

Galder Zamarreño
Infinispan Core Developer

JBoss by Red Hat

Who am I?

● Core developer for Infinispan and JBoss
Cache

● Contributor and committer on JBoss AS,
JGroups, Hibernate, JBoss Portal, etc.

Agenda

● What is Infinispan?
● Relationship with JBoss Cache
● New features
● Demo

What is Infinispan?

● Highly scalable data grid platform
– 100% open source licensed (LGPL)
– Based on some JBoss Cache code

● JBoss Cache = Tree structured cache
– Replicated using JGroups
– Supports JTA, evictions, cache stores, etc.

● New JSR-107(JCACHE) compatible API
– Cache extends Map
– Tree adapter API available for legacy apps

More scalable than JBoss Cache

● Internal structures more memory efficient
– Tree --> Flat concurrent map
– Eviction queue --> Ordered container

● Marshalling based on JBoss Marshalling
– Smaller payloads + Poolable streams

● Early benchmarks
– Significant performance improvements

Memory Consumption Comparison

● Test: Put 2 million serial objs into cache
● JBoss Cache 3.1: With 2gb, 1 million objs

Memory Consumption Comparison (2)

● Infinispan 4.0.0.Alpha4: With 700mb, 2
million objs

...borrowing best bits from JBoss Cache

● Multiversion Concurrency Control (MVCC)
– New locking strategy in JBoss Cache 3.0
– Readers never locked!
– Writers work on copy of cache entry

● Non-blocking state transfer
– Senders generate state without stopping
– Crucial when state is large

New features - distributed cache

● Consistent hash based distribution
– Will allow us to scale to bigger clusters

● Lightweight, L1 cache for efficient reads
– On writes, L1 invalidated

● Dynamic rebalancing
● Pluggable consistent hashing algorithms
● Already available in 4.0.0.Alpha5!

New features - asynchronous API

● putAsync(), putIfAbsentAsync()
– Do not block, return a j.u.c.Future
– Future.get() blocks till call completes

● Best of both sync and async worlds
– Future.get() provides sync guarantees
– Greater parallelism

● Already available in 4.0.0.Alpha5!

New features - Eager locking

● By default: locks acquired at commit time
– Problematic if updating a shared counter

● New: Acquiring locks eagerly in cluster
– Explicit: via API

● cache.lock(k) // acquire cluster wide lock on k

– Implicit: via configuration
● Each modification implicitly acquires

cluster wide lock if not already held.

● Already available in 4.0.0.Alpha5!

New features - client/server module

● Server module = cache wrapper over TCP
● Client module = cache proxy
● Highly pluggable!

– Transport: XNIO, Netty, etc.
– Protocols: memcached, custom, etc.

● Failover and load balancing
● Usable with current memcached clients
● Drop-in replacement memcached servers

New features - fine-grained model

● Successor to POJO Cache
● JPA-like interface: persist, find, remove...
● Will not rely on AOP, javassist...etc

– More robust and easier to use/debug

New features - Others

● Query module
– Execute Lucene queries against cache
– Based on JBoss Cache - Searchable

● Distributed executors
– Runnable/Callable executed on data set
– Moves code, not data, around cluster

The End

● Demo
● Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

