

Shipping a 100% Pure Java IDE
-

Inside the IBM VisualAge
MicroEdition IDE

Erich Gamma
erich_gamma@oti.com

Object Technology International Inc.

Contents

1. Issues with the Java platform

2. A Simple Widget Kit that enables Java Applications
with a native look and feel and performance

3. Designing a lite UI framework

4. Evolving the UI framework

5. Making change your friend

Java well established on the server (servlets, EJB etc.)
but…

How is Java doing on the desktop?

I have been using the Forte/Netbeans IDEs. They both
have major performance issues. I have seen similar
problems with other large swing apps having huge
memory footprints and being dog-slow at everything.
Where are the bottlenecks? Is the JVM just a big memory
eater, or could it be swing that is at fault?"

--B. Madigan, member, programming theory & practice
http://www.javaworld.Com/

“… And from the user perspective, Java programs often
turned out to be annoyingly slow and unstable.”

“With so many problems to contend with, Java has made
little headway on the desktop. That trend is clearest – and,
to me, most disappointing – in the area of standard
productivity software”

-- Henry Norr, SF Gate Business & Finance

Background: VisualAge MicroEdition IDE

• IDE developed with focus on embedded systems
development

• Classical features
– browsing, cross referencing

– incremental development

– tightly integrated team support

• “team streams”

• Embedded features
– remote on target debugging

• JPDA based

– smart linking/application compression

– performance tools

• MicroAnalyzer

VAME Runtime

Max
2MB

Java Applikations-Code

Betriebssystem

PortierungsbibliothekThread-Modell

Profiler

Debugger

Realtime Profiler

Virtuelle Maschine

Java Aufrufe

Core
300K

Extreme
100K

JCL Natives

Class Loader

Interpreter

Exception Handler

Garbage Collector

JNI

Native
Applications

dynamisch
ladbare
Module

OS-Aufrufe

JNI

Aufrufe
in C-
Bibliotheken

VAME IDE

VAME IDE - Analyzer

Swinging on the Bleeding Edge

• It all started with Swing 0.2...

• Swing is cool!
– model based widgets

• no gratuitous copying from model data structure into widget

• Adapter binds model data to widget

• lazy models

– renderers

• plugabble cell rendering Strategies

• “rubber stamping”

– pluggable look and feel

– lots of pattern uses...

LookAndFeel

getUI(JComponent)
AbstractFactory

AbstractFactory:Produc
t

Swinging - Patterns at Work

JTable

setModel()
addActionListener()
getUIClassID()

TableModel

getElementAt()
getSize()

Observer Observer:Subject

JTableUI

paint()
getPreferredSize()
mousePressed()

Strategy: Context Strategy

Observer: Subject Observer

TableCellRenderer

getComponent()

Strategy

Flyweight

Ready to Ship

Swing Happiness

O.2 O.6 O.7O.5O.4O.3

H
ap

pi
ne

ss

1.0
Feb 98

“API frozen”

???

Swing - Unhappiness

• Swing is loosing some coolness

• performance problems
• start-up

– lots of classes to load

• GC pauses
– lots of temporary objects

– quality problems

• lots of code

• memory leaks
– easy to create and difficult to track down

– had to restart once per day

First Internal Feedback

• “sluggish”
– not as clean and fast as native Windows GUIs

• “eats memory”
– restart once a day

• “looks and behaves funny”
– not the real Windows look and feel

“Swing native look'n'feels are kind of like pod people UIs. They look
like the real thing, they act like the real thing, but somehow they
just aren't quite right. Dogs bark at them, and children aren't fooled

at all.” --John Brewer, AutoDesk

– e.g. file chooser...

Native Look and Feel

• Swing lags behing the Native Look and Feel

Coming Swing API Changes for Java TM 2 SDK,
Standard Edition, v. 1.4

The ideal Swing application running under the
Windows look and feel would be indistinguishable
from its native running counterparts, however due to
both changes in the native Windows look and feel
(Windows 98 , Windows 2000, etc.) and atrophy of our
existing Windows look and feel implementation, this is
not the current reality. Our goal for this release is to
provide an updated Windows look and feel which
integrates seamlessly into the Windows desktop.

Lessons Learned
• Windows users are accustomed to things working in a

specific way
– native integration with platform is critical

– leverage new platform features as they arrive

⇒you can build a Swing application for Windows, but you can't
build a Windows application using Swing!

• Emulated widgets are hard, e.g. a simple Label
• multi-line? alignment and NLS issues?

• Native GUI code has been fine-tuned over a long period
of time you want to leverage wherever possible

Options

• Proceed as is - technology will improve
– we can’t fix all the problems ourselves

• Use AWT only
– limited widget set

• widget set can’t easily be extended with additional native widgets

– architectural problems

• async handling of native events
– no application code executes in UI, this defeats platform optimizations

• lazy native widget/peer creation
– addNotify()

• use Windows specific APIs (e.g. WFC)
– non-portable

SWT -A Simple Widget Toolkit

• Portable API to a standard set of widgets
– implemented on Windows and Linux in Java

• Performance! Simplicity, robustness
– just say no to unneeded generality

• Platform integration
– native implementation (Win32, X/Motif, others)

– embrace the native capabilities…

– ...and accept their limitations

• Don’t sacrifice native integration on Win32
• OLE/ActiveX integration on Win32

Widget “Liposuction” - a Simple Table

• Comparison with JTable

• No client controlled rendering of items (owner draw)

• No lazy population of widget based by fetching data from a model

• But…less classes, less Java code, less bugs, better performance

Table

addSelectionListener()
getItems()

TableItem

setText()
setImage()

SelectionListener

widgetSelected()

Observer
Subject

Object

client data

Comparison
Swing/AWT SWT

widget
creation

widgets are created lazily by peers
(addNotify)

no peers! Widgets are created
immediately.
Constructors require you to specify the
parent - there is no addWidget!

event
handling

listeners with typed events listeners with typed events

layout layout managers:
GridBagLayout, GridLayout,
BorderLayout, …

layout managers:
GridLayout, RowLayout, FillLayout,
…

threading
model

AWT: free threaded
Swing: only event thread is allowed
to talk to widgets (not checked)

only thread that created widget is
allowed to talk to widgets (checked!)

OS
resources

resources are finalized by the GC client has to destroy OS resources

rendering renderers, owner draw no owner draw

data access Model interfaces, e.g. TreeModel Data is pushed into widgets directly

Comparison Cont’d

• Simple Widget Kit • SwingSwing/AWT SWT
Native code
in dll 960 KB (JDK 1.3) 180 KB

simple bindings to platform functions

Number of
classes > 1000 < 200

Hello World

Display display= new Display();
Shell shell= new Shell(display);
shell.setLayout(new FillLayout());
Button b= new Button(shell, SWT.PUSH);
b.setText(”Click Me");

b.addSelectionListener(
 new SelectionAdapter() {
 public void widgetSelected(SelectionEvent e) {

 System.out.println(“Hello World”);}
 }
);
shell.setSize(200, 200);
shell.open();

while(!shell.isDisposed())
 if(!display.readAndDispatch())
 display.sleep();

The UI Framework - JFace

• Basic widgets are not enough for application development
• Additional support is required to:

– populate widgets with domain objects
– keep widget in synch when domain objects change

• Therefore: build a thin UI framework on top basic widgets

Simple Widget Toolkit
• widgets • layout • events • image

IDE UI

UI Framework
• viewers: tree, list, table, text
• browsers
• preferences
• wizards

Why a Thin Framework

• Problems with fad frameworks
– difficult to learn

– difficult to evolve and maintain

• Frameworks are more “white box” thank toolkits

– Powerful frameworks have to make some constraining
assumptions

• “Frameworkitis”

• too smart and can get in the way

• provide generic behaviour that isn’t needed and get’s in the
way

The UI Framework: Iteration 1

• Problem: exploring and manipulating
a hierarchically structured Domains

• presenting domain in UI
– keep the UI in sync as

model changes

• navigating relationships
– viewing/editing of a node’s contents

Domain

UI

The Goal

• A thin framework that…
– defines the browsing metaphor

• implements the “complex stuff”

– allows clients to focus on

• domain definition

• node content editors/viewers

– is simple!

• small number of concepts

Browser
Framework

DomainViewer

UI

Domain Access

• Elements
– browseable entities

– data nodes in the domain

– examples: a file, a mailbox

• Elements have Properties
– aspects of the browsable entities

• Elements provide a dynamic data access API

• Property kinds
– simple: Object, Boolean, String, Element

– indexed: ordered set of Elements

Object getProperty(String)

Type
methods
code
basetypes
versions

Domain Model

• knows a root element
– the “portal” into a domain

• is the model in the Model/View architecture
– notifier for domain changes

– elements fire domain changes via model

⇒ elements know their domain model

– notification specifies changed property

– observers register with domain model

Domain

Elements

Root

Viewer

• A Viewer …
– is fed with input element

– presents properties of its input element

– observes domain model for changes

– handles user interactions

– sends out selection change events

• Standard Viewers exists
– Structure oriented Viewers

• Tree, List, Table

– Content oriented Viewer

• Text

Viewer

input output

Pane - a Viewer’s Container

• installs Viewer dynamically based on its input

• optionally provides UI to pick other viewers for the
viewed property

Pane

Viewer
Viewer

Pane

input output

Browser - Pane’s Container

• implements browsing metaphor

• is fed with an Element

• manages panes
• defines wiring between panes
• defines layout between panes Viewer

Viewer

Pane

Viewer
Viewer

Pane

Status Area

Toolbar

Browser

input

Summary

DomainModel

Elements

Properties

Name

Methods

Source

Superclass

Interfaces

DeclaredTypes

Editions

Class Element

Viewers
Classes

Docs

TFoo

Search

TBar

Stuff

TFoo

TNewFoo

TFooBar

TFoo is a demonstration class which
actually does very little. I wonder if
this font is readable.

This is where real documentation
would go if there was any.

Browser

• Separation of design from code
– define the “design” as Java interfaces in one package

– move “implementation details” into a separate package

• Motivation
– encapsulate volatile implementation details

behind stable interfaces

• make the difference explicit for clients

– capture the object interactions in interfaces

– clients shouldn’t be forced into implementation inheritance

• less flexible

Defining the Framework

Discovering the Viewer Interface

Viewer

DomainModel Element
IElementIDomainModel

Selection
ISelection

Pane
IPane

IViewer

...

• An interface defines a role an object plays
– Captures the collaborations between objects

Problems with Interfaces

• Interfaces cannot have default implementation
– cumbersome for clients to implement

– every interface change is a breaking change!

⇒ Provide default implementations in a separate layer

• difference between design (interfaces) and implementation
remains explicit!

Example: Layering

Interfaces
• reuse of design
• stable
• specifies public interfaces

m
o

re co
n

crete

m
o

re sta b
le

domainChanged()
installInPane()
isDirty()

IViewer

Default Implementation
• reuse of design and code
• less stable
• specifies protected interfaces

installInPane()
isDirty()

AbstractViewer

Client Implementation
• reuse of implementation
• least stable domainChanged()

SourceViewer

⇒Pattern Interface-Implementation Pair

Iteration 2: From White-Box to Black-Box

• Clients still have to subclass several framework classes:
– various factory methods

– Browser: layout, wiring

– Pane: property selection

⇒ Introducing composition/configuration
instead of subclassing

– white-box frameworks

• promote flexibility

• based on inheritance, dynamic binding

– black-box frameworks

• promote ease of use

• based on composition, configuration

Configuration with XML
Example: Browser Definition

Name: “ListPane”
property: “children”

Name: “ContentsPane”
property: “content”

File Browser

 <browser outputs="ListPane">

 <layout>

 <vsplit>

 <pane name="ListPane"

 properties="children"

 outputs="ContentsPane">

 </pane>

 <pane name="ContentsPane"

 properties="contents">

 </pane>

 </vsplit>

 </layout>

</browser>

“Componentizing” Viewers

• End of 1st iteration: many custom viewers

• Consolidation revealed:
– clients typically changed only a few aspects of viewers:

• sorting and filtering

• rendering (how properties of a single element are drawn)

• action to execute for specific user-interaction

• Refactoring for composability
– introducing Strategies: Sorter, Filter, LabelProvider

⇒Fine-grain componentizing

⇒ Configurable viewers without subclassing

Example: Custom TreeViewer

• A single viewer can be customized to different uses
without subclassing

– heterogeneous traversal - enumerating children

• children property

– sorter

• sorting order

– rendering

• label property

• icon property

– actions

/MyTreeViewer {
 /class "com.x.TreeViewer"

/childrenProperty "variables"
 /sorter { } # no sorter
 /renderer {/class "com.x.VariableRenderer"}
 /actions {
 /DoubleClick { /class "com.x.MyAction" }
 }
}

Iteration 3: An even Thinner Framework

• Refactoring
– Don’t require XML to use the framework

• configuration with code is more direct

– Make less constraining assumptions about the domain model

• domain model doesn’t have to be accessible with Elements
and Properties

• don’t require a standard notification scheme
• Object as the common currency, there should be no

additional type requirements on the domain model

Domain Access with Adapters

• Domain access implemented as plugins of a Viewer
– Idea: define (pluggable) Adapters for accessing a domain

• Dimensions
– Accessing the structure of a domain and tracking changes

– Rendering a domain object

TreeViewer

setContentProvider()
setLabelProvider()

ITreeContentProvider

getChildren(Object)
getParent(Object)
inputChanged(Object)

ILabelProvider

getImage(Object)
getText(Object)

Domain

Adapter

Adaptee
Adapter

Tracking Domain Changes
• ContentProvider is responsible to translate domain events

into Viewer updates

ITreeContentProvider

getChildren(Object)
getParent(Object)
inputChanged(Object)

Domain

Update
Viewer

MyDomainListener

domainChanged()

MyDomainContentProvider

getChildren(Object)
getParent(Object)
domainChanged()

TreeViewer

addChild()
removeChild()
updateNode()
refresh()

// analyze domain event
fViewer.addChild();

Observer

Subject

SWT+JFace vs. Swing

• Focus on native widgets

• Clear layering between basic widgets and application
functionality

– Basic widgets are not model based

• “Pay as you go” – when you need a simple widget you can have
one

• More consistent and orthogonal API

• Smaller and simpler
– SWT (200 classes) +JFace (170 classes) < Swing (1000 classes)

– JFace provides additional features

• Wizards

• Preferences

• Operations

Making Change Your Friend

• Problems:
– evolving framework while there are existing clients

– getting confidence in changed framework

• Solutions:
– backward compatibility

• use deprecation

• but deprecation doesn’t work for hook methods when their
signature changes

– client overrides methods that are no longer called
– declare such methods as final
– compiler warns client about obsolete override

– unit tests …

Inset: JUnit
• An open source framework for implementing

unit tests (www.sourceforge.net/projects/junit)

• Implementing unit tests:
– define fixture to capture common set-up code

– stimulate the fixture with test cases

– verify the results

– Aggregate tests into suites

public class MoneyTest extends TestCase {
 public void testMoneyEquals() {

assert(!f12CHF.equals(null));
assert(f12CHF.equals(f12CHF));
assert(!f12CHF.equals(f14CHF));

 }
 public void testAdd() {
 …
 }
}

Unit Tests for JFace

• Unit tests are required to ensure that refactorings preserve
the desired behavior

• Viewer update is an area of breakage
– focus tests on model-viewer consistency

• There is a class hierarchy of Viewers
– leverage inheritance to reduce the number of tests that need to be

implemented

Unit Test Example

• StructuredViewerTest.setup()

• StructuredViewerTest.testDeleteChild

public void setUp() {
 fViewer= createViewer();
 fBrowser= createBrowser(fViewer);
 fRootElement= TestElement.createModel(3, 10); //
create test domain model
 fBrowser.open ();
}

public void testDeleteChild() {
 TestElement first= fRootElement.getFirstChild();
 TestElement first2= first.getFirstChild();
 first.deleteChild(first2); //
change domain model
 assertNull(fViewer.FindItem(first2)); //
verify

}

Unit Tests (Cont’d)

• Good design simplifies unit testing
– “lazy testing”

• Viewers are factored into a class hierarchy
– StructuredViewer

• AbstractTreeViewer
– TreeViewer

– TableTreeViewer

• TableViewer

• ListViewer

• Tests against StructuredViewer can be reused for subclasses
– StructuredViewerTest provides Factory Method that subclassers

implement to return a concrete Viewer object for the tests

– StructuredViewerTest
• AbstractTreeViewerTest

• TreeViewerTest
• TableTreeViewerTest

• TableViewerTest
• ListViewerTest

The Happy End

• Shipped (March 2000)

• self hosting
– “we are eating our own dog food”

• IBM VisualAge Micro Edition Home Page,
– http://www.ibm.com/software/ad/embedded

– Free download of VAME IDE with Palm runtime

http://www.ibm.com/software/ad/embedded

Conclusions

⇒A minimalist UI toolkit was the key to shipping a client-
side Java application that

– is indistinguishable from a native application

– performs like a native application

• UI framework had to evolve over multiple iterations
• Unit tests were critical for evolving and refactoring the UI

Framework

