
W NHITESTEI
Technologies

jugs_resource-management | v1.3 | 2005-05-27 | MEK Copyright © 2005 by Whitestein Technologies AG, Switzerland
All rights reserved.

Resource Management for J2SE Applications

JUGS

Zurich, May 26th 2005

jugs_resource-management | v1.3 | 2005-05-27 – 2 –Copyright © 2005 by Whitestein Technologies AG, Switzerland
All rights reserved.

Name & Contact

❒ Martin Kernland

❒ mek@whitestein.com

Current Job

❒ Works at Whitestein Technologies AG − Software Agent Technology Experts
http://www.whitestein.com

❒ Senior Software Engineer − Project Manager, Software Architect, Technology Consultant

Previous Job

❒ Worked at Softwired AG − A Java Message Service (JMS) Provider
http://www.softwired-inc.com

❒ Software Engineer developing a JMS server called iBus//MessageServer

About the Speaker

jugs_resource-management | v1.3 | 2005-05-27 – 3 –Copyright © 2005 by Whitestein Technologies AG, Switzerland
All rights reserved.

Objectives

❒ Understand what Resource Management is all about

❒ Raise the awareness for Resource Management

❒ Get some new ideas for your current project

Agenda

❒ What Is Resource Management?

❒ Resource Management Patterns

❒ What Java Already Provides

❒ Real-World Challenges

❒ Usage & Configuration

❒ Outlook

❒ Wrap-up

Objectives & Agenda

jugs_resource-management | v1.3 | 2005-05-27 – 4 –Copyright © 2005 by Whitestein Technologies AG, Switzerland
All rights reserved.

The Problem

❒ Often Java developers don’t think about resource usage

❒ Result:

→ Late in development cycle (testing) − limits on resource usage are found
(e.g. OutOfMemory Error occurs)

→ Successful applications are used beyond the defined non-functional requirements

The Solution

❒ Control these resources (memory, CPU, connections, and components, plug-ins)

❒ Make sure these scenarios do not happen

❒ Resource Management != memory leak prevention

→ Memory leak through resource acquisition, but no release

→ Expect clean acquisition and release of resources are done

What Is Resource Management

jugs_resource-management | v1.3 | 2005-05-27 – 5 –Copyright © 2005 by Whitestein Technologies AG, Switzerland
All rights reserved.

Three Categories

❒ Resource Acquisition Patterns

❒ Resource Lifecycle Patterns

❒ Resource Release Patterns

Roles

❒ Resource User

❒ Resource Provider

Additional Remark

❒ High Level Design Patterns − for some it might seem too boring, too general

❒ Good Categorization of Solutions

Resource Management Patterns

jugs_resource-management | v1.3 | 2005-05-27 – 6 –Copyright © 2005 by Whitestein Technologies AG, Switzerland
All rights reserved.

Lookup Pattern

❒ Description: How to find and access resources (local or distributed) using a lookup service
as a mediating instance.

❒ Examples:

• JNDI / UDDI

• Eclipse Plug-in registry

❒ Pros:

• Location independence

• Configuration simplicity (including property-based selection)

❒ Cons:

• Single point of failure

• Dangling references

Resource Acquisition Patterns

Resource Acquisition Patterns (cont.)

jugs_resource-management | v1.3 | 2005-05-27 – 7 –Copyright © 2005 by Whitestein Technologies AG, Switzerland
All rights reserved.

Lazy Acquisition Pattern

❒ Description: Deferring resource acquisition to the latest possible time during execution

❒ Examples

• Java class loading

• Eclipse Plug-in

• Singleton pattern (classic)

❒ Pros

• Stability

• Faster startup-time

❒ Cons

• Less predictable

• Time delay on usage of the resource

Resource Acquisition Patterns (cont.)

jugs_resource-management | v1.3 | 2005-05-27 – 8 –Copyright © 2005 by Whitestein Technologies AG, Switzerland
All rights reserved.

Eager Acquisition Pattern

❒ Description: acquiring resources before their use to have provide them when needed.

❒ Examples

• Pooling

• Eclipse Plug-in Declarations

• Hamster (yes, the animal)

❒ Pros

• Predictability

• No time-delay on usage of the resource

❒ Cons

• Less scalable through over-acquisition

• Slower start-up time

Resource Acquisition Patterns (cont.)

jugs_resource-management | v1.3 | 2005-05-27 – 9 –Copyright © 2005 by Whitestein Technologies AG, Switzerland
All rights reserved.

Partial Acquisition Pattern

❒ Description: breaking up acquisition of a resource into multiple stages, each stage acquires
a part of the resource

❒ Examples:

• Socket input: blocks of data are read

• Web browser: incremental image loading

• Network management application: continuously updating list of resources

❒ Pros:

• Scalability

• Configurability

❒ Cons

• Complexity

jugs_resource-management | v1.3 | 2005-05-27 – 10 –Copyright © 2005 by Whitestein Technologies AG, Switzerland
All rights reserved.

Caching Pattern

❒ Description: avoid expensive re-acquisition of resource by not releasing them immediately
after their use. The resources retain their identity and are kept in a (fast) storage.

❒ Examples:

• Hardware cache / Operating Systems (file system cache)

• Databases

• Web browsers

❒ Pros

• Faster acquisition of resource

❒ Cons:

• Synchronization complexity

• More memory is used

Resource Lifecycle Patterns

Resource Lifecycle Patterns (cont.)

jugs_resource-management | v1.3 | 2005-05-27 – 11 –Copyright © 2005 by Whitestein Technologies AG, Switzerland
All rights reserved.

Pooling Pattern

❒ Description: avoid expensive acquisition and release of resources by recycling these
resources. Recycled and pooled resources have no identity (and no state)

❒ Examples:

• Thread Pool

• State-Less Session Beans (SLSB) on J2EE application servers

❒ Pro:

• Usually faster acquisition of resources

• Stability/scalability

❒ Cons:

• Synchronization

• Depending on pool size, system might be slowed down

Resource Lifecycle Patterns (cont.)

jugs_resource-management | v1.3 | 2005-05-27 – 12 –Copyright © 2005 by Whitestein Technologies AG, Switzerland
All rights reserved.

Resource Lifecycle Manager Pattern

❒ Description: decouples the management of the resource from the their use by introducing a
“Manager” who manages and maintains the resources of an application.

❒ Examples

• Component Container (EJB Container, CCM Container)

• JCA Container of J2EE

❒ Pros

• Control (e.g. over interdependent resource)

• Transparency

• Performance enhancement

❒ Cons

• Single-point of failure

jugs_resource-management | v1.3 | 2005-05-27 – 13 –Copyright © 2005 by Whitestein Technologies AG, Switzerland
All rights reserved.

Leasing Pattern

❒ Description: simplifies resource release by associating time-based leases with resources
when they are acquired. The resource is automatically released when the lease expires.

❒ Examples:

• Web sessions (web email, shopping)

• DHCP (leases IP addresses)

• Software licenses

❒ Pros:

• Simplicity

• Versioning

❒ Cons:

• Additional overhead (checks, application logic, timer, etc.)

Resource Release Patterns

Resource Release Patterns (cont.)

jugs_resource-management | v1.3 | 2005-05-27 – 14 –Copyright © 2005 by Whitestein Technologies AG, Switzerland
All rights reserved.

Evictor Pattern

❒ Description: how and when to release resources to optimize resource management by
applying different eviction strategies.

❒ Example:

• Paging of memory (operating system)

• Caches

• JMS message queue (non-persistent topic messages may be deleted)

❒ Pros:

• Scalability

• Stability

❒ Cons:

• Overhead (depending on the strategy used)

jugs_resource-management | v1.3 | 2005-05-27 – 15 –Copyright © 2005 by Whitestein Technologies AG, Switzerland
All rights reserved.

Thread Pools

❒ java.util.concurrent.ThreadPoolExecutor

❒ Idea: have threads exeute a queue of Runnables

❒ Constructor:

What Java Already Provides

public ThreadPoolExecutor(int corePoolSize,

 int maximumPoolSize,

 long keepAliveTime,

 TimeUnit unit,

 BlockingQueue<Runnable> workQueue,

 ThreadFactory threadFactory)

What Java Already Provides (cont.)

jugs_resource-management | v1.3 | 2005-05-27 – 16 –Copyright © 2005 by Whitestein Technologies AG, Switzerland
All rights reserved.

JDBC Connection Pool

❒ javax.sql.ConnectionPoolDataSource (JDBC 3.0 specification)

❒ returns javax.sql.PooledConnection (represents ONE physical connection)

→ PooledConnection is reusable

❒ Problem: not very feature rich (by specification)

→ definition of pool sizes, eviction strategy, etc. missing (features depend on driver)

javax.naming.Context ctx = new InitialContext();
javax.sql.DataSource ds = (DataSource)ctx.lookup("jdbc/myConnectionpool");
try {

Connection con = ds.getConnection("username", "password");
} catch (SQLException ex) {

// do something
} finally {

if (con != null) con.close();
}

What Java Already Provides (cont.)

jugs_resource-management | v1.3 | 2005-05-27 – 17 –Copyright © 2005 by Whitestein Technologies AG, Switzerland
All rights reserved.

NIO Socket Handling

❒ “Classic” socket handling: one thread per socket/client connection

→ Does not scale

→ What happens if 3000 clients connect?

❒ java.nio.* classes (nio = New I/O, since JDK 1.4)

❒ Support for multiplexed I/O (multiplexed = multiple signals/streams over single carrier)

❒ java.nio.channels.Selector handles many open sockets at the same time with one thread

→ Resource Lifecycle Manager Pattern

What Java Already Provides (cont.)

jugs_resource-management | v1.3 | 2005-05-27 – 18 –Copyright © 2005 by Whitestein Technologies AG, Switzerland
All rights reserved.

Soft References to Build Cache

❒ Soft, Weak, and Phantom References introduced in JDK 1.2 (but problematic
implementation!) − fixed since JDK 1.4/5.0

❒ java.lang.ref.SoftReference

❒ An object with a SoftReference is cleaned up if the heap memory is low

→ great for a cache: HashMap with SoftReferences to the values

→ if memory is low: values are garbage collected

→ if key is accessed, check of value is null

→ if yes, then reload value, if no, then get strong reference and return value

❒ Pros: automatic memory management

❒ Cons: limited control; all values could be collected (better: keep limited number of strong
references in HashMap)

jugs_resource-management | v1.3 | 2005-05-27 – 19 –Copyright © 2005 by Whitestein Technologies AG, Switzerland
All rights reserved.

Controlling Amount of Incoming Data

❒ JMS Messaging server: clients as producers/consumers of messages

❒ Danger: several clients send large messages at once

❒ Solution: Flow-Control (start/stop of incoming traffic/client)

→ TCP does the same

❒ Centralized Resource Lifecycle Manager keeps counter of number of byte blocks allowed

→ If counter is low, clients (producers) are stopped

→ If counter is high, clients (producers) are started

❒ Solution works best with sockets, but also RMI is possible (custom ServerSocketFactory)

❒ Problems:

• If byte blocks are not correctly freed or counter incremented, everything stops

• Tricky to configure

Real-World Challenges

Real-World Challenges (cont.)

jugs_resource-management | v1.3 | 2005-05-27 – 20 –Copyright © 2005 by Whitestein Technologies AG, Switzerland
All rights reserved.

When Producers Are Also Consumers: Software Agents

❒ No Flow-Control is possible (Agents are usually consumers and producers)

❒ “Ugly” trick: “paging” of new messages to disk

❒ Resource Lifecycle Manager checks high/low water marks

→ If high watermark reached: incoming messages are stored on disk

→ If low watermark reached: messages are loaded from disk

❒ Solution slows down application, but prevents a crash

→ Solution strongly influenced by operating system features!

jugs_resource-management | v1.3 | 2005-05-27 – 21 –Copyright © 2005 by Whitestein Technologies AG, Switzerland
All rights reserved.

Usage

❒ Application deployed on different machines: different amount of resources available!

❒ Pool/Cache sizes should be configurable

❒ Testing is easy with configurable pools: small pool size for testing

Configuration

❒ Configuration tricky: dependencies among resources!

❒ Dynamic configuration? − Cool but dangerous!

→ Possible solution: define different sets of configuration

Always A Trade-off

❒ No free lunch: trade-off between Scalability, Performance, Stability, Predictability, Flexibility,
Consistency, ...

❒ Resource Management often good choice − Example: thread pool (Stability, Performance)

Usage & Configuration

jugs_resource-management | v1.3 | 2005-05-27 – 22 –Copyright © 2005 by Whitestein Technologies AG, Switzerland
All rights reserved.

Advanced Resource Accounting

❒ Research project: JRAF2 - Java Resource Accounting Framework
http://www.jraf2.org/

→ Analyze bytecode of application

→ Create wrappers of objects (AOP)

→ Keep accounting for each thread (ThreadLocal?)

→ CPU usage accounting is based on number of executed byte code instructions

Outlook

Outlook (cont.)

jugs_resource-management | v1.3 | 2005-05-27 – 23 –Copyright © 2005 by Whitestein Technologies AG, Switzerland
All rights reserved.

More Features In JVM?

❒ Research group at Sun: Barcelona project (Lead: Dr. Grzegorz Czajkowski)

❒ In combination with JSR-121 (Isolation API)

❒ Idea:

• Isolates: define groups of resources (memory area, threads, etc.)

• Control these Isolates (security, limits of resource consumption)

Not Covered In This Talk

❒ java.lang.management (new in JDK 5.0)

❒ Several MXBeans with notifications for special events (low memory, etc.)

→ Great language features to build effective Resource Lifecycle Managers

jugs_resource-management | v1.3 | 2005-05-27 – 24 –Copyright © 2005 by Whitestein Technologies AG, Switzerland
All rights reserved.

Summary

❒ Overview through Patterns

❒ Discussed Java language features

❒ Presented Challenges

→ Something for everyone(?)

To Take Home With You

❒ THINK about resources and their usage − Resource Management might be appropriate

❒ Resource Management for stability and ... performance

❒ Java provides more and more language features − why not use them

❒ You sleep better when your product is robust

Wrap-Up

jugs_resource-management | v1.3 | 2005-05-27 – 25 –Copyright © 2005 by Whitestein Technologies AG, Switzerland
All rights reserved.

Patterns

❒ Pattern-Oriented Software Architecture, Vol.3 : Patterns for Resource Management
Michael Kirchner, Prashant Jain − John Wiley & Sons, 2004

→ This book explains the presented Patterns. It doesn’t offer much more and this was for
me a bit disappointing. A good but not excellent book.

Java Features

❒ http://www.onjava.com/pub/a/onjava/2004/09/01/nio.html
Article on using NIO for socket connections

❒ http://www.datadirect.com/developer/jdbc/docs/connpooling.pdf
Short description of JDBC connection pooling: nice to get an overview

❒ http://java.sun.com/developer/JDCTechTips/2004/tt1116.html#2
JDC Tech Tips on thread pooling

❒ http://www.devx.com/Java/Article/27439/
Short article about threading and thread pooling with Java 5.0

References & Links

References & Links (cont.)

jugs_resource-management | v1.3 | 2005-05-27 – 26 –Copyright © 2005 by Whitestein Technologies AG, Switzerland
All rights reserved.

❒ http://www.javaspecialists.co.za/archive/Issue098.html
http://www.javaspecialists.co.za/archive/Issue015.html
Two nice articles with a caching example based on soft references

❒ http://cpatutorials.skillspride.com/read/category/82/id/216/p/3
Good article on GC and soft, weak, and phantom references

Outlook

❒ http://www.jraf2.org
JRAF2 Project about Resource Accounting and Control: not too much information

❒ http://research.sun.com/projects/barcelona/
Barcelona Project of SUN working on improving the JVM

❒ http://www.bitser.net/isolate-interest/papers/bryce-05.04.pdf
Article on Isolation (JSR-121)

