The Lana Approach to Autonomous
Distributed Systems

Ciaran Bryce

University of Geneva

Why program 1n Java?

0 “Object-oriented”

1 “A language for robust, secure distributed computing”

The language designers

Why program 1n Java?

U For the application programmer
Security, robustness and distribution are important qualities

0 But what 1s the programming environment?
Robust with respect to what failures?
Secure with respect to what attacks?

Distributed over what architecture?

The Java programming environment

[Distribution

A network of single user machines

Machines can exchange objects and code

— Serialization, class loaders

Machines can be heterogeneous

— Bytecode interpretation

Machines can be small (e.g., embedded devices)

— Micro-editions, remote code loading

Programs communicate over channels

— Synchronous method invocation

The Java programming environment

U Security

Do not trust remote code as much as “local” code

— Sandbox model

U Failure model
Network connections can break but generally do not
— Exceptions

When connections do break, things have to be fixed

— Program recovery protocol into the application

Is this model still good enough?

What are the trends in computing
environments?

The trends

[Wireless networks are here

Long Distance Wireless
- E.g., Satellite, GSM, UMTS,

Short Distance Wireless - SDW
—E.g., Wireless LAN (IEEE 802.1), Bluetooth

Communication up to 100 metres; no operator needed

U Wireless will help us to program and control
embedded devices

The trends

0 Personalised devices

Personal Device Assistants
Mobile telephones } same thing !

Smart-cards

0 Embedded devices

98% of all processors

U Devices can be heterogeneous 1n size, functionality,
etc.

The trends

1 Peer-to-peer computing on the Internet

Sharing of resources

—e.g., disk space, CPU space, music files, video

But without the use of dedicated and centralised services

U Peer to peer encourages the participation of end user
machines as equals

Where are these trends leading?

Global Computing Systems

Global Systems Characteristics

[Distribution

The nodes of the system are autonomous
There need not be a centralised control in a network
The number of nodes can be large

The configuration of a network can vary dynamically

— Networks are spontaneous or ad hoc

11

Global Systems Characteristics

U Failure : connection 1s never guaranteed
Mobile networks meet physical obstacles
— E.g., tunnels, walls, etc

Users leave their network
—e.g., Peer community members can just switch off

—¢.g2., Bluetooth user leaves his piconet

So, failure does not mean that something is broken

12

13

Global Computing Programming Model

1 Autonomy for devices

A device’s set of network neighbours continuously evolves
LI Avoid use of connections and synchronous communication

L] A device should be able to leave a network, then rejoin it, and
continue running an application from where it left off
Applications should avoid dependence on specific sites
— Jin1 1s unsuitable for GC since it requires a coordinator site

[1 Associative information search

A telephone number for Marcel 1s found by broadcasting the message
“Marcel’s phone number?”” and not by connecting to

http://www.phones.ch/

14

Global Computing Programming Model

U Program and Data mobility

Tolerating disconnection requires being able to download
programs and data before disconnection

The overhead of network communication can be reduced
by moving programs close together

Small devices may need to delegate programs and data to
more powerful devices on their network

An application must be able to exchange code, data and
programs between devices

15

Global Computing Programming Model

U Security

For data exchanged over the networks
— No one should be able to intercept messages for a device

— Device can detect modifications of messages it receives

From data and programs downloaded

— Protection against viruses and Denial of Service attacks

Between programs running on a device

— Standard memory protection

From other devices on the network

— Detect and eliminate masquerading servers

The Lana Language

Lana : Languages for Advanced Network
Architectures

[.ana in a Nutshell

U Extension to Java
Object-oriented, (classes, single inheritance, interfaces,
packages)

U Designed for Global Computing environments
Multi-programmed language

Supports device autonomy
— Device can leave network application and rejoin later

— Allows applications to adapt to loss of network

Secure information access

17

18

Lana Class Hierarchy

Object

Program Space

MethodReturn

Core of package lana.lang SecurityFailure

Programs in Lana

0 Unit of accounting
An object belongs to only one
program

0 Unit of mobility

A program moves with all of its
contained objects

0 Unit of protection

A program is unable to call
methods on objects in another
program

Each method call on another
program is verified by a security
policy

19

Subclass of lana.lang.Program

Instance of any other class

— * Strong Reference

— =+ Weak Reference

Protection + Accountability
+ Mobility + [Autonomy

Asynchronous Method Calls

0 Method calls on strong class Me extends d
references are synchronous k;

1 Method Calls on weak ©
references are asynchronous p = new You();

Calling program places
method call request in the
called program’s mailbox

k = plyourName();
(“I asked for a name\n™);
And continues its execution observe[k](e); // await method return

: (“and got the reply ” +
e. 0);

[Each method call return
message 1s 1dentified by a
unique key

20

Asynchronous Method Calls

A4
)

1 Each program possesses a thread that reads its
mailbox and executes the requested method

21

22

Keys

U Keys are objects whose values are unique 1n time and space
U Keys cannot be fabricated
1A fresh key 1s generated at each method call

A method call return message can only be read (observed) by a
program that possesses a copy of the key

Any exception linked to a method call is locked with the same key

— E.g., security violation exception, device unreachable exception

Keys can be exchanged between programs (as method call
parameters)

In this way, a program may delegate the handling of a method to
another program

Spaces

U An object 1s aliased when more
than one copy of a reference for
that object exists

1 Reference passing is how
information is dispersed in an
OO system

U But uncontrolled aliasing leads to
security leaks

U Alasing 1s the source of very
many documented security flaws
in Java and other OO systems

23

0] > 0O
1 Ol references O
02 > 03

Ol O
Passes a copy 1
to 02, ... 0?2 > 03
Ol O Which passes a
l | copy to O3,
0?2 . O3 Without Ol’s

»

knowledge

Spaces for Secure Aliasing

U Programs can share spaces of
objects

Objects in the same space name
each other using strong references

Objects in a space are named from
outside using weak references

Method calls on objects in other
Spaces arce asynchronous
0 The fact that you hold a reference
for an object does not mean that
you can call methods on 1t
The security policy might refuse

Or the object’s space may be moved
to another device

~~
—
‘5
—_—

\
4

~
~
b
~
~

Space

Space

24

25

Message Board

U Devices that meet need to get to know each other
I.e. exchange references for their objects

U Each device possesses a message board

A device’s message board may be accessed by any other
device in the network

Each object stored in a message board 1s locked with a key

— An object can only be recovered from a message board if the
calling device possesses the key that locks the object

API: void out(Device, Key, Object)
and Object in(Device, Key)

Message Board

Protection + Accountability
+ Mobility + Message Boards
+ Asynchronous Messaging
L[] Autonomy

S
S

0 Other roles of Message Board
Support copy-by-value information exchange

Whenever a method call cannot be returned to calling object
— The result is stored in the local message board

Used for exchanging data and programs between devices

26

Events

llﬂ' J_]

U In a global system, a program must be autonomous

It must be able to recognize and to adapt to different event
kinds

oy

Events

U Events are asynchronously sent
between objects
0 Each event is locked with a key

An object must possess a copy of
this key to observe the event

[An event need not be observed

U Programmers can define sub-
classes of events

U Lana defined events include

Method return, failure of a
method call due to mobility or
security

MethodReturn

TargetMoved

Security Violation

Lana Project Status

U Java Library

1* Prototype written 1n Java programming language

0 Minimal VM

The design of a minimal virtual machine that can run both
Lana and Java programs

— Cooperation with OVM

29

