
®

© Copyright Malina Software

Model-Driven Development: Its Essence
and Opportunities
-- A Melodrama in 3 Parts --

Bran Selic
President, Malina Software Corp. and Carleton U.

selic@acm.org

© Copyright Malina Software

PART I: ON PRESENT-DAY PART I: ON PRESENT-DAY
SOFTWARE DEVELOPMENT SOFTWARE DEVELOPMENT

TECHNOLOGIESTECHNOLOGIES

© Copyright Malina Software

The Anatomy of an Engineering DisasterThe Anatomy of an Engineering Disaster
 1990: AT&T Long Distance Network (Northeastern US)

CO

.

.

.

CO

. . .

CO

.

.

.

tandem

tandem
tandem

tandem

tandem

tandem

tandem

tandem

tandem
tandem

tandem

tandemtandem

tandem

Recovery time: 1
day

Cost: hundreds
of millions of
$’s

© Copyright Malina Software

The Root CauseThe Root Cause
 Missing “break” statement in a software module

 one (missing) line among millions

. . .;
switch (...) {

case a : ...;
break;

case b :...;
break;
. . .

case m : ...;
case n : ...;

. . .
};

Execution
“fell through”
unintentionally
into the next case

Recovery time: 1 Recovery time: 1
dayday

Cost: hundreds Cost: hundreds
of millions of of millions of
$’s$’s

© Copyright Malina Software

Our Enemy: ComplexityOur Enemy: Complexity
 Many modern software systems are reaching levels of

complexity encountered in biological systems
 Systems of systems each of which may include tens of

millions of lines of code
 …any one of which might be the culprit that brings down the

entire system
 Furthermore, we can only see an increase in this

complexity due:
 Growing demand for greater and more sophisticated

functionality
 Increasing interaction with the implacable complexity of the

real world
 Given our current track record, how will we cope with

this rise in complexity?

© Copyright Malina Software

Fred Brooks on ComplexityFred Brooks on Complexity
 [From: F. Brooks, “The Mythical Man-Month”,

Addison Wesley, 1995]
 Essential complexity

 inherent to the problem
 cannot be sidestepped or eliminated by technology or method
 e.g., the computational complexity of the “traveling salesman”

problem

 Accidental complexity
 due to the use of inappropriate technologies or methods
 e.g., building a skyscraper using only hand tools

© Copyright Malina Software

SC_MODULE(producer)
{
sc_outmaster<int> out1;
sc_in<bool> start; // kick-start
void generate_data ()
{
for(int i =0; i <10; i++) {
out1 =i ; //to invoke slave;}
}
SC_CTOR(producer)
{
SC_METHOD(generate_data);
sensitive << start;}};
SC_MODULE(consumer)
{
sc_inslave<int> in1;
int sum; // state variable
void accumulate (){
sum += in1;
cout << “Sum = “ << sum << endl;}

SC_CTOR(consumer)
{
SC_SLAVE(accumulate, in1);
sum = 0; // initialize };
SC_MODULE(top) // container
{
producer *A1;
consumer *B1;
sc_link_mp<int> link1;
SC_CTOR(top)
{
A1 = new producer(“A1”);
A1.out1(link1);
B1 = new consumer(“B1”);
B1.in1(link1);}};

Can you see what thisCan you see what this
program does?program does?

A Bit of Modern SoftwareA Bit of Modern Software

© Copyright Malina Software

On Mainstream Programming LanguagesOn Mainstream Programming Languages
 Most mainstream programming languages abound in

accidental complexity
 Syntactic overload, goto statements, misaligned pointers,

uninitialized variables, etc.
 These languages are:

 Difficult to understand
• Require significant intellectual effort to master

 Defect intolerant, with a chaotic quality:
• The effects of seemingly minute and almost undetectable defects

cannot be predicted, but could be catastrophic
 (The embarrassing bit) Yet, we have persistently held on

to these outdated technological paradigms, investing
enormous financial and intellectual resources in improving
it
 ..at the cost of overlooking many new and better approaches

© Copyright Malina Software

The ImpactThe Impact
 Abstraction (modeling) of programs is difficult

and risky
 Any detail can be critical!
 Eliminates our most effective means for managing complexity

 Our ability to exploit formal mathematical
methods is severely impeded
 Mathematics is at the core of all successful modern engineering
 Mathematical methods depend on abstraction to avoid state

explosion problems

 We are also seriously underutilizing the
automation potential provided by computing
technology

© Copyright Malina Software

SC_MODULE(producer)
{
sc_outmaster<int> out1;
sc_in<bool> start; // kick-start
void generate_data ()
{
for(int i =0; i <10; i++) {
out1 =i ; //to invoke slave;}
}
SC_CTOR(producer)
{
SC_METHOD(generate_data);
sensitive << start;}};
SC_MODULE(consumer)
{
sc_inslave<int> in1;
int sum; // state variable
void accumulate (){
sum += in1;
cout << “Sum = “ << sum << endl;}

SC_CTOR(consumer)
{
SC_SLAVE(accumulate, in1);
sum = 0; // initialize };
SC_MODULE(top) // container
{
producer *A1;
consumer *B1;
sc_link_mp<int> link1;
SC_CTOR(top)
{
A1 = new producer(“A1”);
A1.out1(link1);
B1 = new consumer(“B1”);
B1.in1(link1);}};

Can you see what thisCan you see what this
program does?program does?

A Bit of Modern SoftwareA Bit of Modern Software

© Copyright Malina Software

……and its (UML) Modeland its (UML) Model

«sc_slave»«sc_slave»
B1:consumerB1:consumer

«sc_method»«sc_method»
A1:producerA1:producer

start out1 in1

Can you see it now?Can you see it now?

© Copyright Malina Software

Use of Models in EngineeringUse of Models in Engineering
 Probably as old as engineering (c.f., Vitruvius)
 Engineering model:

 A reduced representation of some system that highlights
its properties of interest from a given viewpoint

• We don’t see everything
at once

• What we do see is adjusted
to human understanding

What about modelingWhat about modeling
software?software?

© Copyright Malina Software

A Common Perception of the Value of Software ModelsA Common Perception of the Value of Software Models

“…bubbles and arrows, as opposed to programs,
…never crash”

-- B. Meyer
“UML: The Positive Spin”

American Programmer, 1997

Monitor
PH

Raise
PH

Control
PH

PH reached X

enable

disable

Current PH

start

stop

Input valve
control

© Copyright Malina Software

Characteristics of Useful Engineering ModelsCharacteristics of Useful Engineering Models
 Abstract

 Emphasize important aspects while removing irrelevant ones
 Understandable

 Expressed in a form that is readily understood by observers
 Accurate

 Faithfully represents the modeled system
 Predictive

 Can be used to answer questions about the modeled system
 Efficient

 Should be much cheaper and faster to construct than actual
system

To be useful, engineering models must satisfy all of these
characteristics!

© Copyright Malina Software

refine

NotStarted

Started

start

producer

Modern Software Modeling PracticesModern Software Modeling Practices

 Models can be refined continuously until the application is fully
specified ⇒ the model becomes the system that it was modeling!

«sc_method»«sc_method»
producerproducer

start out1

NotStarted

Started

start

producer

St1St1 St2St2

void generate_data()
{for (int i=0; i<10; i++)
{out1 = i;}}

/generate_data()

© Copyright Malina Software

SC_MODULE(producer)
{
sc_outmaster<int> out1;
sc_in<bool> start; // kick-start
void generate_data ()
{
for(int i =0; i <10; i++) {
out1 =i ; //to invoke slave;}
}
SC_CTOR(producer)
{
SC_METHOD(generate_data);
sensitive << start;}};
SC_MODULE(consumer)
{
sc_inslave<int> in1;
int sum; // state variable
void accumulate (){
sum += in1;
cout << “Sum = “ << sum << endl;}

SC_CTOR(consumer)
{
SC_SLAVE(accumulate, in1);
sum = 0; // initialize };
SC_MODULE(top) // container
{
producer *A1;
consumer *B1;
sc_link_mp<int> link1;
SC_CTOR(top)
{
A1 = new producer(“A1”);
A1.out1(link1);
B1 = new consumer(“B1”);
B1.in1(link1);}};

Exploiting Automation: Code Generation from ModelsExploiting Automation: Code Generation from Models

«sc_slave»«sc_slave»
B1B1:consumer:consumer

«sc_method»«sc_method»
A1:A1:producerproducer

start out1 in1

«sc_link_mp»

link1

© Copyright Malina Software

NotStarted

Started

start

producer

St1St1 St2St2

Exploiting Automation: Models and RealityExploiting Automation: Models and Reality
 In all other engineering disciplines abstractions (models) are

artifacts that are necessarily distinct from the systems that
they model
 Models are not always accurate representations of reality

 Uniquely, in software, the model and the modeled system share
the same medium and can be formally coupled

void generate_data()
{for (int i=0; i<10; i++)
{out1 = i;}}

/generate_data()

Started

• The computer offers a uniquely
capable abstraction device:

Software can be represented
from any desired viewpoint at
any desired level of abstraction
The abstraction is inside the system
and can be extracted automatically

© Copyright Malina Software

The Remarkable Thing About SoftwareThe Remarkable Thing About Software

Software has the unique property
that it allows us to directly evolve
models into complete
implementations without
fundamental discontinuities in the
expertise, materials, tools, or
methods!

© Copyright Malina Software

Model-Driven Development (MDD)Model-Driven Development (MDD)
 An approach to software development in which

models play an indispensable role
 Based on two time-proven methods:

switch (state) {
 case‘1:action1;
 newState(‘2’);
 break;
 case‘2:action2;
 newState(‘3’);
 break;
 case’3:action3;
 newState(‘1’);
 break;}

(2) AUTOMATION
S1

S3

S2

e1/action1
e2/action2

e3/action3

switch (state) {
 case‘1:action1;
 newState(‘2’);
 break;
 case‘2:action2;
 newState(‘3’);
 break;
 case’3:action3;
 newState(‘1’);
 break;}

(1) ABSTRACTION
S1

S3

S2

e1/action1
e2/action2

e3/action3

Realm of
modeling
languages

Realm of
tools

© Copyright Malina Software

MDD: The Need for AutomationMDD: The Need for Automation
 The accidental complexity of current programming

languages can be greatly reduced by the
appropriate use of computer-based automation

S1

S3

S2

e1/action1
e2/action2

e3/action3 switch (state) {
 case‘1:action1;
 newState(‘2’);
 break;
 case‘2:action2;
 newState(‘3’);
 break;
 case’3:action3;
 newState(‘1’);
 break;}

NotStarted

Started

start

St1 St2

…and what about advanced
modeling languages??

Automatic code generation

BUG

BUG

© Copyright Malina Software

Model-Driven Architecture (MDA)Model-Driven Architecture (MDA)

 An OMG initiative to support model-driven
development through a series of open
standards

(1) ABSTRACTION (2) AUTOMATION

• Modeling languages
• Interchange standards
• Model transformations
• Software processes
• etc.

(3) OPEN STANDARDS

MDAMDA

© Copyright Malina Software

Styles of MDD: The MDD Maturity ModelStyles of MDD: The MDD Maturity Model

“Who cares
about the
code?”

Model

Model only

“What’s a
Model?”

Code

Code only

“The code is the
model”

Model

Code

Code
Visualization

visualize

“The model is the
code”

Model

Code

Model-centric

generate

Levels of
Abstraction
Automation

Time

“Manage code
and model”

Model

Code

Round Trip
Engineering

synchronize

© Copyright Malina Software

MDD: State of the PracticeMDD: State of the Practice
 Example: Major Telecom Equipment Vendor

 Adopted MDD Tooling
 UsedMDD tools Rose RealTime (fully automated code

generation directly from UML models), Test RealTime,
RUP

 Product : Network Controller
 4.5 Million lines of auto-generated C++ code
 200+ developers working on a single model

 Performance (throughput, memory):
 Within ± 15% of hand-crafted code

 Productivity improvement factors of 200%
 80% fewer bugs
 Estimated productivity improvement = factor of 4

 There are many similar examples…

© Copyright Malina Software

Automated doors, Base Station, Billing (In Telephone Switches),
Broadband Access, Gateway, Camera, Car Audio, Convertible roof
controller, Control Systems, DSL, Elevators, Embedded Control, GPS,
Engine Monitoring, Entertainment, Fault Management, Military
Data/Voice Communications, Missile Systems, Executable Architecture
(Simulation), DNA Sequencing, Industrial Laser Control, Karaoke, Media
Gateway, Modeling Of Software Architectures, Medical Devices, Military
And Aerospace, Mobile Phone (GSM/3G), Modem, Automated Concrete
Mixing Factory, Private Branch Exchange (PBX), Operations And
Maintenance, Optical Switching, Industrial Robot, Phone, Radio Network
Controller, Routing, Operational Logic, Security and fire monitoring
systems, Surgical Robot, Surveillance Systems, Testing And
Instrumentation Equipment, Train Control, Train to Signal box
Communications, Voice Over IP, Wafer Processing, Wireless Phone

Sampling of Successful MDD ProductsSampling of Successful MDD Products

© Copyright Malina Software

Automation Opportunity: Formal MethodsAutomation Opportunity: Formal Methods
 Given the possibility of making modeling language

constructs better behaved than programming
language constructs, it is possible to exploit formal
methods that could not handle the semantic
complexity of programming languages
 E.g., state machines, Petri nets
 Model checking, theorem proving

 We need to work on formal semantics of modeling
languages

© Copyright Malina Software

utomation Opportunity: Model Analysisutomation Opportunity: Model Analysis
 Complementary inter-working of specialized tools

based on shared standards

UML Modeling
Tool

5

3.1

4

Model Analysis
Tool

SpecializedSpecialized
analysis modelanalysis model

µµ

Analysis resultsAnalysis results

2.52.5

QoS AnnotationsQoS Annotations

© Copyright Malina Software

State of
the Art

“Who cares
about the
code?”

Model

Model only

“What’s a
Model?”

Code

Code only

“The code is the
model”

Model

Code

Code
Visualization

visualize

“The model is the
code”

Model

Code

Model-centric

generate

Levels of
Abstraction
Automation

“Manage code
and model”

Model

Code

Round Trip
Engineering

synchronize

The State of the Art and the State of the PracticeThe State of the Art and the State of the Practice

Predominant
State of the
Practice

© Copyright Malina Software

If this stuff is so good, what’s
holding us back?

© Copyright Malina Software

PART II: WHAT STANDS IN PART II: WHAT STANDS IN
THE WAYTHE WAY

© Copyright Malina Software

Root Causes of Low Adoption RateRoot Causes of Low Adoption Rate
 Technical

 Usability issues
 Technical flaws/immaturity
 Lack of interoperability and standardization

 Cultural
 Lack of awareness
 Psychology of practitioners
 Short-term ROI business culture

 Economic
 Investment hurdle
 Risk

© Copyright Malina Software

UsabilityUsability
 The unmitigated complexity of “modern” software technologies is a

strong deterrent to their introduction in practice
 Most programs and program interfaces are designed by software

practitioners
 Inadequate understanding of (or sympathy for) end users and their

objectives
 Inadequate understanding of relevant economic factors
 Inadequate understanding of key human factors

• e.g., “syntactic sugar” mindset
 Strong focus on technology, often combined with a penchant for complex

(“sophisticated”) solutions
• The features firehose effect
• Usability as a late add-on

 Modern software tools are orders of magnitude too complex to be
truly effective
 Require significant investment to master

• Deflects from core business concerns
• Limited to a few “keeners” who invest time and effort in mastering tools
• But, value of such expertise may have a relatively short lifespan

© Copyright Malina Software

 Technical
 Usability issues
 Technical flaws/immaturity
 Lack of interoperability and standardization

 Cultural
 Lack of awareness
 Psychology of practitioners
 Short-term ROI business culture

 Economic
 Investment hurdle
 Risk

© Copyright Malina Software

Technical Flaws and ImmaturityTechnical Flaws and Immaturity
 Many new technologies harbour serious and often

dangerous technical flaws
 Example: Design of MDD technologies such as the UML

modeling language
 Insufficient experience and understanding of the problem and

characteristics of potential solutions
 Many (most?) technical innovations in commercial software

practice were developed by commercial enterprises
 Localized and short-term market focus
 Based on inadequate theoretical understanding ⇒ technical flaws
 No time, resources, or incentive to develop necessary theoretical

base
 Exacerbated by current pressure on research institutions to

demonstrate market “relevance”

© Copyright Malina Software

 Technical
 Usability issues
 Technical flaws/immaturity
 Lack of interoperability and standardization

 Cultural
 Lack of awareness
 Psychology of practitioners
 Short-term ROI business culture

 Economic
 Investment hurdle
 Risk

© Copyright Malina Software

Lack of Interoperability and StandardsLack of Interoperability and Standards
 New technologies are often defined with no thought

given to compatibility with legacy or other
technologies
 No cost-effective transition path for adoption of new

technologies
 Islands of advanced technology are rarely of major value
⇒ Interoperability is being increasingly more recognized as a

fundamental requirement for new software technologies
 More standards, supported by major players, are

needed for key technologies to support
interoperability
 E.g., tool interworking standards, metamodeling standards,

semantics specification standards,...
 Requires collaboration of key vendors
 Standards are, invariably, suboptimal from a technological

perspective ⇒ standard excuse for ignoring them

© Copyright Malina Software

 Technical
 Usability issues
 Technical flaws/immaturity
 Lack of interoperability and standardization

 Cultural
 Lack of awareness
 Psychology of practitioners
 Short-term ROI business culture

 Economic
 Investment hurdle
 Risk

© Copyright Malina Software

Lack of Awareness and VisionLack of Awareness and Vision
 Despite the glut of information about advances in

high-technology, many practitioners remain
unaware of the capabilities and achievements of
potentially revolutionary technologies such as
MDD

 Technological ruts (ratholes?)
 Practitioners tend to limit their focus on news directly

related to the technologies they are already using
 Even many highly-respected “thought leaders” have

fallen into technology ruts
• E.g., OOPSLA ‘07 panel on programming languages

 For competitive reasons, enterprises are often
unwilling to publicize successful application of new
technologies
 Dearth of published verifiable evidence

© Copyright Malina Software

 Technical
 Usability issues
 Technical flaws/immaturity
 Lack of interoperability and standardization

 Cultural
 Lack of awareness
 Psychology of practitioners
 Short-term ROI business culture

 Economic
 Investment hurdle
 Risk

© Copyright Malina Software

Req. 3.2.4:
The system shall jump
through burning hoops and
leap over 30’ fences

Req. 3.2.4:
The system shall be mauve
with pink frills.
…

Requirements

The Idiosyncrasies of Software EngineeringThe Idiosyncrasies of Software Engineering

“Mindstuff”

Hardware

SC_MODULE(producer)

{sc_inslave<int> in1;

int sum; //

void accumulate (){

sum += in1;

cout << � Sum = � <<
sum << endl;}

Software

Relative to other engineering Relative to other engineering
disciplines, this ingredient plays a disciplines, this ingredient plays a

disproportionally disproportionally dominant roledominant role in the in the
engineering processengineering process

Process and tools

© Copyright Malina Software

Some ConsequencesSome Consequences
 Compared to other engineering disciplines, software

development is much less hampered by physical reality
 …but, not completely free (software systems = software +

hardware)
 Low inertia: The path from conception to realization (edit-

compile-run cycle) is exceptionally fast
 Often leads to an impatient state of mind (tinkerer (vs. engineer)

mentality)
 …which leads to unsystematic and hastily conceived solutions

(hacking)
 Also yields a highly seductive and gratifying experience
 …so that, often, the concern for the product becomes secondary

 The medium becomes the message
 Focus of many practitioners shifts from the product and the end-

user to the development process and the technology

© Copyright Malina Software

When the Medium Becomes the Message…When the Medium Becomes the Message…
 Software engineers often identify themselves not

by their domain expertise (e.g., telecom, financial
systems, aerospace) but by their technology
expertise (e.g., C++, EJB, Linux)

 Consequences:
 Lack of understanding of and interest in the problem

domain and end users
• Few system architects

 Resistance towards new/different technologies
• …and whether they may be better suited to the problem on hand

 Suboptimal solutions
 Personal and product obsolescence

© Copyright Malina Software

Einstein’s MessageEinstein’s Message

“Concern for man himself and his fate must
always constitute the chief objective of all
technological endeavors...in order that the
creations or our minds shall be a blessing and not
a curse to mankind. Never forget this in the
midst of your diagrams and equations.”

-- A. Einstein, 1931

© Copyright Malina Software

And More ConsequencesAnd More Consequences
 The unique pliability of software combined with

the tinkerer’s mentality that it spawns make it
very difficult to define stable and widely-adopted
engineering standards
 Key to engineering reuse
 ⇒ constant re-invention and a false sense of progress

 Also makes it difficult to work out foundational
issues

 Culture of impatience with any apparent curtailing
of design flexibility
 Successful engineering typically requires limiting freedom of

choice (e.g., software architectures)

© Copyright Malina Software

The Problem of The Great Inertial MassThe Problem of The Great Inertial Mass
 Numerous generations of software practitioners

were raised with this culture
 ~12-20 million programmers in the world
 ...most of them holding on to what they know and unwilling to move

outside their technological rut comfort zones

 How to overcome this enormous inertial mass?

© Copyright Malina Software

 Technical
 Usability issues
 Technical flaws/immaturity
 Lack of interoperability and standardization

 Cultural
 Lack of awareness
 Psychology of practitioners
 Short-term ROI business culture

 Economic
 Investment hurdle
 Risk

© Copyright Malina Software

Today’s Dominant Business CultureToday’s Dominant Business Culture
 Based on short-term return on investment (ROI)

 Markets today force focus on quarterly results
 Business and technology development plan horizons are rarely

meaningful beyond 12 months
 Reward structure based on short-term results

 Foundational research and introduction of new
technologies requires more distant horizons and
long-term investments
 Today’s model of research funding is strongly tied to short-term

market relevance
• Not conducive to research into fundamentals
• Hampers ground-breaking outside-the-box innovation

© Copyright Malina Software

 Technical
 Usability issues
 Technical flaws/immaturity
 Lack of interoperability and standardization

 Cultural
 Lack of awareness
 Psychology of practitioners
 Short-term ROI business culture

 Economic
 Investment hurdle
 Risk

© Copyright Malina Software

The Investment Hurdle and RiskThe Investment Hurdle and Risk
 Switching to new technologies and methods

requires a major up-front investment in training
and re-tooling.
 Expense
 Exacerbated by the short-term ROI syndrome

 There is a high risk of failure even when the new
technologies have proven successful in other
projects and environments
 Lack of experience
 Resistance to change

© Copyright Malina Software

PART III: WHAT WE PART III: WHAT WE CANCAN
DODO

© Copyright Malina Software

Where to Seek SolutionsWhere to Seek Solutions
 Education

 Foster a user-centred culture
 Extend SE curriculum beyond mere computing technology

 Research
 Multidisciplinary effort (not solvable by technologists alone)
 Investment in theoretical foundations

 Standardization
 Further push to develop standards

© Copyright Malina Software

EducationEducation
“The [engineer] should be equipped with
knowledge of many branches of study and
varied kinds of learning, for it is by his
judgment that all work done by the other
arts is put to test. This knowledge is the
child of practice and theory.”

- Vitruvius
On Architecture, Book I (1st Century BC)

© Copyright Malina Software

Education: Getting Closer to the End UserEducation: Getting Closer to the End User
 There is an unfortunate lack of awareness of and

lack of respect for end users and their needs
 Personal gratification should not come solely from

having designed and constructed the system, but from
seeing it in use

 The medium is not the message
 Implies achieving a deep level of understanding of

the value of the system to the customer
 Implies a scope of skills and knowledge that extends

far beyond the technical domain
 Required at every level (not just system architects)

© Copyright Malina Software

 More than just finding inspiration for technical
solutions in non-technical sources
 Although, higher levels of general literacy are sorely needed

(particularly writing skills)
 Understanding and respect for the greater social,

cultural, economic context in which technical
inventions function
 Understand when and how to apply technological solutions
 Avoid often futile attempts to solve non-technical issues

with yet more technology
 Reduce current glut of confusing and problematic

technologies that cause more problems than they solve

Education: Understanding the Role of TechnologyEducation: Understanding the Role of Technology

© Copyright Malina Software

Education: Understanding the Business CaseEducation: Understanding the Business Case
 Software engineers must be trained to

understand and appreciate the greater business
context

 “Must know” topics
 Economics fundamentals: how markets work
 Basics of business management and administration
 Basics of accounting and key legal aspects (e.g., IP law)
 Professional ethics
 Basics of psychology and sociology
 Project management/work organization
 The essentials of marketing
 Presentation skills

© Copyright Malina Software

Education: Technical RequisitesEducation: Technical Requisites
 Abstraction plays a central role in software

 More so than any other engineering discipline
 Mathematics is an excellent foundation for

developing and honing abstraction skills
 …and may sometimes even be directly applicable to the

technical problems on hand
 Mathematical logic
 Probability theory
 Discrete mathematics
 Optimization theory
 History of technology and mathematics

 An understanding of the physics underlying software

© Copyright Malina Software

Research: Theory and PracticeResearch: Theory and Practice
 “The difference between theory and practice is much

greater in practice than it is in theory”
 The divide is growing
 Most practitioners disdain theory

 Unfortunate, since some theory could help them substantially
 Most theoreticians don’t understand practice

 Unfortunate, since they could work on more useful lines of
research

 Educational requirements:
 Instill an appreciation for the value of theory
 Instill an understanding of the pragmatics of industrial

software development

© Copyright Malina Software

Research: CERASResearch: CERAS
 Centre of Excellence for Research in Adaptive Systems

(CERAS) established to conduct research in:
 Virtualization technologies
 MDD

 A research initiative created by IBM Centre for
Advanced Studies (Toronto), the Ontario Centres of
Excellence (OCE), a number of major universities in
Ontario, North Carolina, and Europe
 https://www.cs.uwaterloo.ca/twiki/view/CERAS/CerasOverview

 MDD research objectives
1. Define a systematic and comprehensive conceptual framework

(map) for MDD
• Serves as a foundation for current and future research and development
• Captures a shared consensus of the technical objectives behind MDD

2. Initiate a number of major research efforts to fill in crucial
parts of the MDD framework

© Copyright Malina Software

Research: CERAS Research AreasResearch: CERAS Research Areas
 Foundations: A General Theory of Engineering

Models
 Specifying Models of Software
 Model Transformations
 Model Analysis and Verification
 Model-Driven Development Methods
 MDD Tooling

© Copyright Malina Software

Summary and ConclusionsSummary and Conclusions
 Much of the software engineering community is solidly

mired in the 3GL technology rut
 This technology is unable to cope adequately with the increasing

complexity being demanded of modern software systems
 New technologies and methods, such as MDD, have

demonstrated time and time again the ability to make a
major difference in our battle with complexity

 Unfortunately, due to a variety of diverse and inter-
related factors, the adoption of these technologies and
methods has been slow
 Technical, cultural, and economic issues

 Some of these impediments are beyond our influence as
technologists and educators

 However, there are still many opportunities for individuals
and organizations in the technical community to make a
difference and accelerate the pace of adoption
 Education, research, standardization

© Copyright Malina Software

QUESTIONS, QUESTIONS,
COMMENTS,COMMENTS,

ARGUMENTS... ARGUMENTS...

