
© Martin Weiss Informatik AG

Portlet Standard
JSR 168 / JSR 286

Version 1.0
Martin Weiss

© Martin Weiss Informatik AG 1

Agenda

• JSR 168 2
• JSR 168 – What Is Missing ? 22
• JSR 286 25
• Portlet Events 28
• Public Render Parameters 32
• Events vs. Public Render Parameters:

Decision Criteria 34
• Summary 37
• Backup 39

© Martin Weiss Informatik AG 2

JSR 168

© Martin Weiss Informatik AG 3

Introduction

• Different portal server vendors have defined different portlet APIs
• Incompatible portlet API interfaces create problems

– Application and content providers must implement different portlets for different portal
servers

– Portal customers are quickly locked into a particular portal solution
• We need a portlet specification standardization to provide interoperability

between portlets and portals to overcome these problems

© Martin Weiss Informatik AG 4

JSR 168 and the Java Community Process

• Java Standardization Request 168 (JSR 168) was specified in the Java
Community Process (JCP) -> http://jcp.org

– Expert Group co-led by IBM and Sun
– JSR 168 v1.0 was approved in October 2003
– Reference implementation of JSR 168 v1.0 provided by IBM, available at Apache ->

http://jakarta.apache.org/pluto
– Compliance test suite available from Sun
– Wide market adoption: supported by many commercial and open source portals

• BEA, IBM, Oracle, Sun, Tibco, Vignette, …
• Apache, eXo, JBoss, Liferay, uPortal, …

• JSR 168 defines a portlet specification with the following goals:
– Simple programming model
– Portability
– Alignment with Servlet Specification v2.3

© Martin Weiss Informatik AG 5

Basic Concepts

• Portal, Portlet Container, Portlets

© Martin Weiss Informatik AG 6

Basic Concepts

• Characteristics of Portal
– Web application which aggregates different applications into one page with a

common look and feel for the portal user
– Provides single sign-on and sophisticated personalization features which enables

customized content to users
– Client request is processed by the Portal Web application, which retrieves the

portlets on the current page for the current user. The Portal Web Application, i.e. the
front-end servlet, then calls the Portlet Container for each portlet to retrieve its
content through the Container Invoker API

© Martin Weiss Informatik AG 7

Basic Concepts

• Characteristics of JSR 168 Portlet Container
– Extension of the Servlet Container
– Runs the portlets, provides them with the required runtime environment, and

manages the portlet lifecycle
– Provides persistent storage for portlet preferences (user specific portlet

customization)
– The Portlet Container calls the portlets through the Portlet API
– The Container Provider Service Provider Interface (SPI) enables the Portlet

Container to retrieve information from the Portal

© Martin Weiss Informatik AG 8

Basic Concepts

• Portal page
– Represents a complete markup document and aggregates several portlet windows

(via Portal Web Application)
– Navigation mechanism to enable the user to navigate to other portal pages

© Martin Weiss Informatik AG 9

Basic Concepts

• Characteristics of JSR 168 Portlet API

– Technical point of view
• distinct, functional components of a portal
• Implemented in Java, based on a well-defined portlet API
• Managed by portal through a portal container
• Many similarities with the Servlet API (e.g. deployment, class loading, lifecycle)

– User perspective
• Functional entities represented on a portal page (Portlet window)

© Martin Weiss Informatik AG 10

Basic Concepts

• Portlet window
– Representation of a portlet on a Portal page
– A portlet window consists of:

• Title bar, with the title of the portlet
• Decoration, including buttons to change the window state of the portlet (such as maximize or

minimize the portlet) and buttons the change the mode of a portlet (such as show help or
edit the predefined portlet settings)

• Content produced by the portlet (also called a markup fragment)

© Martin Weiss Informatik AG 11

Scope of JSR 168

• What does JSR 168 define ?
– Portlet API and Portlet Container
– Contract between the API and the container
– Deployment unit: portlet application

• What is out of scope of JSR 168 ?
– Aggregation, layout management
– Page personalization and configuration engines
– Portal administration and configuration

© Martin Weiss Informatik AG 12

Portlet Modes

JSR 168 defines three categories of portlet modes
• Modes which are required

– View: Display the portlet output (default mode)
– Edit: Displays one or more views that let the user personalize portlet preferences
– Help: Display help views

• Optional custom modes
– About: Display the portlet purpose, origin, version, and other information
– Config: Display one or more configuration views that let administrators configure

portlet preferences which are valid for all users
– Edit_defaults: Set the default values for the modifiable preferences that are typically

changed in the Edit screen
– Preview: Render output without the need to have back-end connections or user

specific data available
– Print: Display a view which is suitable for printing

© Martin Weiss Informatik AG 13

Window States

• A window state is an indicator of the amount of portal page space assigned to
the content generated by the portlet. The portlet container provides the current
window state to the portlet, and the portlet uses the window state to decide how
much information it should render. However, portlets can also programmatically
change their window state while processing an action event

• JSR 168 defines the following window states:
– Normal: The portlet shares the space with other portlets and should take this into

account when producing its output
– Maximized: No other portlets are displayed, providing maximum space for the

portlet’s use
– Minimized: Only the portlet’s title bar is displayed

• In addition the these window states, JSR 168 allows the portal to define custom
window states

© Martin Weiss Informatik AG 14

Portlet MVC architecture

© Martin Weiss Informatik AG 15

Two Phase Processing in JSR 168

© Martin Weiss Informatik AG 16

Portlet Class

• The abstract javax.portlet.GenericPortlet class provides the default
implementation for the javax.portlet.Portlet and javax.portlet.PortletConfig
interface

• User defined portlets should derive from GenericPortlet and typically override
the following method:

– processAction, to handle action request
– doView, to handle render requests when in VIEW mode
– doEdit, to handle render request when in EDIT mode
– doHelp, to handle render request when in HELP mode
– init and destroy, to manage resources that are held for the life of the portlet

Normally, there is no need to override the render method

© Martin Weiss Informatik AG 17

Two Types of Portlet Requests / Response

• processAction (ActionRequest, ActionResponse)
– Render parameters are reset
– Portlet can set new render parameters via ActionResponse which are then available

in the render request
• render (RenderRequest, RenderResponse)

– Invoked on every request to the portal to create portlet markup fragments
– Portal keeps resending last set of render parameters

• Use render parameters or session to transfer data between the action and
render phase

© Martin Weiss Informatik AG 18

Portlet data model

• JSR 168 defines different mechanisms for the portlet to access transient and
persistent data

• Persistent state
– Initialization parameters, defined in the portlet deployment descriptor (portlet.xml)
– Portlet preferences

o User-independent (Administrator) preferences; read-only preferences
o User-dependent preferences

• Transient state
– Navigational state defines how the current view of the portlet is rendered and is

specific to the portlet window. Navigational state consist of portlet mode, window
state and render parameters

– Session: The portlet can store data in the session with either global scope
(“application scope”), to let other components of this Web application access the
data, or portlet scope, which is private to the portlet

© Martin Weiss Informatik AG 19

Portlet Packaging and Descriptors

• Portlets are packaged as portlet applications in WAR files
• Portlet deployment description (portlet.xml) describes the portlet application and

its portlets
– Top element is <portlet-app>; contains <portlet> definitions

• Web deployment description (web.xml) describes the web application

© Martin Weiss Informatik AG 20

Portlet Deployment Descriptor Schema

© Martin Weiss Informatik AG 21

Portlet Deployment Descriptor Schema

© Martin Weiss Informatik AG 22

JSR 168 – What Is Missing ?

© Martin Weiss Informatik AG 23

Inter-portlet communication

• Only supported within the same portlet application using session attributes

• Target portlets will only “see” messages during next render request

• Portlets should not update their state during a render request: “event” handling
not really possible

© Martin Weiss Informatik AG 24

Serving non-html resources

• A portlet can only render html fragments

• Have to fallback/delegate to the servlet container

• Requires coordination between portlet and servlet

© Martin Weiss Informatik AG 25

JSR 286

© Martin Weiss Informatik AG 26

New JSR 286 features

• Portlet coordination
– Portlet events
– Public render parameters

• Resource serving
– Portlet acts as a proxy to a resources, e.g. PDF documents
– Portlet has full control over the output stream (no portal aggregation)
– Introduction of a new URL type, resource URLs.

Resource URLs trigger the serveResource lifecycle method on the
ResourceServingPortlet interface

– Allows better AJAX support

• Java 5, aligned with J2EE 1.4
– Java 5 annotation support in javax.portlet.GenericPortlet

• Final version submitted in February 2008

© Martin Weiss Informatik AG 27

Backward compatibility

• JSR 286 was designed to avoid breaking binary code compatibility with JSR
168 and to maintain compatible behavior for all API methods

• Backward compatibility also includes the deployment descriptor in which JSR
286 added new entries, but did not change existing ones (Migrate JSR 168
portlets by changing the one line in the portlet deployment descriptor that
references the schema to the new V2.0 portlet deployment descriptor schema)

© Martin Weiss Informatik AG 28

Portlet Events

© Martin Weiss Informatik AG 29

JSR 286 eventing

• Loosely coupled publish/subscribe model
– Does not require that the different portlet developers know about each other’s work
– Events are send and received during action phase

• At development time, define the date that a portlet understand in the portlet.xml
and implement the event specific methods in the portlet class

• At deployment time, create the action connections between the portlets (not
part of the specs)

© Martin Weiss Informatik AG 30

Event declaration

• Portlet events are declared in portlet.xml

– <event-definition> using Qnames or default namespace

– A portlet specifies which events it wants to send (<supported-publishing-event>) or
receive (<supported-processing-event>) as part of the portlet definition

• Permits portlets to send and receive complex Java objects (payload types)
– XML serialization mechanism based on JAXB 2.0

© Martin Weiss Informatik AG 31

Event flow

© Martin Weiss Informatik AG 32

Public Render Parameters

© Martin Weiss Informatik AG 33

Public render parameter positioning

• Besides portlets events, public render parameter represents an alternative way
for coordination between portlet

=> more lightweight communication alternative compared to portlet events

• From a programmer’s point of view, a public render parameter is handled
almost identically to an ordinary (private) render parameter:

The portlet can set and read this parameter using the same API methods that
JSR 168 introduced for private render parameters.

The important difference is that a public render parameter is declared in the
portlet.xml deployment descriptor and therefore becomes an external interface
of the portlet.

© Martin Weiss Informatik AG 34

Events vs. Public Render Param:
Decison Criteria

© Martin Weiss Informatik AG 35

Portlet events features

• They require explicit portlet code to send and receive
• They can contain complex information
• They allow fine-grained control by setting up different sorts of wires between

portlets (on-page or cross-page)
• They can trigger cascaded updates with different information. For example,

portlet A can send event X to portlet B, which in turn sends a different event Y
to portlet C

• They cause increasing processing overhead as the number of communication
links grows

• They must be initiated by some explicit user interaction (normally, by clicking an
action link in a portlet), and they cannot be used to set up a coordinated view
when first jumping to a page

© Martin Weiss Informatik AG 36

Public render parameter features

• They do not usually require explicit coding but only a declaration in the
portlet.xml deployment descriptor

• They are limited to simple string values

• They do not require explicit administration (“Wiring”) to set up coordination

© Martin Weiss Informatik AG 37

Summary

© Martin Weiss Informatik AG 38

Summary

• JSR 168 provides the overall UI component model

• JSR 286 focuses on building integrated composite applications out of these
components

• Portlet technology similar to Servlet API (plus extensions)

• Wide market adoptions (commercial and open source portals)

© Martin Weiss Informatik AG 39

Backup

© Martin Weiss Informatik AG 40

JSR 168

© Martin Weiss Informatik AG 41

Core interfaces

• javax.portlet.PortletContext
– The PortletContext interface defines a portlet view of the portlet container. Attributes

stored in the context are global for all users and all components in the portlet
application

– The context provides access to the portlet request dispatcher
– Interface methods

o void setAttribute (String, String)
o void removeAttribute (String)
o String getAttribute (String)
o java.util.Enumeration getAttributeNames ()
o javax.portlet.PortletRequestDispatcher getRequestDispatcher ()

© Martin Weiss Informatik AG 42

Core interfaces

• javax.portlet.PortletRequestDispatcher
– The PortletRequestDispatcher interface defines an object that receives requests from

the client and sends them to the specified resources (such as a servlet, HTML file,
ore JSP file) on the server

– The portlet container creates the PortletRequestDispatcher object, which is used as
a wrapper around a server resource located at a particular path or given by a
particular name

– Interface method
o void include (RenderRequest, RenderResponse)

© Martin Weiss Informatik AG 43

Core interfaces

• javax.portlet.PortletRequest
– The PortletRequest defines the base interface to provide client request information to

a portlet. The portlet container uses two specialized versions of this interface when
invoking a portlet, ActionRequest and RenderRequest

– Interface methods:
o String getParameter (String)
o java.util.Enumeration getParameterNames ()
o javax.portlet.PortletSession getPortletSession ()
o javax.portlet.PortletPreferences getPreferences ()
o javax.portlet.PortletMode getPortletMode ()
o javax.portlet.WindowState getWindowState ()
o void setAttribute (String, Object)
o Void removeAttribute (String)
o String getAttribute (String)

© Martin Weiss Informatik AG 44

Core interfaces

• javax.portlet.ActionResponse
– The ActionResponse interface represents the portlet response to an action request. It

extends the PortletResponse interface
– The portlet container creates an ActionResponse object and passes it as argument

to the portlet’s processAction method
– Interface methods:

o void sendRedirect (String)
o void setPortletMode (javax.portlet.PortletMode)
o void setRenderParameter (String, String)
o void setWindowState(javax.portlet.WindowState)

© Martin Weiss Informatik AG 45

Core interfaces

• javax.portlet.PortletSession
– The PortletSession interface provides a way to identify a user across more than one

request and to store transient information about the user
– A PortletSession is created per user client per session scope
– The PortletSession interface defines two scopes for storing objects

(APPLICATION_SCOPE, PORTLET_SCOPE)
– Interface methods:

o void setAttribute (String, Object)
o void setAttribute (String, Object, int)
o void removeAttribute (String)
o void removeAttribute (String, int)
o Object getAttribute (String)
o Object getAttribute (String, int)
o void invalidate ()

© Martin Weiss Informatik AG 46

Core interfaces

• javax.portlet.PortletPreferences
– The PortletPreferences interface allows the portlet to store user specific data
– There are two different types of preferences:

o Modifiable preferences – theses preferences can be changed by the portlet in any standard
mode (EDIT, HELP, VIEW). Per default every preference is modifiable

o Read-only preferences – these preferences cannot be changed by the portlet in any
standard portlet mode, but may be changed by administrative modes. Preferences are read-
only, if they are defined in the deployment descriptor with read-only set to true

– Interface methods:
o String getValue (String, String)
o java.util.Enumeration getNames ()
o void reset (String)
o void setValue (String, String)
o void store ()

© Martin Weiss Informatik AG 47

JSR 286

© Martin Weiss Informatik AG 48

Annotations in javax.portlet.GenericPortlet

• ProcessAction
– This annotation allows to annotate a method that should process a specific action

• ProcessEvent
– Allows to annotate methods that should process specific events

• RenderMode
– Allows to annotate methods that should render a specific portlet mode

© Martin Weiss Informatik AG 49

Portlet Events

© Martin Weiss Informatik AG 50

Sample: portlet.xml

© Martin Weiss Informatik AG 51

Event programming model

• New core interfaces
– javax.portlet.Event
– javax.portlet.EventPortlet
– javax.portlet.EventRequest
– javax.portlet.EventRespones
– javax.portlet.StateAwareResponse

© Martin Weiss Informatik AG 52

New core interfaces

• javax.portlet.Event
– Interface methods

o String getName ()
Get the local part of the event name

o javax.xml.namespace.QName getQName ()
Get the event QName

o java.io.Serializable getValue ()
Get the event payload

© Martin Weiss Informatik AG 53

New core interfaces

• javax.portlet.EventPortlet
– Implementing class: javax.portlet.GenericPortlet
– Interface methods

o void processEvent (javax.portlet.EventRequest, javax.portlet.EventResponse)
Method invoked during action phase

© Martin Weiss Informatik AG 54

New core interfaces

• javax.portlet.EventRequest
– Superinterface: javax.portlet.PortletRequest
– The portlet container creates an EventRequest object and passes it as argument to

the portlet’s processEvent method
– Interface methods

o javax.portlet.Event getEvent ()

© Martin Weiss Informatik AG 55

Sample: portlet classes

© Martin Weiss Informatik AG 56

Public Render Parameters

© Martin Weiss Informatik AG 57

Sample: portlet.xml

© Martin Weiss Informatik AG 58

Sample: portlet classes

© Martin Weiss Informatik AG 59

Martin Weiss Informatik AG
Untere Roostmatt 8
6300 Zug

Author

Martin Weiss

martin.weiss@mw-informatik.ch

Contact

