
.NET Framework and C#.NET Framework and C#

Anders HejlsbergAnders Hejlsberg
Distinguished EngineerDistinguished Engineer
MicrosoftMicrosoft

Zurich, May 28, 2001Zurich, May 28, 2001

The .NET FrameworkThe .NET Framework

Base Class Library

Common Language Specification

Common Language Runtime

ADO.NET and XML

VB C++ C#
V

isu
al S

tu
d

io
.N

E
T

ASP.NET

JScript …

Windows
Forms

The .NET FrameworkThe .NET Framework

 Simplifies application developmentSimplifies application development
 No COM plumbing, OOP, interoperabilityNo COM plumbing, OOP, interoperability

 Based on web standards / practicesBased on web standards / practices
 Robust execution environmentRobust execution environment

 GC, exceptions, type-safety, securityGC, exceptions, type-safety, security

 Multiple programming languagesMultiple programming languages
 Easy deployment and managementEasy deployment and management

 Zero impact install, side-by-sideZero impact install, side-by-side

 Standards work in progressStandards work in progress

Base Class LibraryBase Class Library

 Data types, conversions, formattingData types, conversions, formatting
 Collections: ArrayList, Hashtable, etc.Collections: ArrayList, Hashtable, etc.
 Globalization: Cultures, sorting, etc.Globalization: Cultures, sorting, etc.
 I/O: Binary and text streams, files, etc.I/O: Binary and text streams, files, etc.
 Net: HTTP, TCP/IP sockets, etc.Net: HTTP, TCP/IP sockets, etc.
 Reflection: Metadata and IL emitReflection: Metadata and IL emit
 Security: Permissions, cryptographySecurity: Permissions, cryptography
 Text: Encodings, regular expressionsText: Encodings, regular expressions

Windows FormsWindows Forms

 Combines VB forms and MFCCombines VB forms and MFC
 Delegation as well as subclassingDelegation as well as subclassing

 Advanced featuresAdvanced features
 Visual forms inheritance, automatic layoutVisual forms inheritance, automatic layout
 Advanced graphics support – GDI+Advanced graphics support – GDI+
 Easy access to Win32 ® APIEasy access to Win32 ® API

 Controls can be hosted in IE 5.xControls can be hosted in IE 5.x
 No installation, registration or GUIDsNo installation, registration or GUIDs

 Code access securityCode access security

ADO.NET and XMLADO.NET and XML

 Consumes all types of dataConsumes all types of data
 XML (hierarchical), RelationalXML (hierarchical), Relational

 Powerful in-memory data cache Powerful in-memory data cache
 Lightweight, stateless, disconnectedLightweight, stateless, disconnected
 Supports both relational and XML accessSupports both relational and XML access
 High-perf, low overhead stream accessHigh-perf, low overhead stream access

 Great XML support including: Great XML support including:
 W3C DOM, XSL/T, XPath, and SchemaW3C DOM, XSL/T, XPath, and Schema

ASP.NETASP.NET

 Rich page architectureRich page architecture
 Web Forms, Web ControlsWeb Forms, Web Controls

 Great Web Services supportGreat Web Services support
 Compiled languagesCompiled languages
 Easier to deployEasier to deploy
 Enhanced reliability and availabilityEnhanced reliability and availability
 Improved performance and scalabilityImproved performance and scalability
 Automatic multiple client supportAutomatic multiple client support

 DHTML, HTML 3.2, WML, small devicesDHTML, HTML 3.2, WML, small devices

Multi-Language PlatformMulti-Language Platform

 The .NET Platform is Language NeutralThe .NET Platform is Language Neutral
 All .NET languages are first class playersAll .NET languages are first class players
 You can leverage your existing skillsYou can leverage your existing skills

 CLR = Union of language featuresCLR = Union of language features
 CLS = Intersection of language featuresCLS = Intersection of language features
 Microsoft is providingMicrosoft is providing

 VB, C++, C#, JscriptVB, C++, C#, Jscript

 Industry and academiaIndustry and academia
 APL, COBOL, Eiffel, Fortran, Haskell, ML, APL, COBOL, Eiffel, Fortran, Haskell, ML,

Perl, Python, Scheme, Smalltalk, …Perl, Python, Scheme, Smalltalk, …

StandardizationStandardization

 CLI and C# submitted to ECMACLI and C# submitted to ECMA
 Proposal adopted at ECMA TC39 meeting Proposal adopted at ECMA TC39 meeting

in September 2000in September 2000
 Co-sponsored by Intel, Hewlett-PackardCo-sponsored by Intel, Hewlett-Packard

 Common Language InfrastructureCommon Language Infrastructure
 Based on .NET Common Language Based on .NET Common Language

Runtime and Class LibrariesRuntime and Class Libraries
 Layered into increasing levels of Layered into increasing levels of

functionalityfunctionality

C# – The Big IdeasC# – The Big Ideas

 The first component oriented language The first component oriented language
in the C and C++ familyin the C and C++ family

 Everything really is an objectEverything really is an object
 Robustness and durabilityRobustness and durability
 Preserving your investmentPreserving your investment

C# Type SystemC# Type System

 Value typesValue types
 Directly contain dataDirectly contain data
 Cannot be nullCannot be null

 Reference typesReference types
 Contain references to objectsContain references to objects
 May be nullMay be null

int i = 123;int i = 123;
string s = "Hello world";string s = "Hello world";

123123ii

ss "Hello world""Hello world"

C# Type SystemC# Type System

 Value typesValue types
 PrimitivesPrimitives int i; double d;int i; double d;
 EnumsEnums enum State { Off, On }enum State { Off, On }
 StructsStructs struct Point { int x, y; }struct Point { int x, y; }

 Reference typesReference types
 ClassesClasses class Foo: Bar, IFoo {...}class Foo: Bar, IFoo {...}
 InterfacesInterfaces interface IFoo: IBar {...}interface IFoo: IBar {...}
 ArraysArrays string[] a = new string[10];string[] a = new string[10];

 DelegatesDelegates delegate void Empty();delegate void Empty();

StructsStructs

 Like classes, exceptLike classes, except
 Stored in-line, not heap allocatedStored in-line, not heap allocated
 Assignment copies data, not referenceAssignment copies data, not reference
 No inheritanceNo inheritance

 Ideal for light weight objectsIdeal for light weight objects
 Complex, point, rectangle, colorComplex, point, rectangle, color
 int, float, double, etc., are all structsint, float, double, etc., are all structs

 BenefitsBenefits
 No heap allocation, less GC pressureNo heap allocation, less GC pressure
 More efficient use of memoryMore efficient use of memory

Classes and StructsClasses and Structs

 class CPoint { int x, y; ... }class CPoint { int x, y; ... }
struct SPoint { int x, y; ... }struct SPoint { int x, y; ... }

CPoint cp = new CPoint(10, 20);CPoint cp = new CPoint(10, 20);
SPoint sp = new SPoint(10, 20);SPoint sp = new SPoint(10, 20);

1010

2020
spsp

cpcp

1010

2020

CPointCPoint

Unified Type SystemUnified Type System

 Everything is an objectEverything is an object
 All types ultimately inherit from objectAll types ultimately inherit from object
 Any piece of data can be stored, transported, and Any piece of data can be stored, transported, and

manipulated with no extra workmanipulated with no extra work

StreamStream

MemoryStreamMemoryStream FileStreamFileStream

HashtableHashtable doubledoubleintint

objectobject

Unified Type SystemUnified Type System

 BoxingBoxing
 Allocates box, copies value into itAllocates box, copies value into it

 UnboxingUnboxing
 Checks type of box, copies value outChecks type of box, copies value out

int i = 123;int i = 123;
object o = i;object o = i;
int j = (int)o;int j = (int)o;

123123i

o

123123

System.Int32System.Int32

123123j

Unified Type SystemUnified Type System

 BenefitsBenefits
 Eliminates “wrapper classes”Eliminates “wrapper classes”
 Collection classes work with all typesCollection classes work with all types
 Replaces OLE Automation's VariantReplaces OLE Automation's Variant

 Lots of examples in .NET FrameworkLots of examples in .NET Framework
string s = string.Format(string s = string.Format(
 "Your total was {0} on {1}", total, date);"Your total was {0} on {1}", total, date);

Hashtable t = new Hashtable();Hashtable t = new Hashtable();
t.Add(0, "zero");t.Add(0, "zero");
t.Add(1, "one");t.Add(1, "one");
t.Add(2, "two");t.Add(2, "two");

Component DevelopmentComponent Development

 What defines a component?What defines a component?
 Properties, methods, eventsProperties, methods, events
 Integrated help and documentationIntegrated help and documentation
 Design-time informationDesign-time information

 C# has first class supportC# has first class support
 Not naming patterns, adapters, etc.Not naming patterns, adapters, etc.
 Not external filesNot external files

 Components are easy to build Components are easy to build
and consumeand consume

PropertiesProperties

 Properties are “smart fields”Properties are “smart fields”
 Natural syntax, accessors, inliningNatural syntax, accessors, inlining

public class Button: Controlpublic class Button: Control
{{
 private string caption;private string caption;

 public string Caption {public string Caption {
 get {get {
 return caption;return caption;
 }}
 set {set {
 caption = value;caption = value;
 Repaint();Repaint();
 }}
 }}
}}

Button b = new Button();Button b = new Button();
b.Caption = "OK";b.Caption = "OK";
String s = b.Caption;String s = b.Caption;

IndexersIndexers

 Indexers are “smart arrays”Indexers are “smart arrays”
 Can be overloadedCan be overloaded

public class ListBox: Controlpublic class ListBox: Control
{{
 private string[] items;private string[] items;

 public string this[int index] {public string this[int index] {
 get {get {
 return items[index];return items[index];
 }}
 set {set {
 items[index] = value; items[index] = value;
 Repaint();Repaint();
 }}
 }}
}}

ListBox listBox = new ListBox();ListBox listBox = new ListBox();
listBox[0] = "hello";listBox[0] = "hello";
Console.WriteLine(listBox[0]);Console.WriteLine(listBox[0]);

Events Events
SourcingSourcing

 Define the event signatureDefine the event signature

 Define the event and firing logicDefine the event and firing logic

public delegate void EventHandler(object sender, EventArgs e);public delegate void EventHandler(object sender, EventArgs e);

public class Buttonpublic class Button
{{
 public event EventHandler Click; public event EventHandler Click;

 protected void OnClick(EventArgs e) {protected void OnClick(EventArgs e) {
 if (Click != null) Click(this, e); if (Click != null) Click(this, e);
 } }
}}

Events Events
HandlingHandling

 Define and register event handlerDefine and register event handler

public class MyForm: Formpublic class MyForm: Form
{{
 Button okButton;Button okButton;

 public MyForm() {public MyForm() {
 okButton = new Button(...);okButton = new Button(...);
 okButton.Caption = "OK";okButton.Caption = "OK";
 okButton.Click += new EventHandler(OkButtonClick);okButton.Click += new EventHandler(OkButtonClick);
 }}

 void OkButtonClick(object sender, EventArgs e) {void OkButtonClick(object sender, EventArgs e) {
 ShowMessage("You pressed the OK button");ShowMessage("You pressed the OK button");
 }}
}}

AttributesAttributes

 How do you associate information with How do you associate information with
types and members?types and members?
 Documentation URL for a classDocumentation URL for a class
 Transaction context for a methodTransaction context for a method
 XML persistence mappingXML persistence mapping

 Traditional solutionsTraditional solutions
 Add keywords or pragmas to languageAdd keywords or pragmas to language
 Use external files, e.g., .IDL, .DEFUse external files, e.g., .IDL, .DEF

 C# solution: AttributesC# solution: Attributes

AttributesAttributes
public class OrderProcessorpublic class OrderProcessor
{{
 [WebMethod][WebMethod]
 public void SubmitOrder(PurchaseOrder order) {...}public void SubmitOrder(PurchaseOrder order) {...}
}}

[XmlRoot("Order", Namespace="urn:acme.b2b-schema.v1")][XmlRoot("Order", Namespace="urn:acme.b2b-schema.v1")]
public class PurchaseOrderpublic class PurchaseOrder
{{
 [XmlElement("shipTo")] public Address ShipTo;[XmlElement("shipTo")] public Address ShipTo;
 [XmlElement("billTo")] public Address BillTo;[XmlElement("billTo")] public Address BillTo;
 [XmlElement("comment")] public string Comment;[XmlElement("comment")] public string Comment;
 [XmlElement("items")] public Item[] Items;[XmlElement("items")] public Item[] Items;
 [XmlAttribute("date")] public DateTime OrderDate;[XmlAttribute("date")] public DateTime OrderDate;
}}

public class Address {...}public class Address {...}

public class Item {...}public class Item {...}

AttributesAttributes

 Attributes can beAttributes can be
 Attached to types and membersAttached to types and members
 Examined at run-time using reflectionExamined at run-time using reflection

 Completely extensibleCompletely extensible
 Simply a class that inherits from Simply a class that inherits from

System.AttributeSystem.Attribute
 Type-safeType-safe

 Arguments checked at compile-timeArguments checked at compile-time
 Extensive use in .NET FrameworksExtensive use in .NET Frameworks

Unsafe CodeUnsafe Code

 Unsafe codeUnsafe code

 Low-level code without leaving the boxLow-level code without leaving the box

 Enables unsafe casts, pointer arithmeticEnables unsafe casts, pointer arithmetic

 Declarative pinningDeclarative pinning

 Fixed statementFixed statement

 Basically “inline C”Basically “inline C”

unsafe void Foo() {unsafe void Foo() {
 char* buf = stackalloc char[256];char* buf = stackalloc char[256];
 for (char* p = buf; p < buf + 256; p++) *p = 0;for (char* p = buf; p < buf + 256; p++) *p = 0;

}}

Unsafe CodeUnsafe Code

class FileStream: Streamclass FileStream: Stream
{{
 int handle;int handle;

 public unsafe int Read(byte[] buffer, int index, int count) {public unsafe int Read(byte[] buffer, int index, int count) {
 int n = 0;int n = 0;
 fixed (byte* p = buffer) {fixed (byte* p = buffer) {
 ReadFile(handle, p + index, count, &n, null);ReadFile(handle, p + index, count, &n, null);
 }}
 return n;return n;
 }}

 [dllimport("kernel32", SetLastError=true)][dllimport("kernel32", SetLastError=true)]
 static extern unsafe bool ReadFile(int hFile,static extern unsafe bool ReadFile(int hFile,
 void* lpBuffer, int nBytesToRead,void* lpBuffer, int nBytesToRead,
 int* nBytesRead, Overlapped* lpOverlapped);int* nBytesRead, Overlapped* lpOverlapped);
}}

Other C# FeaturesOther C# Features
VersioningVersioning
Multi-dimensional arraysMulti-dimensional arrays
Operator overloadingOperator overloading
User-defined conversionsUser-defined conversions
Variable parameter listsVariable parameter lists
ref and out parametersref and out parameters
Unsigned types (byte, ushort, uint, ulong)Unsigned types (byte, ushort, uint, ulong)
Decimal type (28 digits)Decimal type (28 digits)
Conditional compilationConditional compilation
foreach statementforeach statement
Explicit interface member implementationsExplicit interface member implementations
XML documentation commentsXML documentation comments

