
www.JavaMessaging.com

Java Message Service -
What and Why?

Bill Kelly, Silvano Maffeis

SoftWired AG, Zürich

info@softwired-inc.com

www.JavaMessaging.com

Agenda

• Make or Buy?

• Middleware Taxonomy, Messaging

• Java Message Service

– Overview

– Features of note

– Its place in J2EE, EJB

– Products

• For Further Information

www.JavaMessaging.com

Middleware - Make or Buy?

• Information systems are increasingly based on

distributed architectures.

• Mobile and other new devices must be integrated:

Server, PC, Laptop, PDA, Cell Phone, ...

• New transport protocols (e.g. wireless), different
qualities of service (best-effort, guaranteed, ...).

• Systems become more complex, deadlines shorter.
“Write-it-yourself” less an option.

www.JavaMessaging.com

Middleware Taxonomy

• Client/Server

– a.k.a. RPC; procedure-oriented

• Distributed Objects

– Object-oriented. CORBA, DCOM, RMI

• Message Oriented Middleware (MOM, Messaging)

– “Connectionless”, “asynchronous”

– Best known through message queuing

www.JavaMessaging.com

Messaging

• Messaging is a model in which applications are

loosely coupled through the exchange of self-

describing messages.

• Message Oriented Middleware (MOM)
encompasses publish/subscribe and message

queuing communications.

Sender Receiver

MOM

Messages

www.JavaMessaging.com

Message Queuing

Producer Queue Consumer Consumer

send(m1)

send(m3)

send(m2)

receive()

m1

m2

receive()

Put message into

queue

Consume message

www.JavaMessaging.com

Publish/Subscribe

Producer Broker Consumer Consumer

publish(m1)
send(m1) Pass message to

broker

send(m1)

send(m2)

send(m2)

Dispatch message to

all consumers

publish(m2)

publish(m3)

www.JavaMessaging.com

Message Queuing Application

www.JavaMessaging.com

Publish/Subscribe Application

subscribe (“AAPL”);
subscribe (“AAPL”);

subscribe (“SUN”);
subscribe (“AAPL”);

subscribe (“SUN”);

publish (“AAPL”, 29.2);

publish(“AAPL”, 29.3);

publish (“SUN”, 43.0);

publish(“SUN”, 42.7);

www.JavaMessaging.com

JMS Overview

Goals of Java Message Service (JMS):

• Standardized API for Messaging in Java

• System-independent API for development of
heterogeneous, distributed applications

• Use of arbitrary Java objects as messages

• Natural fit with XML messages (Extensible Markup
Language) through data-centric model.

• Dual API for the two models:

– Point to point (Message Queuing)

– Publish-Subscribe

www.JavaMessaging.com

JMS Functionality

• Message Formats

– TextMessage, BytesMessage, MapMessage (Hashtable),

StreamMessage, ObjectMessage

• Quality of Service

– Persistent/non-persistent delivery

– Priorities, time to live, transactions

• Threaded programming model

• Outside the spec:

– Security services

– Management services

www.JavaMessaging.com

JMS Publisher Example

Initialize JMS:

session = connection.createTopicSession(

 transacted, ackMode);

topic = session.createTopic(”quotes");

publisher = session.createPublisher(topic);

Create a message:

message = session.createTextMessage(…);

Send a message:

publisher.publish(message);

www.JavaMessaging.com

JMS Subscriber Example

Initialize JMS:

session = connection.createTopicSession(...);

topic = session.createTopic(”quotes");

subscriber = session.createSubscriber(topic);

Create a consumer:

consumer = new MyConsumer();

subscriber.setMessageListener(consumer);

Consumer receives messages via listener:

void onMessage(Message message);

www.JavaMessaging.com

JMS Pub-Sub Classes

www.JavaMessaging.com

More JMS Features

• Message selectors:

– SQL-like syntax for accessing header:

subscriber = session.createSubscriber(

 topic, “priority > 6 AND type = ‘alert’ ”);

– Point to point: selector determines single recipient

– Pub-sub: acts as filter

• Transactions

– void onMessage(Message m) {

 try { Message m2=processOrder(m);

 publisher.publish(m2); session.commit();
} catch(Exception e) { session.rollback(); }

www.JavaMessaging.com

Request/Reply with Messages

• “80% of inter-application communication is

asynchronous, 20% is synchronous (RPC)”

• JMS also provides request/reply

• Request message includes Topic/Queue to reply to

• TopicRequestor/QueueRequestor helper classes

• Idea can easily be extended, e.g. iBus has:

– Request with timeout

– Request with multiple replies

• Uses:

– Fault tolerance (N equivalent replyers).

www.JavaMessaging.com

JMS and J2EE, EJB

• Enterprise JavaBeans

• JavaServer Pages

• Servlets

• Java Naming and
Directory Interface (JNDI)

• Java Transaction API (JTA)

• CORBA

• JDBC data access

• ... and JMS!

The J2EE Family:

RMI, CORBA,

JMS

RMI, CORBA,

JMS

www.JavaMessaging.com

JMS and Enterprise Java Beans

• Application server provides EJB, freeing applications from

details of threading, transactions, scalability, fault-tolerance.

• JMS plays similar role to CORBA and RMI: connection from

the outside wanting service. Full integration into EJB spec

expected June 2000.

• App server transactions replace/augment JMS transactions.

• Messaging implementations from app-server vendors may
not be as scalable, flexible as from “pure messaging

vendors”.

www.JavaMessaging.com

JMS Products

• Pure Java

– SoftWired iBus (http://www.JavaMessaging.com/ibus)

– Progress SonicMQ (http://www.progress.com/sonicmq/)

– FioranoMQ (http://www.fiorano.com)

• Java API, C/C++ Implementation

– Sun’s JMQ Product

• JMS API to existing MOM Products

– IBM MQSeries (http://www. ibm.com/mqseries)

• Application Server Add-On

– BEA Systems WebLogic, Borland Application Server.

www.JavaMessaging.com

Distinguishing Features of Products

• Pure Java?

• Pub-sub and point to point domains?

• Performance?

• Integration with other products, other languages?

• Quality of service and transport protocols (HTTP)?

• Security?

• XML? (usually simplistic)

• Management tools?

• Pricing, professional services, and support?

www.JavaMessaging.com

For Further Information

• http://www.java.sun.com/products/jms

• Developing Java Enterprise Applications
by Stephen Asbury and Scott R. Weiner. Wiley & Sons.
has 80 pages on JMS, also addresses JNDI, EJB

(OK overview book).

• SoftWired JMS articles:
http://www.JavaMessaging.com

