
marcus.schulte@s-i.ch

Domain-Driven Web-Development
with Tapestry, HiveMind and

Hibernate

Marcus Schulte

marcus.schulte@s-i.ch

Overview

● Background: What were we trying to achieve?
● Why domain-driven?
● Architecture of the foundation frameworks
● Putting it all together – lifecycle of domain-

entities
● Bottom-line: advantages and desiderata

marcus.schulte@s-i.ch

Non-functional Requirements

● Extra-/Intranet Applications
● 10 to 1000 users, max 100 concurrent
● Relatively complex domain – compared to

typical Web-2.0-app, anyway.
● Users cherish snappyness. Response-times

above 200 ms makes them call for their 3270s

marcus.schulte@s-i.ch

Historical Background

● Started J2EE 2002
● Back then:

– Struts-based home-brewn web-framework (action-
centric)

– EJB 1.1 architecture based on „Core J2EE
patterns“ by Deepak, Alur, et al.

● 2005: re-evaluation, run-time behaviour was
good but: tired of technical anomalies.

● Main objective: „pure“ business logic

marcus.schulte@s-i.ch

Becoming X-driven

● X= model or X=domain?
● The aim is the same – essentially.
● Continuous abstraction („the Eiffel way“)
● UML-Models tend to be either incomplete or

not very abstract.
● Bottom-line: pure Java-domain, no technical

slicing of business concerns (PersonEJB,
PersonDTO, PersonDAO, PersonDRS, ...)

marcus.schulte@s-i.ch

A Band of Frameworks

● Hibernate – the persistence, EJB-3
● Tapestry – „an action is a method“

– Reusable components

– Java-types make it through the complete request
cycle – you deal with objects everywhere

– Very clean & customizable architecture

● HiveMind – the glue to assimilate them all

– IoC Container

– The jar is the component, Beans need interfaces

marcus.schulte@s-i.ch

Blueprint

marcus.schulte@s-i.ch

HiveMind Use-Cases

● Using a library-module, wiring up an application
● Customising an application or framework by

– contributing to configuration points

– overriding services

● Managing Service-Instances with service-
models

● Aside: Spring got Service-models with 2.0,
called the scope of a bean there.

marcus.schulte@s-i.ch

Using a HiveMind Library Module

marcus.schulte@s-i.ch

Configuration Points

● Modules define
configuration points

● Configuration point
adhere to schemas

● Any module can
contribute to any
configuration point

Module A

 Config-Point X

Module B

contributes to

marcus.schulte@s-i.ch

Overriding a Service

marcus.schulte@s-i.ch

Service-Models

● Primitive (simple class-instantiation)
● Singleton
● Threaded
● Pooled
● Whatever you want, e.g. „stateful“

<service-point id=“Xyz“>
 <invoke-factory model=“threaded“>
 ...
 </invoke-factory>
</service-point>

marcus.schulte@s-i.ch

HiveMind Service-Proxies

marcus.schulte@s-i.ch

Tapestry starts and a form is
submitted

● The App-Servlet instantiates HiveMind Registry
● request comes in, Servlet calls DirectService
● target page pulled from pool
● Service-parameters are decoded, page

properties are set up.
● Form rewind is triggered
● Form/button listeners are called
● Response-page renders

marcus.schulte@s-i.ch

Tapestry Components

marcus.schulte@s-i.ch

Tapestry-Components
– Composite Pattern

marcus.schulte@s-i.ch

Tapestry Component Interfaces

marcus.schulte@s-i.ch

Component Classes

● Simple Java Classes, extending
AbstractComponent. Possibly annotated

● Contain (usually):

– Abstract property-accessors implemented by the
framework (javassist) at runtime.

– Listeners

– Lifecycle-related callbacks

● Can render their contribution to a page in code
or via the associated template
(BaseComponent)

marcus.schulte@s-i.ch

A Very Simple Component

marcus.schulte@s-i.ch

The even Simpler Template

marcus.schulte@s-i.ch

marcus.schulte@s-i.ch

Component (Page) Templates
<form jwcid="@Form">

<li jwcid="@For" source="ognl: foos

 value="ognl: foo" element="li">

 Name: <input jwcid="@TextField" value="ognl: foo.name" />

 <button jwcid="@Submit"
 tag="ognl: foo" selected="ognl: fooToBeDeleted"

 action="ognl:listeners.onDelete" value="delete"/>

</form>

marcus.schulte@s-i.ch

Page-Class (for previous Template)

public abstract class ListOfFoos extends TestAppBasePage {

public abstract Foo getFoo();
public abstract Foo getFooToBeDeleted();

public List<Foo> getFoos() {
return getPersistenceService().retrieveAllFoos();

}

public void onDelete() {
getPersistenceService().delete(getFooToBeDeleted());

}
}

marcus.schulte@s-i.ch

Libraries of Components

● Everything inside one jar (templates, images,
css, javascript, classes, messages)

● Separate namespace
● Can include HiveMind services/contributions

 <library-specification>

 <meta key="org.apache.tapestry.component-class-packages"
 value="com.javaforge.honeycomb.tapestry"/>
 <component-type type="ExcelTableLink" specification-path="excel/ExcelTableLink.jwc"/>
 <component-type type="ExcelIcon" specification-path="excel/ExcelIcon.jwc"/>
 <component-type type="Watch" specification-path="components/Watch.jwc"/>

</library-specification>

marcus.schulte@s-i.ch

Examples for Powerful Components

● @PropertySelection, @contrib:Palette
● @tacos:Tree
● @contrib:Table and @honey:ExcelLink
● @bmw:ResourceLink @bmw:ReportView
● @contrib:BeanForm (not yet tried myself)

Come with HiveMind Engine-Service

marcus.schulte@s-i.ch

Hibernate – the not-so-plain POJOs

● Domain classes can be POJCs
● But: That doesn't make their instances POJOs.
● Hibernated Entities grow

– proxies and lazy collections,

– associations to the session in which they were
loaded (dangling reference, when closed)

● Think carefully about your session, units-of-
work, working-copy

● LazyInitializationException and
NonUniqueObjectException crop up otherwise

marcus.schulte@s-i.ch

Session per Conversation

● The life of the first level cache may exceed the
life of a request (stateful persistence service)

● An entities in-memory representation (working
copy) must not outlive the session in which it
was loaded

● No need for detach/re-attach and correct
„merge“-mappings

● See also: Seam and http://hibernate.org/42.html

marcus.schulte@s-i.ch

marcus.schulte@s-i.ch

Plugging into Tapestry

marcus.schulte@s-i.ch

Honeycomb static

marcus.schulte@s-i.ch

Honeycomb dynamic

marcus.schulte@s-i.ch

Experience with HiveMind/Tapestry

● Excellent reusability
of components

● Pervasive, rich
domain model.

● Great fun for
developers

● Good match for
Hibernate (s-p-c)

● Actively developed,
helpful community

● Docs sometimes
incomplete

● Furiously developed
(Tap 5)

marcus.schulte@s-i.ch

Demo & a Duke for Howard

