
Spring, a J2EE extension framework

JUGS presentation

by Philipp H. Oser

30.08.2005

© ELCA - 30.08.2005 POS

1Agenda

Introduction
Context
Essential spring
Demo

Spring in more details
More spring features: configuration, interceptors, remoting, templates
Practices used with spring

Experience and benefits
Benefits
Our use of Spring
Experiences from projects

2

© ELCA - 30.08.2005 POS

Spring: a J2EE extension framework

Introduction

More spring

Experience and benefits

© ELCA - 30.08.2005 POS

3

Foundation
1968

ELCA in Brief

Workforce

Over 300 highly qualified employees

0

20

40

60

1999 2002

Revenues
in Millions
CHF

Revenue Progression

For 16 years ELCA has recorded
positive results

Largest independent software developer &
system integrator in Switzerland by now

Locations
Lausanne (Headquarters), Zurich, Geneva,
Bern, London, Paris, Ho Chi Minh City

Technology Awards

© ELCA - 30.08.2005 POS

4Typical Benefits of J2EE Extension Frameworks

Pre-built pieces

Application Solidity &
Homogeneity

Abstraction of platform

Architecture and guidelines

Reusable components

Development environment

Proven components

Best practices and patterns in code and
guidelines

Standardized use of technology

Platform simplification

Application agility through extension
mechanism

Protection of platform error and change

Product and vendor independence

© ELCA - 30.08.2005 POS

5Commoditization of comprehensive Java EE frameworks

Definition: Comprehensive Java EE framework :=
A J2EE extension framework covering many domains of the
Enterprise (not just one domain such as Persistence, Web UIs, or
Remoting)

Many comprehensive Java EE simplification & extension
frameworks exist since the the early days of the J2EE

Mostly in-house/ proprietary
Some were successes in smaller contexts (e.g. CS Java Application
Platform; SBB Framework; ELCA LEAF, used in 20 projects)

Few became mainstream (exception: frameworks for a smaller
domain, e.g. struts, hibernate, Xdoclet)

More recently, open Java EE framework emerge (e.g. Spring or
Keel)
=> customization
=> harder to justify new proprietary frameworks

© ELCA - 30.08.2005 POS

6Spring framework

A popular lightweight dependency injection container
Open source project (Apache license)
http://www.springframework.org/
Strengths

A lot of momentum around (used a lot, books, new developments around)
Based on JavaBeans
Significant improvement over pure Java EE development: standard
container resources, code templates, ...
Integrated with many existing Java technologies: Struts, JSF, Hibernate,
JDO, Toplink, Ibatis, JDBC, JMS, RMI, Soap, Velocity, Quartz, ...
Good documentation: free and not free
Mature and robust: fundamental parts go back to year 2000

Other candidates: Pico container, HiveMind, Keel (seem less popular)

© ELCA - 30.08.2005 POS

7JavaBeans (the essence)

The standard „component model“ of Java (JDK abstraction)
Uses normal Java classes
Components can have: properties, methods, events

Uses naming conventions, no particular interfaces
E.g., read-write property startDate of type Date requires 2 methods:

Date getStartDate();
void setStartDate(Date date);

Other Java methods are bean methods
Events

Most Java classes are JavaBeans
Sample:

public class Person {
private String name = „Titi“;

void setName(String name) {
this.name = name;

}
}

© ELCA - 30.08.2005 POS

8Spring (the essence)

Spring sets up JavaBeans
Instantiation of JavaBeans
Configuration of JavaBeans (via Dependency Injection/ IoC)

Wiring between JavaBeans
Setting parameters on JavaBeans

Example:
<<SpringBean>>

userManagement:DatabaseUserManagement‘

welcomeMailTemplate:String

<<SpringBean>>
mailService:SimpleMailService

senderEmail:String

...
config-file.xml:

<bean id=„userManagement“... =>

<bean id=„mailService“ ...

Spring creates beans
in an ApplicationContext

ApplicationContext

© ELCA - 30.08.2005 POS

9Spring Demo

Demo with a little user management
component

We setup the following „components“
(=spring beans) to implement the
user management (picture auto
generated with eclipse spring plugin):

Each box is a spring bean, spring id is
shown
Properties & wiring of each spring
bean are shown underneath

<<interface>>
UserManagement

public createNewUser (String name, String email);
public sendEmailToAllUsers (String email);

uses

usesuses

© ELCA - 30.08.2005 POS

10Demo: File overview

Java files (they contain no references to spring!)
Interfaces

UserManagement.java
MailService.java
UserDao.java

Classes implementing these interfaces
DatabaseUserManagement.java
SimpleMailService.java
DatabaseUserDao.java

Helper class
UserDto.java

Configuration file (uses spring DTD)
config2.xml

© ELCA - 30.08.2005 POS

11Demo in beanshell

Launch beanshell (bsh) with the required jars/ classes in classpath
Steps in the shell:
Menu File->recapture System in/out/err

show();

import org.springframework.context.support.*;

ac = new FileSystemXmlApplicationContext("config2.xml");
Sets the graph of components up (does it lazily by default)

b.sendMail("I","hello");

b.getSenderEmail();

© ELCA - 30.08.2005 POS

12Demo in beanshell (2)

Steps in the shell:
print(ac.getBeanDefinitionNames());

u = ac.getBean("userManagement");

u = ac.getBean("userManagement");
2 times the same instance (= singleton per JVM)

u.sendEmailToAllUsers("hello");

u.createNewUser("John", "John@demos.org");

u.setWelcomeMail("Shorter Email {0} {1} ");

u.createNewUser("John2", "John@demos.org");

13

© ELCA - 30.08.2005 POS

Spring: a J2EE extension framework

Introduction

More spring

Experience and benefits

© ELCA - 30.08.2005 POS

14Basic Spring: recapitulation

b1 b2

dao1 dao2 dataSource

ApplicationContext

spring bean
(Java Object created

by spring)

A B
A has a

reference to B
Java Object
(not created

by spring) ApplicationContext

Config
File

<Bean name=„b1“...

<Bean name=„b2“...

<Bean
name=„dao1“...

...

=>

© ELCA - 30.08.2005 POS

15What java objects should be set up via Spring?

We still create objects outside of spring!
When to create objects with spring? When to create objects in plain
java?

Reasons why we would want to create an object via spring are:
It needs some configuration values and the configuration values may
change over time
It needs to get a reference to some other objects/services or resources,
such as a dataSource, a transactionManager
One may want ot use another implementation after compilation (i.e. we
would like to create it via configuration)
We would like to add method interceptors to it (see following slides)

Reasons why we not want to create an object via spring:
For simple tests (where config-indirection may be overkill)
For simple objects (e.g. Map, String, ...)

© ELCA - 30.08.2005 POS

16Too easy to be true?

Current model: graph of explicitly setup singleton objects in 1 JVM

Sometimes this is not enough: e.g. 2 cases
Java beans that are NOT singletons (there exists more than 1
instance per JVM)

Attribute of <bean> tag singleton="false"

Java beans that are created indirectly
Factory beans (implement the FactoryBean interface)
E.g. JndiObjectFactoryBean needs a JNDI name, returns the object with
that JNDI name

<bean id="dataSource"
class="org.springframework.jndi.JndiObjectFactoryBean">

<property name="jndiName">
<value>jdbc/jpetstore</value>

</property>
</bean>

© ELCA - 30.08.2005 POS

17Bean proxies: adding an indirection to objects accesses

b1 b2

dao1 dao2 dataSource

ApplicationContext

spring bean
(Java Object created

by spring)

Auto-Proxy
(for interception)

A B
A has a

reference to B
Java Object
(not created

by spring) ApplicationContext

© ELCA - 30.08.2005 POS

18Method Interceptors to make this indirection handy

Method Interceptor: „contains what should be done in the indirected method call“

Proxy and interceptor is not typically visible for the user of the spring bean
A chain of interceptors is possible
Original spring bean remains! this.myMethod() is not intercepted!

Object using
a bean

Proxy
(hidden)

Method
Interceptor
(hidden)

Bean
Implementation

m(“a“)

invoke(“m“,Object[]{“a“})

m (“a“)

pre-processing of
the interceptor,

e.g. start transaction

post-processing of
the interceptor,

e.g. commit/ rollback

© ELCA - 30.08.2005 POS

19Setting up an interceptor (sample)

<bean id="jdkBeanNameProxyCreator"
class="org.springframework.aop.framework.autoproxy.BeanNameAutoProxyCreator">
<property name="beanNames">

<value>userManagement,*Dao</value>
</property>
<property name="interceptorNames">

<list>
<value>authorizationInterceptor</value>
<value>transactionInterceptor</value>

</list>
</property>

</bean>

Remark: this is not a concrete spring bean, but sets up the method
interceptors on a group of beans.

© ELCA - 30.08.2005 POS

20Method Interceptors to change behavior of spring beans

ApplicationContext

b1 b2

dao1 dao2 dataSource

Method Interceptor

authorization transaction tracing monitoring

Interceptor-chain

pooling ...

Spring helps here to
glue elements together

Spring beans=
„Services“

© ELCA - 30.08.2005 POS

21How to glue functionality to spring beans?

Explicitly setup in configuration
Setup an interceptor-chain on a set of beans

Via Code annotations (Attributes/ Metadata/ Annotations)
JDK 1.5 metadata/ annotations
Javadoc tags (pre JDK 1.5)
/**

* Normal javadoc comments...

* @@org.springframework.transaction.interceptor.RuleBasedTransactionAttribute()

* @@org.springframework.transaction.interceptor.RollbackRuleAttribute
(Exception.class)

*/

public void echoException(Exception ex) throws Exception {

Via API
Explicit calls to functionality
Setup an interceptor via code

© ELCA - 30.08.2005 POS

22Benefits of Method Interceptors

We use method interceptors in the Java EE (in various
implementations) for more than 5 years with a lot of success

For transactions, logging, exception handling, synchronization,
performance measurement, caching, ...

Main benefits
Separation of concerns: business concerns in normal code, cross-cutting
technical concerns in interceptors
Flexibly adaptable: one chooses only the interceptors one needs
Easy to reuse functionality: an interceptor imposes almost nothing on the
code that can use it
Simple to understand and use

Remark: IMHO method interceptors are the essential feature of the
more complex AOP of Spring (I will not go into details)

Spring AOP offers additionally: Mixins, AspectJ integration (for advanced
needs)

© ELCA - 30.08.2005 POS

23Remoting

ApplicationContext

b1 b2

dao1 dao2 dataSource

exporter1

exporter2

ApplicationContext

b3

b4
importer1

Protocol-dependent
Communication:

RMI, SOAP, (EJB), ...

„Client JVM“

„Server JVM“

Port

Port

only in config!
no coding involved

© ELCA - 30.08.2005 POS

24Templates

Templates simplify usage of integrated technologies

„Hide all the nasty detail you don‘t want to be bothered about“
Supports common case, proven exception & resource handling

Spring provides templates for
JDBC, JMS, Hibernate, ibatis, JDO, JMX, ...

Example: JDBC template
JdbcTemplate jdbc = new JdbcTemplate(dataSource);

jdbc.update("update EMPLOYEE set FIRST_NAME=? where LAST_NAME=?",
new String[] {"Rick", "Hightower"});

int maxSalary = jdbc.queryForInt(
"select max(Salary) from EMPLOYEE");

String name = (String)jdbc.queryForObject(
"select FIRST_NAME from EMPLOYEE where LAST_NAME=‘Hightower'",
String.class);

saves up to 50% of „boring“ code: resource & error handling, mappings

© ELCA - 30.08.2005 POS

25How is Spring structured?

Spring core
DI bean container,

App context

Spring
AOP

Interceptors

Spring
ORM/DAO
JDBC, iBatis,

Hibernate, JDO

Spring
Transactions

Spring
MVC

Web FW

Spring
Services

Utils
Remoting

EJB
Messaging

The different parts are well decoupled and can be used independently!

© ELCA - 30.08.2005 POS

26Practices often found with spring and related technology

Separate interfaces from implementation, program to interfaces
Plug implementations via config into interfaces

Work really object-oriented, work with POJOs
Avoid non-oo component models
Try to avoid „fake“ objects such as DTOs, SLSB Home interfaces

Promote architectural choice
Facilitate deployments in different contexts
Allow substitution of layers with others (e.g. for tests)

Avoid distribution: only distribute if absolutely necessary
There is no remote component model in the core of spring

© ELCA - 30.08.2005 POS

27

()

Remarks on terminology

Lightweight container
As light as possible (code size,
constraints, memory usage, ...)
As opposed to a heavy container such
as EJB

Dependency Injection
The dependencies (other spring beans
and parameters) are pushed into the
beans (as opposed to the beans going
to look for the dependencies)

Dependency Injection vs. IoC
Some people speak of Inversion of
Control (IoC)
For Martin Fowler (and me) inversion of
control is more general than
Dependency Injection or Dependency
Lookup, so we propose not to use it

28

© ELCA - 30.08.2005 POS

Spring: a J2EE extension framework

Introduction

More spring

Experience and benefits

© ELCA - 30.08.2005 POS

29Different deployments of an ApplicationContext

A Spring application can be deployed in many different ways:

What changes is the plugging of the resources: Datasources,
Transaction Manager, Classloaders, ...
Spring prepares applications for this: resource access is factored
out of application

<<EJB Container>>

b1 b2

dao1 dao2 dataSource

ApplicationContext

<<Web Container>>

b1 b2

dao1 dao2 dataSource

ApplicationContext

<<JVM>>

b1 b2

dao1 dao2 dataSource

ApplicationContext

Resource Mgt: datasource, trans, ..
Resource Mgt

resources

© ELCA - 30.08.2005 POS

30Benefits of Lightweight Dependency Injection Containers

Code lighter to manipulate (development, maintenance)
One works with standard POJOs, no heavy container

Faster round-trips
Less concepts to handle

Minimizing constraints on your code
Code does not depend on container (less lock-in)

Your code remains easier usable in other contexts, e.g. for tests or to embed

Use other code without changes or integration
Typical Java code is directly usable

I‘ve got a great
new framework

Sexy!

EJB

Picture source: theserverside.com

© ELCA - 30.08.2005 POS

31Spring experiences at ELCA

We have a framework team collecting Spring competences and
providing punctual extensions to spring

For example:
A light build system based on Ant

Module abstraction:
module = code + config + transitive dependencies (modules + jars)
Plugins to extend it (Junit, Javadoc, Website, Emma, ...)

Configuration improvements
More flexible remoting

POJOs as EJBs, POJOs as SOAP servants
Implicit context passing

Guidelines & Demos

We plan to publish these punctual extensions as open source under the
EL4J project

© ELCA - 30.08.2005 POS

32Spring experiences at ELCA (2)

Project experience with Spring/ EL4J
~10 projects, several of them already successfully deployed

Concrete experiences
Solid backbone for configuration and plugging of applications

E.g. one fat-client application is now refactored for the web
Spring typically solves issues „as one would wish they were solved“
Practically no bugs in spring, excellent error messages
Saves sometimes up to 50% of “boring” & error-prone code
Very well integrated with essential technologies: Hibernate, ibatis,
Struts, RMI, J2EE APIs
Spring MVC (web-framework): more flexible than struts
Sometimes spring can become complex (particularly AOP)
Very well accepted by developers, short learning curve, fun to code!

=> Overall: very happy with Spring

© ELCA - 30.08.2005 POS

33References

Spring
http://www.springframework.org/
Article

http://www.theserverside.com/articles/article.tss?l=SpringFramework
http://www-128.ibm.com/developerworks/opensource/library/os-lightweight4/

Books
Java Development with the Spring Framework, Wrox, Rod Johnson, et al.
Pro Spring, apress, Rod Harrop et al.

Reference projects
Large list: CERN, many US banks, Telco providers, ...
http://www.springframework.com/users.html

Dependency injection
http://martinfowler.com/articles/injection.html

EL4J
http://www.elca.ch

Thank you for your attention

For further information please contact:

Philipp H. Oser Christian Gasser
Manager CTO
+41 44 456 32 11 +41 21 613 21 11
Philipp.Oser@nospam.elca.ch christian.gasser@nospam.elca.ch

