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Middleware - Make or Buy? 

• Information systems are increasingly based on 

distributed architectures. 

• Mobile and other new devices must be integrated: 

Server, PC, Laptop, PDA, Cell Phone, ... 

• New transport protocols (e.g. wireless), different 
qualities of service (best-effort, guaranteed, ...). 

• Systems become more complex, deadlines shorter.  
“Write-it-yourself” less an option. 
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Middleware Taxonomy 

• Client/Server 

– a.k.a. RPC; procedure-oriented 

• Distributed Objects 

– Object-oriented.  CORBA, DCOM, RMI 

• Message Oriented Middleware (MOM, Messaging) 

– “Connectionless”, “asynchronous” 

– Best known through message queuing 
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Messaging 

• Messaging is a model in which applications are 

loosely coupled through the exchange of self-

describing messages.  

• Message Oriented Middleware (MOM) 
encompasses publish/subscribe and message 

queuing communications. 

Sender Receiver 

MOM 

Messages 
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Message Queuing 

Producer Queue Consumer Consumer 

send(m1) 

send(m3) 

send(m2) 

receive() 

m1 

m2 

receive() 

Put message into 

queue 

Consume message 
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Publish/Subscribe 

Producer Broker Consumer Consumer 

publish(m1) 
send(m1) Pass message to 

broker 

send(m1) 

send(m2) 

send(m2) 

Dispatch message to 

all consumers 

publish(m2) 

publish(m3) 
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Message Queuing Application 
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Publish/Subscribe Application 

 

subscribe (“AAPL”); 
subscribe (“AAPL”); 

subscribe (“SUN”); 
subscribe (“AAPL”); 

subscribe (“SUN”); 

publish (“AAPL”, 29.2); 

publish(“AAPL”, 29.3); 

publish (“SUN”, 43.0); 

publish(“SUN”, 42.7); 
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JMS Overview 

Goals of Java Message Service (JMS): 

• Standardized API for Messaging in Java 

• System-independent API for development of 
heterogeneous, distributed applications 

• Use of arbitrary Java objects as messages 

• Natural fit with XML messages (Extensible Markup 
Language) through data-centric model. 

• Dual API for the two models: 

– Point to point (Message Queuing) 

– Publish-Subscribe 
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JMS Functionality 

• Message Formats 

– TextMessage, BytesMessage, MapMessage (Hashtable), 

StreamMessage, ObjectMessage 

• Quality of Service 

– Persistent/non-persistent delivery 

– Priorities, time to live, transactions 

• Threaded programming model 

• Outside the spec: 

– Security services 

– Management services 
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JMS Publisher Example 

Initialize JMS: 

session = connection.createTopicSession( 

 transacted, ackMode); 

topic  = session.createTopic(”quotes"); 

publisher = session.createPublisher(topic); 

Create a message: 

message = session.createTextMessage(…); 

Send a message: 

publisher.publish(message); 
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JMS Subscriber Example 

Initialize JMS: 

session = connection.createTopicSession(...); 

topic  = session.createTopic(”quotes"); 

subscriber = session.createSubscriber(topic); 

Create a consumer: 

consumer = new MyConsumer(); 

subscriber.setMessageListener(consumer); 

Consumer receives messages via listener: 

void onMessage(Message message); 
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JMS Pub-Sub Classes 
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More JMS Features 

• Message selectors: 

– SQL-like syntax for accessing header: 

subscriber  = session.createSubscriber( 

 topic, “priority > 6 AND type = ‘alert’ ”); 

– Point to point: selector determines single recipient 

– Pub-sub: acts as filter 

• Transactions 

– void onMessage(Message m) { 

    try { Message m2=processOrder(m); 

        publisher.publish(m2); session.commit(); 
} catch(Exception e) { session.rollback(); } 
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Request/Reply with Messages 

• “80% of inter-application communication is 

asynchronous, 20% is synchronous (RPC)” 

• JMS also provides request/reply 

• Request message includes Topic/Queue to reply to 

• TopicRequestor/QueueRequestor helper classes 

• Idea can easily be extended, e.g. iBus has: 

– Request with timeout 

– Request with multiple replies 

• Uses: 

– Fault tolerance (N equivalent replyers). 
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JMS and J2EE, EJB  

• Enterprise JavaBeans 

• JavaServer Pages 

• Servlets 

• Java Naming and  
Directory Interface (JNDI) 

• Java Transaction API (JTA) 

• CORBA 

• JDBC data access 

• ... and JMS!  

The J2EE Family: 

RMI, CORBA, 

JMS 

RMI, CORBA, 

JMS 
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JMS and Enterprise Java Beans 

• Application server provides EJB, freeing applications from 

details of threading, transactions, scalability, fault-tolerance. 

• JMS plays similar role to CORBA and RMI: connection from 

the outside wanting service.  Full integration into EJB spec 

expected June 2000. 

• App server transactions replace/augment JMS transactions. 

• Messaging implementations from app-server vendors may 
not be as scalable, flexible as from “pure messaging 

vendors”. 
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JMS Products 

• Pure Java 

– SoftWired iBus (http://www.JavaMessaging.com/ibus) 

– Progress SonicMQ (http://www.progress.com/sonicmq/) 

– FioranoMQ (http://www.fiorano.com) 

• Java API, C/C++ Implementation 

– Sun’s JMQ Product 

• JMS API to existing MOM Products 

– IBM MQSeries (http://www. ibm.com/mqseries) 

• Application Server Add-On 

– BEA Systems WebLogic, Borland Application Server. 
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Distinguishing Features of Products 

• Pure Java? 

• Pub-sub and point to point domains? 

• Performance? 

• Integration with other products, other languages? 

• Quality of service and transport protocols (HTTP)? 

• Security? 

• XML? (usually simplistic) 

• Management tools? 

• Pricing, professional services, and support? 
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For Further Information 

• http://www.java.sun.com/products/jms 

• Developing Java Enterprise Applications 
by Stephen Asbury and Scott R. Weiner. Wiley & Sons. 
has 80 pages on JMS, also addresses JNDI, EJB 

(OK overview book). 

• SoftWired JMS articles:  
http://www.JavaMessaging.com 


