
The Lana Approach to Autonomous
Distributed Systems

Ciarán Bryce

University of Geneva

2

Why program in Java?

◆ “Object-oriented”

◆ “A language for robust, secure distributed computing”

The language designers

3

Why program in Java?

◆ For the application programmer
➤Security, robustness and distribution are important qualities

◆ But what is the programming environment?

➤Robust with respect to what failures?

➤Secure with respect to what attacks?

➤Distributed over what architecture?

4

The Java programming environment

◆ Distribution
➤A network of single user machines

➤Machines can exchange objects and code
→Serialization, class loaders

➤Machines can be heterogeneous
→Bytecode interpretation

➤Machines can be small (e.g., embedded devices)
→Micro-editions, remote code loading

➤Programs communicate over channels
→Synchronous method invocation

5

The Java programming environment

◆ Security
➤Do not trust remote code as much as “local” code

→Sandbox model

◆ Failure model
➤Network connections can break but generally do not

→Exceptions

➤When connections do break, things have to be fixed
→Program recovery protocol into the applicationProgram recovery protocol into the application

Is this model still good enough?

What are the trends in computing
environments?

7

The trends

◆ Wireless networks are here

➤Long Distance Wireless
→E.g., Satellite, GSM, UMTS, ….

➤Short Distance Wireless - SDW
→E.g., Wireless LAN (IEEE 802.1), Bluetooth

◆ Communication up to 100 metres; no operator needed

◆ Wireless will help us to program and control
embedded devices

8

The trends

◆ Personalised devices
➤Personal Device Assistants

➤Mobile telephones

➤Smart-cards

◆ Embedded devices
➤98% of all processors

◆ Devices can be heterogeneous in size, functionality,
etc.

} same thing !

9

The trends

◆ Peer-to-peer computing on the Internet
➤Sharing of resources

→e.g., disk space, CPU space, music files, video

➤But without the use of dedicated and centralised services

◆ Peer to peer encourages the participation of end user
machines as equals

Where are these trends leading?

Global Computing Systems

11

Global Systems Characteristics

◆ Distribution

➤The nodes of the system are autonomous

➤There need not be a centralised control in a network

➤The number of nodes can be large

➤The configuration of a network can vary dynamically
→Networks are spontaneous or ad hoc

12

Global Systems Characteristics

◆ Failure : connection is never guaranteed
➤Mobile networks meet physical obstacles

→E.g., tunnels, walls, etc ….

➤Users leave their network
→e.g., Peer community members can just switch off

→e.g., Bluetooth user leaves his piconet

➤So, failure does not mean that something is broken

13

Global Computing Programming Model

◆ Autonomy for devices
➤A device’s set of network neighbours continuously evolves

➯Avoid use of connections and synchronous communication
➯A device should be able to leave a network, then rejoin it, and

continue running an application from where it left off

➤Applications should avoid dependence on specific sites
→Jini is unsuitable for GC since it requires a coordinator site
⇒Associative information search

◆ A telephone number for Marcel is found by broadcasting the message
“Marcel’s phone number?” and not by connecting to www.phones.ch

http://www.phones.ch/

14

Global Computing Programming Model

◆ Program and Data mobility
➤Tolerating disconnection requires being able to download

programs and data before disconnection

➤The overhead of network communication can be reduced
by moving programs close together

➤Small devices may need to delegate programs and data to
more powerful devices on their network

⇒An application must be able to exchange code, data and
programs between devices

15

Global Computing Programming Model

◆ Security
➤For data exchanged over the networks

→No one should be able to intercept messages for a device

→Device can detect modifications of messages it receives

➤From data and programs downloaded
→Protection against viruses and Denial of Service attacks

➤Between programs running on a device
→Standard memory protection

➤From other devices on the network
→Detect and eliminate masquerading servers

The Lana Language

Lana : Languages for Advanced Network
Architectures

17

Lana in a Nutshell

◆ Extension to Java
➤Object-oriented, (classes, single inheritance, interfaces,

packages)

◆ Designed for Global Computing environments
➤Multi-programmed language

➤Supports device autonomy
→Device can leave network application and rejoin later

→Allows applications to adapt to loss of network

➤Secure information access

18

Lana Class Hierarchy

Object

Program Space
Message

Board Key Event

MethodReturn
SecurityFailureCore of package lana.lang

19

Programs in Lana

◆ Unit of accounting
➤ An object belongs to only one

program

◆ Unit of mobility
➤ A program moves with all of its

contained objects

◆ Unit of protection
➤ A program is unable to call

methods on objects in another
program

➤ Each method call on another
program is verified by a security
policy

Subclass of lana.lang.Program

Instance of any other class

Strong Reference

Weak Reference

Protection + Accountability
+ Mobility + …. ⇒ Autonomy

20

Asynchronous Method Calls

◆ Method calls on strong
references are synchronous

◆ Method Calls on weak
references are asynchronous
➤Calling program places

method call request in the
called program’s mailbox

➤And continues its execution

◆ Each method call return
message is identified by a
unique key

class Me extends Program{

Key k;

Event e;

Program p = new You();

k = p!yourName();

Device.print(“I asked for a name\n”);

observe[k](e); // await method return

Device.print(“and got the reply ” +
e.extract());

}

21

Asynchronous Method Calls

◆ Each program possesses a thread that reads its
mailbox and executes the requested method

m(){

}

a.m() m(){

}

a.m()

observe

22

Keys

◆ Keys are objects whose values are unique in time and space
◆ Keys cannot be fabricated
◆ A fresh key is generated at each method call

➤A method call return message can only be read (observed) by a
program that possesses a copy of the key

➤Any exception linked to a method call is locked with the same key
→E.g., security violation exception, device unreachable exception

➤Keys can be exchanged between programs (as method call
parameters)

➤In this way, a program may delegate the handling of a method to
another program

23

Spaces

◆ An object is aliased when more
than one copy of a reference for
that object exists

◆ Reference passing is how
information is dispersed in an
OO system

◆ But uncontrolled aliasing leads to
security leaks

◆ Aliasing is the source of very
many documented security flaws
in Java and other OO systems

OO1

O2 O3

OO1

O2 O3

OO1

O2 O3

O1 references O

Passes a copy
to O2, …..

Which passes a
copy to O3,
without O1’s
knowledge

24

Spaces for Secure Aliasing

◆ Programs can share spaces of
objects
➤ Objects in the same space name

each other using strong references
➤ Objects in a space are named from

outside using weak references
➤ Method calls on objects in other

spaces are asynchronous
◆ The fact that you hold a reference

for an object does not mean that
you can call methods on it
➤ The security policy might refuse
➤ Or the object’s space may be moved

to another device

Space

Space

Program

Program

25

Message Board

◆ Devices that meet need to get to know each other
➤I.e. exchange references for their objects

◆ Each device possesses a message board
➤A device’s message board may be accessed by any other

device in the network
➤Each object stored in a message board is locked with a key

→An object can only be recovered from a message board if the
calling device possesses the key that locks the object

API: void out(Device, Key, Object)
and Object in(Device, Key)

26

Message Board

◆ Other roles of Message Board
➤Support copy-by-value information exchange
➤Whenever a method call cannot be returned to calling object

→The result is stored in the local message board

➤Used for exchanging data and programs between devices

k k

k

Protection + Accountability
+ Mobility + Message Boards
+ Asynchronous Messaging
 ⇒ Autonomy

27

Events

◆ In a global system, a program must be autonomous
➤It must be able to recognize and to adapt to different event

kinds

“No network”

28

Events

Event

MethodReturn

TargetMoved

SecurityViolation

◆ Events are asynchronously sent
between objects

◆ Each event is locked with a key
➤An object must possess a copy of

this key to observe the event
◆ An event need not be observed
◆ Programmers can define sub-

classes of events
◆ Lana defined events include

➤Method return, failure of a
method call due to mobility or
security

29

Lana Project Status

◆ Java Library
➤1st Prototype written in Java programming language

◆ Minimal VM
➤The design of a minimal virtual machine that can run both

Lana and Java programs
→Cooperation with OVM

