
the risk was to specify that integer segments are considered to be later than array and string segments.
(We also felt that version segments specified with integers are more precise). Note that to be included
in the range, the required capability would still need to be in a matching name space, and have a
matching name. To introduce a false positive, the publisher of the false positive would need to a)
publish something already known to others (namespace and name) b) misinterpret how its versioning
scheme works, and publishing it with a format of n.n.n.n (or n.n.n.s.<something>), c) having first
learned how to actually specify such a format and how to publish it to a p2 repository and d) then
persuaded users to use the repository.

What happens when a capability is available with several versioning schemes? A typical case
would be some java package that is versioned at the source using triplet notation, and the same package
is also made available using OSGi notation (which btw. is a mistake).

As an example, the following capabilities are found:

• org.demo.ships triplet:2.0.0

• org.demo.ships triplet:2.0.0.RC1

• org.demo.ships osgi:2.0.0

• org.demo.ships osgi:2.0.0.RC1

(Reminder: in triplet notation 2.0.0.RC1 is older than 2.0.0).

The raw versions will then look like this:

• 2.0.0.m

Draft Omni Version Details Draft

249

• 2.0.0.'RC1'

• 2.0.0

• 2.0.0.'RC1'

And the newest is 2.0.0.m (which is correct for both OSGi, and triplet). When specifying a range, the
outcome may depend on if the range is specified with osgi or triplet notation.

• osgi:[1.0.0,2.0.0] == raw:[1.0.0, 2.0.0] => matches the osgi:2.0.0 version only

• triplet:[1.0.0,2.0.0] == raw:[1.0.0.m,2.0.0.m] => matches all the versions, and picks 2.0.0.m as it
is the latest.

i.e. result is correct (assuming the bits are identical as different artifacts would be picked)

Now look at the lower boundary, and assume that the following versions are the (only) available:

• org.demo.ships triplet: 1.0.0 == raw: 1.0.0.m

• org.demo.ships triplet: 1.0.0.RC1 == raw:1.0.0.'RC1'

• org.demo.ships osgi: 1.0.0 == raw:1.0.0

• org.demo.ships osgi:1.0.0.RC1 == raw:1.0.0.'RC1'

When specifying ranges:

• osgi:[1.0.0,2.0.0] == raw:[1.0.0, 2.0.0] => matches all the version, and picks 1.0.0.maxs as this is
the newest

• triplet:[1.0.0,2.0.0] == raw:[1.0.0.m,2.0.0.m] results in 1.0.0.m as it is the only available version
that matches.

i.e. the result is correct and here the exact same version is picked.

The “worst OSGi/triplet crime” that can be committed is publishing an unqualified triplet version as
an OSGi version (if the same version is not also available as a triplet) as this would make that version
older than what it is even when queried using a triplet range.

What if the publisher of a component changes versioning scheme — what happens to ranges? The
order among the versions will be correct as long as the versions are published using the correct notation.
The only implication is that users must understand that a query for triplet:1.2.3 means raw:1.2.3.m
— e.g. osgi:[1.0.0,2.0.0] != triplet:[1.0.0,2.0.0] (OSGi upper range of 2.0.0 would not match triplet
published 2.0.0, and triplet lower range of 1.0.0 would not match OSGi published 1.0.0).

Why not use regexp instead of the special pattern format? This was first considered, and would
certainly work if the pattern notation was augmented with processing instructions, or if the regexp is
specified as a substitution that produces the raw format. Such specifications would typically be much
longer and more difficult for humans to read than the proposed format, except possibly for regexp
experts :). Another immediate problem is that regexp breaks the current API requirement. It is not
included in execution environment CDC-1.1/Foundation-1.1 required by p2.

Pattern parsing looks like it could have performance implications — what are the expectations
here?A mechanism similar to regular expressions is used — when a format is first seen it is compiled
to an internal structure. The compiled structure is cached and reused for all subsequent occurrences of
the same format. Once parsed, all comparisons are made using the raw vector, which is comparable
in speed to the current implementation (in many cases it is faster).

Also note that the Engine does not have to parse and apply the format to the original string unless code
explicitly asks for it, and this is not the normal case during provisioning.

Draft Omni Version Details Draft

250

Why not just let the publisher deal with transforming the version into canonical form? The
proposal allows this — the publisher is not required to make the format available. We think this is
reasonable in domains where humans are not involved in the authoring (or the consumption).

There are several reasons why it is a good idea to include the original version string as well as the
format:

• the original version strings needs to be kept as users would probably not understand the canonical
representation in many cases.

• if the transformation pattern is not available a user would not be able to create a request without
hand coding the canonical form

• making the transformation logic used by one publisher available to others would mean that all
publishers must have extensions that allow plugging in such logic, and the plugins must be made
available

Would it be possible to use the OSGi implementation of version as the canonical form? The long
answer is: To be general, the encoding would need to be made in the qualifier string part of the OSGi
version. An upper length for segments must be imposed, numerical sections must be left padded with
“0” to that length, and string segments must be right padded with space (else string segment parts may
overlap integer segments parts). The selected segment length would need to be big enough to allow
the longest anticipated string segment. A fixed length string representation of MAX must be invented.
A different implementation would still be needed to be able to keep the original version strings. The
short answer is: no (and this is the reason for implementing the omni version in the first place).

Why not use an escape in string segments to be able to have strings with a mix of quotes? There
are several reasons:

• this would mean that the version string would need to be preprocessed as it would not have \ em-
bedded from the start

• all version strings that use \ as a delimiter would need to be pre-processed to escape the \

• to date, we [...the authors of this proposal] have not seen a version format that requires a mix of
quotes

• In the unlikely event that such strings are present it is possible to concatenate several strings in the
raw format.

• parsing performance is affected

Which format should I use? If you have the opportunity to select a versioning scheme — stick with
OSGi.

Resources
• mozilla toolkit version format [https://developer.mozilla.org/En/Toolkit_version_format]

• rpm version comparison [http://linux.duke.edu/~mstenner/docs/rpm-version-cmp]

• sun spec version format [http://java.sun.com/j2se/1.5.0/docs/guide/deployment/deployment-guide/
version-format.html]

https://developer.mozilla.org/En/Toolkit_version_format
https://developer.mozilla.org/En/Toolkit_version_format
http://linux.duke.edu/~mstenner/docs/rpm-version-cmp
http://linux.duke.edu/~mstenner/docs/rpm-version-cmp
http://java.sun.com/j2se/1.5.0/docs/guide/deployment/deployment-guide/version-format.html
http://java.sun.com/j2se/1.5.0/docs/guide/deployment/deployment-guide/version-format.html
http://java.sun.com/j2se/1.5.0/docs/guide/deployment/deployment-guide/version-format.html

Draft Draft

251

Appendix D. Bookmarks and OPML
Bookmarks

A note about bookmarks

Buckminster supports including bookmarks containing information about web pages and RSS

feeds in the component meta data since Eclipse 3.4. The mechanism is based on placing a spe-
cial buckminster.opml file inside a component. Although still supported, our current recom-
mendation is to only use this mechanism in components devised for building and publishing
purposes.

Background. There is usually a lot of additional “project” information around a component, and
some early attempts were made to create a well defined model. We soon realized that “additional
interesting information” was difficult to capture with full semantics — what first looked as a simple
exercise, «Let’s see, there is usually a wiki, and a bug issue tracking system, and a home page, and
release information, and news, and..., and... » — the list just got longer and longer, then got turned
around to «Suppose we did create a model with full semantics — what is Buckminster actually sup-
posed to do with it? It is after all intended for human consumption.»

We still wanted to make it possible to share content that relates to a component, such as a links to
wiki, Bugzilla, and documentation, to RSS feeds like a feed with information about new versions, open
and closed issues in Bugzilla, examples feed, a “checkin feed”, or a feed with the latest available
plugins, etc., but we wanted a more relaxed model, and dropped the semantic requirement, leaving the
semantics of the information to the human users.

We selected the OPML 2.0 XML definition for Outline Processing — essentially describing a bookmark
structure of links and feeds — because of its simplicity and that it is directly supported in some RSS

readers.

This means that a component type extension automatically can generate meta data from components
that have extra information for a community of users, and make this available in the form of OPML.
Buckminster recognizes that any component can have an OPML file embedded in the component (by
default it is called buckminster.opml and placed in the root of the component).

Warning — Do not use bookmarks in regular components

After having created this solution and started using it, we have found issues with its
use, and now recommend that bookmarks should not be used inside regular components.
The reasons for this are that it is hard to maintain; if there is a need to update the book-
marks for a published component, you need to go back to the source and create a new
version, and bookmarks are typically authored late, and are typically not authored by
the same people that developed the components. Some organizations also have problems
with external links as strict security policies may prevent users within an organization
to visit unauthorized sites — the embedding of feeds and bookmarks becomes a prob-
lem as these have to be filtered out. There is absolutely no harm however in including
bookmarks in components used specifically for building (a component where you keep
RMAPs, CQUERYs etc.) as an information sharing mechanism.

Future. The Buckminster project’s intention is to create a more flexible mechanism where anyone
can associate bookmarks with components but using a less intrusive mechanism.

How bookmarks are presented. Buckminster includes two views that makes use of the OPML

feature; the Component Explorerthat shows all components known to Buckminster, and a Component
Outline that follows the current selection showing the related component information. Both views

Draft Bookmarks and OPML Draft

252

present the OPML bookmark information and provides navigation to the links and feeds. There is also
a Buckminster extension point that allows Buckminster to be integrated with a RSS reader.

Here is a screenshot of the Component Outline, (which also shows an integration between Buckminster
and the RSS Owl Reader).

Authoring OPML

Warning

Before adding bookmarks to a regular component, please see the previous section re-
garding recommendations.

It is easy to include RSS feeds and links in your components — all you have to do is to place a
buckminster.opml file in the root of your component.

The OPML file itself has a very simple XML syntax. You start of with the standard declaration that the
file is an XML file, and then declaring that you are using OPML 2.0.

<?xml version="1.0" encoding="ISO-8859-1"?>
<opml version="2.0">

This is followed by a head declaration where some information about the content of the OPML file
is kept.

<head>
 <title>Component information for org.demo.exampleComponent</title>
 <dateCreated>Mon, 14 Apr 2008 14:18:51 GMT</dateCreated>
 <ownerName>Your name, or name of project</ownerName>
 <ownerEmail>contact.us@somewhere.com</ownerEmail>
</head>

And after the head comes the body part that consists of a sequence of outline elements — they can
be nested if you want to use “subfolders”.

Draft Bookmarks and OPML Draft

253

<body>
 <!-- outline elements --!>
</body>

A regular link (non feed) is expressed in an outline element like this:

<outline text="Cloudsmith"
 description="Cloudsmith's site"
 url="http://www.cloudsmith.com"
 language="unknown"
 title="Cloudsmith"
 type="link"
/>

And a feed is just as simple:

<outline
 text="My Feed"
 description="This is my feed"
 htmlUrl="http://www.somewhere.org"
 language="unknown"
 title="My Example Feed"
 type="rss"
 version="RSS2"
 xmlUrl="http://feeds.somewhere.org/examplefeed"
/>

In both of the above examples — the ‘text’ attribute is the label typically used in the RSS reader’s
bookmarks.

Note

Some OPML viewers use the title instead, and the reader may or may not show the
description.

Regular links (type="link") should use the url attribute for the link, and a feed (type="rss")
should use the xmlUrl attribute for the feed, but also add a link to a human readable web page in the
htmlUrl attribute, and this is often a link to the page where it is possible to subscribe to the feed,
or read its content online.

In the feed example above, the feed type is set to ‘rss’ — and the version is set to ‘RSS2’. A feed
should always have the type set to rss (including atom feeds, but for atom feeds, the OPML specifi-
cation is vague. In practice, a RSS reader will figure things out on it’s own, and a version of ‘atom’
works just fine. The feed type and version are mainly indication for a processor of the OPML itself, a
feed reader will look at the actual feed to determine its type anyway.

You can read more about the OPML 2.0 standard at http://www.opml.org/spec2.

And then finally, a subfolder is very simple to create:

<outline text="A Subfolder">
 <outline />
 <outline />
</outline>

Even if the creation of a component’s OPML is done via manual XML editing, we hope the examples
above show that it is really quite easy.

http://www.opml.org/spec2

Draft Draft

254

Colophon
How to print this book. This book was produced by using the following specifications and tools:

• DocBook 4.5 schema

• Serna 4.1 free — for editing

• Apache FOP 0.95 — for producing PDF output

• Doc Book XSLT style sheets 1.75.1

Parameter settings are required to set the font size for monospaced verbatim areas as code examples otherwise
would be truncated. A size of 8pt is required.

Parameters also needs to be set to produce PDF “bookmarks” (i.e. a PDF TOC). This is done on the command line
as a directive to xsltproc.

Tools used. This book was authored by using the following tools:

• Serna 4.1 free — for DocBook editing

• InkScape 0.46 — for vector graphics

• LineForm 1.5 — for vector graphics

• graphviz 2.24 — for graph generation

	Eclipse Buckminster
	Table of Contents
	Preface
	Why use Buckminster?
	Why read this book
	This book’s audience
	Conventions used in this book
	Getting examples from this book
	Request for comment
	Acknowledgements

	Part I. Introduction
	Chapter 1. Eclipse
	Eclipse technology
	Equinox
	Platform
	Java Development Tools (JDT)
	Plugin Development Environment (PDE)
	Rich Client Platform (RCP)
	p2

	The Eclipse component types
	Plugins, features and OSGi bundles
	Bundle
	Plugin
	Feature

	Fragments
	Products

	The Workspace
	The Target Platform
	Launch configuration
	ANT

	Chapter 2. p2
	The Installable Unit
	Metadata repository
	Artifact repository
	Combined / co-located repositories
	Profile
	p2 internals
	Categories
	Publishing
	Installing
	The SDK agent
	The director application
	The p2 Installer
	The EPP wizard
	The Buckminster installer

	Shipping
	Summary

	Chapter 3. Buckminster Introduction
	Functional Overview
	Getting Components
	Component
	Component attributes
	Component actions
	Actors
	Turning something into a component
	Decorating a component with additional advice

	Summary

	Part II. Buckminster
	Chapter 4. Resource Map
	The search for the component
	Creating a RMAP
	Editing a RMAP
	Designing a RMAP — some advice
	Locators
	How to write patterns
	Fail on error
	Parameterized locator
	Redirects
	Locators summary

	Search paths
	Providers
	Reader type
	CVS reader
	SVN reader
	Perforce (P4) reader
	Maven 1 and 2 readers
	Eclipse import reader
	URL reader
	URL catalog reader
	URL zipped reader
	Local reader

	Providers and authentication
	Component types
	Advice regarding components with no meta data

	Version converter
	Handling indirection
	The matcher

	PDE map — extended provider

	Properties
	The RMAP XML document
	Summary

	Chapter 5. Component query
	One query to get them all...
	Opening an Existing CQUERY
	Creating a new CQUERY
	The CQUERY Editor
	The editor main tab
	Advisor nodes
	General attributes
	Attribute qualification
	Special requirements
	Resolution scope
	Selection criteria
	Override (version)
	Overlay
	Properties
	Documentation

	Materialization wizard
	Advanced settings
	Watching the paint dry...

	Resolve and materialize
	Summary

	Chapter 6. Components
	The component’s anatomy
	CSPEC and CSPEX

	The CSPEC editor
	Viewing a CSPEC
	Creating a CSPEC, or CSPEX
	Name and version
	Attributes
	Reference to the component itself
	Artifacts
	Groups
	Actions
	Generators
	Dependencies
	Automatically generated meta data
	Bookmarks

	Chapter 7. Bill of Materials (BOM)
	The BOM’s anatomy
	Materializing a BOM
	Viewing a BOM
	Summary

	Chapter 8. MSPEC — Materialization Specification
	Creating a MSPEC
	Editing a MSPEC
	The MSPECModus Operandi
	MSPEC in XML
	Using properties
	Rules

	Materializing a MSPEC
	Summary

	Chapter 9. Versions
	Omni Version introduction
	Buckminster and Omni Version
	Buckminster’s named formats
	Version ranges

	Chapter 10. Properties
	Property expansion
	Setting property value with “property”
	Using “propertyElement”
	Property functions
	Replace function
	Split function

	Precedence
	Typical property use

	Chapter 11. Buckminster User Interface
	Component explorer
	Component outline
	New file wizards
	BOM visualizer
	Invoking actions
	Editors
	Preferences

	Chapter 12. Troubleshooting
	Installation Issues
	Headless issues
	Resolution issues
	Materialization issues
	Execution issues
	Component issues

	Part III. Examples
	Chapter 13. Building a p2 Update Site
	Creating the content
	Creating the plugin
	Creating the feature
	Creating the site feature

	Building the site
	Using the update site

	Chapter 14. Building a Legacy Update Site
	Chapter 15. Hello XML World
	Without Buckminster
	With Buckminster in use
	The RMAP
	The CQUERY
	Running the example
	How the code is structured
	org.demo.worlds
	org.demo.xml.provider

	Chapter 16. Building RCP Products
	Getting the code
	Structure
	The RMAP
	Using ‘useBuild’
	Building the update site
	Installing the product
	Installation using the p2 installer
	Installer properties
	Using the properties
	Running the installer

	Creating an installable zip

	The CSPEX

	Chapter 17. POJO Projects
	Chapter 18. Non Java Projects
	Chapter 19. RMAP Examples
	The ‘dogfood’ RMAP

	Part IV. Reference
	Component Types
	buckminster
	eclipse.feature
	jar
	maven, maven2
	osgi.bundle
	PDE (abstract)
	POJO (abstract)

	Actors
	ant actor
	copyTargetAction actor
	eclipse.build actor
	eclipse.clean actor
	executor actor
	fetcher actor
	jarprocessor actor
	jdt.ant actor
	null actor
	p2SiteGenerator actor
	simulation actor

	Buckminster ANT tasks
	filesetgroup support
	buckminster.importResource
	buckminster.lastTimestamp
	buckminster.lastRevision
	buckminster.substitute
	buckminster.versionQualifier
	buckminster.signatureCleaner
	buckminster.perform

	Filters
	target.arch
	target.os
	target.nl
	target.ws

	Headless Commands
	buckminster
	listcommands (lscmds)
	build (make)
	clean
	get preference (getpref)
	import (resolve)
	list preferences (lsprefs)
	perform
	set preference (setpref)
	unset preference (unsetpref)
	import target definition (importtarget)
	list target definitions (lstargets)
	export preferences (exportprefs)
	import preferences (importprefs)
	install
	list site
	uninstall

	Buckminster XML Schemas
	bc (Common-1.0)
	cs (CSpec-1.0)
	cq (CQuery-1.0)
	md (MetaData-1.0)
	mp (MavenProvider-1.0)
	opml (OPML-2)
	pmp (PDEMapProvider-1.0)
	rm (RMap-1.0)
	xh (xhtml)
	xi (XMLSchema-instance)

	Part V. Appendixes
	Appendix A. Installation
	Installing for Eclipse SDK
	Installing the Headless Product
	Connectors
	Subversion (SVN)
	Perforce (P4)

	Configuring Eclipse for XML Editing

	Appendix B. Extending Buckminster
	Core extension
	Version type

	RMAP extensions
	Extending Reader Type
	Extending Component Type
	Extending Version Converter

	CQUERY Extensions
	Custom resolver

	Appendix C. Omni Version Details
	Introduction
	Background
	Implementation
	Version
	Comparison
	Raw and Original Version String
	Omni Version Range
	Other range formats

	Format Specification
	Format Pattern Explanation
	Examples of Version Formats
	Tooling Support
	More examples using ‘format’
	FAQ
	Resources

	Appendix D. Bookmarks and OPML
	Bookmarks
	Authoring OPML

